

International Centre

DΡ

OXFORD

1 Long-term Energy-Water-Land System Modeling: A case for Ethiopia

Brook Tesfamichael¹ [brook.tesfamichael@aait.edu.et] Fitsum S. Kebede¹ [fitsum.salehu@aait.edu.et] ¹Addis Ababa University, Addis Ababa Institute of Technology-AAiT

ICTP Joint Summer School for Sustainable Development

2023

Ethiopia – key facts

Area: 1.112 mil Km² Popn.: 123,379,924 (WB 2020)

Agri. land: 34% Forest: 15.1% Marginal: 20.9%

Transport: 99.8% imported fossil fuel From all import expenditure: 10-14%

ted fossil fuel ure: 10-14%

ocation Map of Ethiopia in World

Energy -

Key

facts

Installed capacity: 4.9 GW

Context and Challenges

- Power sector poor energy mix.
 - Over-reliance on hydropower.
- Ambitious biofuel strategy.
- Dirty transport sector (fossil based).
- Increasing land degradation.
- How to utilize marginal land for **potential value** production **biofuel**?

Ethiopia – Simplified Reference CLEWs Diagram

Scenarios

Using the CLEWs nexus model, the following scenarios were investigated:

Scenario Label	Scenario Description	Key Assumptions
BAU-mod. Baseline	 Cost-optimal energy-land-water benchmark model. Data: WB, FAO, national reports, CCG SDK, etc. 	Improved energy mix.Ensure sectoral demands.
TDC Transport De- carbonization	 Examine the biofuel strategy (sugar industries). 	 Progressive biofuel blending: reaching 40% (E-40) by 2050.
IE-LE Integrated Energy- Land Efficiency	 Examine marginal lands use for biofuel production. (land, water and energy, CO₂ implications). 	 Utilize 3% of the 23.2 mil. ha marginal land.

Results 1/3 – Energy Mix and Green Energy Dev't

6

Baseline model (BAU) -

Results 2/3 – Energy Mix and Green Energy Dev't

Area by Land Cover Type

Year

Biofuel (TDC)

 In 2050: production needs an increase from 5 to 20 bil. tonnes.

Results 3/3 – Energy Mix and Green Energy Dev't

8

Area by Crop

Conclusions and Policy Insights

- Improving the energy mix for sustainable supply and climate mitigation.
- Use of marginal lands for biofuel production-land use efficiency.
- Biofuel from alternative 2nd-gen feedstock, not only from sugar processing.
- Use of marginal lands helps to operationalize blending targets.
- Informed policy making, integrated modeling (energy-land-water-climate) CLEWs model.

Future Work

- Fine-tuning and calibrating the CLEWs model accurate data.
- Engaging sectoral stakeholders for the model development.
- Sustainable capacity building for experts on nexus analysis.
- Integrating open source tools in teaching and continuous training.

Acknowledgment

Special thanks to:

Francesco Gardumi, Kane Alexander and Leigh Martindale.

Climate Compatible Growth, IAM COMPACT[§], ICTP, AAiT.

[§]The IAM COMPACT project has received funding from the European Union's HORIZON EUROPE Research and Innovation Programme under grant agreement No 101056306.

ADDIS ABABA INSTITUTE OF TECHNOLOGY አዲስ አበባ ቴክኖሎጂ ኢንስቲትዪት ADDIS ABABA UNIVERSITY አዲስ አበባ ዩኒቨርሲቲ

