

ThermoCodegen (TCG) describes free energy models of thermodynamic endmembers & phases, & reactions between them using SymPy, automatically generates code for the thermodynamic parameters, and provides an API for their values & derivatives dynamics reactions phases O/PDEs, initial & $(T_i, p_i, c_i^k, \phi_i)$ (T_i, p_i, n_i^k) boundary conditions thermodynamic database Lgeodynamic model reactive system model (TCG) Find us Read our JOSS on gitlab: docs: paper naper enki-portal.gitlab.io/ThermoCodege import py_Mg2Si04_stixrude as pms rxn = pms.Mg2Si04_stixrude() rxn.report() Reaction object: Mg2SiO4 stixrude Phase 0 Forsterite (Fo) Endmember 0 Forsterite_stixrude : Mg2SiO4_(Fo) Phase 1 MgWadsleyite (MgWa) Endmember 0 MgWadsleyite_stixrude : Mg2SiO4_(MgWa) Phase 2 MgRingwoodite (MgRi) Endmember 0 MgRingwoodite_stixrude : Mg2Si04_(MgRi) Reaction 0 Mg2SiO4_(Fo) -> Mg2SiO4_(MgWa) Mg2SiO4_(MgWa) -> Mg2SiO4_(MgRi) Which currently includes 3 phases and 2 reaction For convenience we will identify some indices for phases and co Use in a geodynamic model, e.g. using SciPy Create right hand side function of ODEs def f(t,u,rxn,scale,epsilon=1.e-3,verbose=False) return rhs of the dimensionaless 1-D isentropic upwelling equa Parameters _____ t: float time u: array solution array [F, c_(Lq)^{Si204}, T, P] rxn: ThermoCodegen Reaction object scale: dict dictionary containing scales for T,P,rho epsilon: float regularization parameter for composition equation not actually used here # Extract variables N = 3 F = u[:N]T = u[N]P = u[N+1]*# scale Temperature and pressure* Ts = scale['T']*T Ps = scale['P']*P *# calculate thermodynamic properties from the rxn object* gamma_i = np.array(rxn.Gamma_i(Ts,Ps,C,F)) if verbose: print(gamma_i) # phase properties rho = np.array(rxn.rho(Ts, Ps, C) alpha = np.array(rxn.alpha(Ts,Ps,C) cp = np.array(rxn.Cp(Ts, Ps , C)) s = np.array(rxn.s(Ts, Ps, C)) v = F/rho# mean properties $rho_bar = 1/sum(v)$ alpha_bar = v.dot(alpha)*rho_bar cp_bar = F.dot(cp) s_bar = F.dot(s) A = scale['P']/scale['rho'] dFdz = gamma_i dTdz = T/cp_bar * (-A*alpha_bar - s.dot(gamma_i)) dPdz = -rho_bar/scale['rho'] if verbose: print(T/cp_bar, A*alpha_bar, s.dot(gamma_i), dsdc_lq.dot(dCik_lq)) du = np.empty(u.shape)du[:N] = dFdzdu[N:] = np.array([dTdz, dPdz]) return du

Regional

scale disequilibrium , melting as an explanation for Hawaii's double hotspot trac (planned future work) images from lones et c 201

cwilson@carnegiescience.edu