ThermoCodegen (TCG) describes free energy models of thermodynamic endmembers & phases, & reactions between them using SymPy, automatically generates code for the thermodynamic parameters, and provides an API for their values & derivatives reactions phases dynamics O/PDEs, initial & (T_i, p_i, n_i^k) $(T_i, p_i, c_i^k, \phi_i)$ boundary conditions thermodynamic database geodynamic model reactive system model (TCG) Find us 모자요 HD Read our 모델 HT UOSS paper: **NEW** *gitlab.com/ENKI-portal/ThermoCodegen enki-portal.gitlab.io/ThermoCodegen doi.org/10.21105/joss.04874* import py_Mg2Si04_stixrude as pms $rxn = pms.Mg2Si04_sstixrule()$ Reaction object: Mg2Si04_stixrude Phase 0 Forsterite (Fo) Endmember 0 Forsterite_stixrude : Mg2Si04_(Fo) Phase 1 MgWadsleyite (MgWa) Endmember 0 MgWadsleyite_stixrude : Mg2Si04_(MgWa) Phase 2 MgRingwoodite (MgRi) Endmember 0 MgRingwoodite_stixrude : Mg2Si04_(MgRi) Mg2Si04_(Fo) -> Mg2Si04_(MgWa) 4 Mg2SiO4_(MgWa) -> Mg2SiO4_(MgRi) Which currently includes 3 phases and 2 reaction For convenience we will identify some indices for phases and co *Use in a geodynamic* Create right hand side function of ODEs *model, e.g. using SciPy* def f(t, u, rxn, scale, epsilon=1.e-3, verbose=False) return rhs of the dimensionaless 1-D isentropic upwelling equati Parameters solution array [F, c_(Lq)^{Si2O4}, T, P] rxn: ThermoCodegen Reaction object scale: dict dictionary containing scales for T, P, rho epsilon: float regularization parameter for composition equation not actually used here # Extract variables $F = u[:N]$ $P = u[N+1]$ # scale Temperature and pressure $Ts = scale['T'] * T$ $Ps = scale['P'] * P$ # calculate thermodynamic properties from the rxn object $gamma_i = np.array(rxn.Gamma_i(Ts, Ps, C, F))$ if verbose: print(gamma_i) # phase properties $rho = np.array(rxn.rho(Ts, Ps, C)$ alpha = np.array(rxn.alpha(Ts,Ps,C) $cp = np.array(rxn.Cp(Ts, Ps, C))$ s = np.array(rxn.s(Ts, Ps, C)) $v = F/rho$ # mean properties $rho_bar = 1/sum(v)$ $alpha_b$ = v.dot(alpha)*rho_bar cp_bar = F.dot(cp) $s_bar = F.dot(s)$ $A = scale['P']/scale['rho']$ dFdz = gamma_i
dTdz = T/cp_bar * (—A*alpha_bar — s.dot(gamma_i)) $dPdz = -rho_bbar/scale['rho']$ if verbose: print(T/cp_bar, A*alpha_bar, s.dot(gamma_i), dsdc_lq.dot(dCik_lq)) $du = np$. $empty(u$. shape) $du[:N] = dFdz$ $du[N:] = np.array([dTdz, dPdz])$

 \mathcal{S}^1 , \mathcal{S}^2 binary phase diagram at 1 bar (left) and 1 bar (left) and 1 bar (left) and 1 \mathcal{S}^1 (right). Phase abbreviations as in text. Colored matrix \mathcal{L} include both experimental brackets include both experimental brackets in

cwilson@carnegiescience.edu is the modal opx in the solid residue. Channels emerge pervasively through the melting

Figure 5.7: Time evolution of static (*W*⁰ = 0) fluxed inflow model. The orthopyroxene field

Regional

scale disequilibrium melting as an explanation for Hawaii's double hotspot track (planned future work) *images from Jones et c 2017*