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Abstract— Reconfigurable intelligent surface (RIS)-aided
communication is a promising technology for 6G systems to
reconfigure the propagation environment proactively. However,
it requires efficient real-time channel training, which suffers
excessive overhead. To resolve this challenge, taking advantage
of sensing with radio waves and localization, we propose a
novel environment-aware joint active/passive beamforming for
RIS-aided wireless communication based on the new concept of
channel knowledge map (CKM). In the proposed scheme, the
user equipments (UEs) location information is combined with
the radio environment information provided by CKM to achieve
efficient beamforming without real-time training. Simulation
results show the proposed scheme’s superior performance over
training-based beamforming, which is also quite robust to errors
related to UE’s location in practice.

Index Terms— Channel knowledge map, energy efficiency,
reconfigurable intelligent surface.

I. INTRODUCTION

BY RECONFIGURING the wireless propagation environ-
ment in 6G communications systems, RIS offer spectrum

and energy efficient wireless communication cost effectively.
However, channel estimation is the major challenge in real-
izing the advantages of RIS-aided communications due to
the passive elements in the RIS and the prohibitive overhead
caused by massive elements. Hence, obtaining the required
channel state information (CSI) for beamforming becomes
intractable [1].

Extensive research for proposing efficient RIS channel esti-
mation schemes has been devoted. Methods for estimating the
cascaded channels between UEs and base station (BS) through
the RIS were proposed in [2], [3], [4], and [5]. The authors
in [3] provided the cascaded channel by turning on only one
RIS passive element at each time and successively estimating
the channel with each RIS passive element. However, the
accuracy of the estimated CSI is so vulnerable to noise due to
the week training signal estimated by one element turned on.
Also, a subgroup-based channel estimation was proposed in [4]
for RIS-aided communications. The authors in [5] considered
the properties of channel correlation among the UEs based on
the common BS-RIS link to propose a multi-user channel esti-
mation scheme. Furthermore, the cascaded channel estimation
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based on compress sensing techniques, considering BS-RIS
channel sparsity properties, was investigated in [6], [7], and
[8]. Searching for the optimal passive beamforming given
a predefined codebook is another practical approach instead
of CSI estimation [9]. However, this approach increases
the beam training overhead to ensure high resolution. The
above techniques disregard the UE’s location and the actual
communication environment. Recent advances in localization
and sensing technologies have increased interest in utilizing
location information and geolocation-based databases for wire-
less communication systems. One such concept is a CKM
which provides location-specific information regarding intrin-
sic radio channels with no need for sophisticated real-time CSI
acquisitions [10]. Additionally, [11] analyses the key features
involved in the construction and utilization of CKM.

This letter proposes a new approach for joint optimized
active/passive beamforming in RIS-aided communications,
enabling environment-aware communication through the use
of CKM which does not require any real-time channel training.
CKM is a site-specific database that involves the transceivers’
locations and channel-related information useful to enhance
environmental awareness and facilitate real-time CSI acquisi-
tion. Due to the drastic increase in channel dimensions and
training overhead, CKM plays a vital role in 6G networks
that aim to achieve extremely high capacity, low latency,
and ultra-massive connectivity. With the proposed training-
free beamforming, the most appropriate and optimized active
and passive beams are designed with both the location and the
environmental information provided by the CKM. The simula-
tion results show that the proposed environment-aware beam-
forming scheme significantly outperforms the training-based
baseline and the proposed method is robust to uncertainties
associated with the location of UEs in practice.

II. SYSTEM MODEL

Consider a downlink RIS-aided mmWave cell, where a
multi-antenna BS serves K single-antenna UEs with the help
of the RIS as shown in Fig. 1. We assume the BS has
M ≫ 1 antennas, and the RIS is equipped with N ≫
1 passive elements. Besides, there is no direct link between
the BS and the UEs due to severe blockage in the mmWave
communications. Let us denote fk ∈ CM as the active
transmit beamforming vector for each UE k. Also, θ =
[θ1, θ2, . . . , θN ]T as the passive beamforming vector, i.e., the
reflection coefficients applied on the incident signal at the
RIS. Our aim is to design an optimized environment-aware
active/passive beamforming (f , θ) ∈ H. The transmitted
signal from BS is x =

∑
k∈K fksk where sk is the symbol

data for UE k distributed as a zero mean and unit variance
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Fig. 1. Environment awareness is enabled by CKM through a location-tagged
database of channel-related information, providing channel knowledge.

i.i.d. random variable and E [x∗x] =
∑

k∈K Tr (fkf∗k) ≤ P
where P is the maximum transmit power of the BS. Therefore,
the received signal at UE k will be yk = h∗rk

Θ∗G∗x + zk

and the corresponding signal-to-interference-plus-noise ratio
(SINR) at UE k is given by

SINRk(H) ≜
|h∗kfk|2∑

j∈K,j ̸=k |h
∗
kf j |2 + σ2

. (1)

where zk ∼ CN(0, σ2) is the receiver noise. It is noteworthy
that hk = GΘhrk

, hrk
∈ CN is denoted as the reflected

link between RIS and UE k, G ∈ CM×N relates to BS-RIS
link, and Θ = diag(θ1, θ2, . . . , θN ) as the diagonal phase-shift
matrix. Based on the assumption of perfect CSI availability,
the maximum energy efficiency (EE) is written by

Ueff (H∗) =
∑

k∈K ln(1 + SINRk(H∗))
UTP (H∗)

, (2)

where (f∗, θ∗) ∈ H∗ are the optimal active and passive
beams. In this case, UTP (H) =

∑
k∈K∥fk∥2+PCir repre-

sents the total power consumed by the system. Furthermore,
PCir represents the constant circuit power dissipation, includ-
ing the power consumption of the BS, RIS, and all UEs.

However, achieving the maximum EE in practice is prob-
lematic because it requires perfect CSI, which is very difficult
for RIS-aided communication. In spite of the fact that several
channel estimation approaches have been proposed, they often
result in high training overheads that increase as the number
of RIS elements increases (N ≫ 1). Considering Str as
the number of symbol duration used for channel training
(Str ≤ S), based on the assumption that the cascaded channel
matrices hk have M × N unknown entries; hence, Str ≥
MN ≫ 1 is generally required for channel training. As a
result, a channel training-based beamforming can effectively
achieve an average network spectral efficiency (SE) of [12]

SEtr =
S − Str

S

∑
k∈K

ln(1 + SINRk(H∗))

≤ S − (M ×N)
S

∑
k∈K

ln(1 + SINRk(H∗)), (3)

Taking into account channel training overhead as factor S−Str

S ,
a result of (3) indicates that for RIS-aided communication
when M×N is comparable or exceeds channel coherent dura-
tion S, which is expected since M and N are typically quite
large, a significant gap exists between practically achievable
SE and maximum possible SE assuming perfect CSI.

On the basis of CKM, we propose a new approach to
RIS-aided communication, which integrates active and passive
beamforming to address the above issues. It is possible to

design optimal active beamformers as well as passive beam-
formers based on the location of the UE, without requiring any
real-time channel training (i.e., training-free beamforming).
As a result of exploiting UEs’ readily available location infor-
mation in today’s wireless networks with increasingly accurate
location information, environment-aware wireless communica-
tion enabled by CKM has high practical appeal.

III. ENVIRONMENT-AWARE OPTIMAL BEAMFORMING

A. Environment-Aware Communications Enabled by CKM

Typically, wireless channels are determined by several fac-
tors, including the radio wave property (such as wavelength),
the transceivers’ locations, as well as the actual environment of
radio propagation. In recent decades, there have been extensive
attempts to characterize wireless channels using stochastic
or geometric methods mathematically. In reality, however,
the models that are proposed to model the channel utilize
partial information about the transceivers’ locations, such as
distances between the transmitter and receiver, rather than
precise locations, as well as very coarse information about
the environment (such as urban, suburban, or rural areas,
rather than the actual environment in which the communication
occurs). While the channel models developed using these
approaches are tractable and easy to generalize, when they
are applied to actual communication scenarios, the modeled
channels are inevitably subject to non-negligible errors. So,
it is necessary to perform real-time channel estimations using
pilot-based channel training. Conversely, environment-aware
wireless communication is expected to substantially reduce
training overhead in large-dimension MIMO systems due to
the continuous advancements in localization technologies and
improved environmental awareness of UEs [10].

With no need for traditional channel training, the important
features of the wireless channels can be attained with CKM.
Also, by advancing localization and environmental awareness,
there is a possibility of resolving the issue of prohibitive
training overhead for large dimension MIMO systems [12].
By utilizing a CKM database, which contains channel-related
information and is tagged with the transceivers’ locations,
enabling environmental awareness, as illustrated in Fig. 1,
channel knowledge is provided [13]. The equivalent cas-
caded channel (hk) of a RIS-aided communication system
is primarily affected by the location of the UEs (Qk) and
the environment in which it is propagated (Ek) such as
hk = G1(Qk, Ek). In practice, it is challenging to characterize
G1 precisely because it is an unknown function. It is fortunate
that a novel approach to tackle this intractable problem is the
use of CKM, which aims to map any possible UE location
and its channel knowledge specific to that location. Compared
to the UE locations, the wireless propagation environment
(such as the locations, heights, and dielectric properties of
surrounding objects) changes on a much larger time scale.
It is notable that the impact of those environmental factors
that may vary with comparable time scale as UE locations
(such as pedestrians) on the wireless channel is much less
than UE locations in practice. Therefore, the CKM needs to
be updated only when there is a significant environmental
change (which can be detected by environment-sensing nodes
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as illustrated in Fig. 1) that happens at a much larger time scale
than the channel coherence time. Hence, having known the
UE locations with high accuracy (provided via GPS and other
innovative technologies for localization), the wireless channel
gain can be approximately provided with the CKM without any
channel training needed as hk ≈ G2(Qk). Note that the key
techniques to build CKM were investigated in [11] and [14].
The CKM is a training-free approach that does not require
channel estimation. Instead, the CKM can be obtained by using
an environment sensing technique to extract environmental
features, such as the location and type of obstacles and
reflecting surfaces, and then mapping these features to the
wireless propagation characteristics in the environment. The
CKM can be stored in a database and updated only when
there is a significant change in the environment, which can
be detected by using environment sensing nodes. Regarding
the complexity of obtaining the CKM, it mainly depends on
the complexity of the environment sensing technique used
and the frequency of updating the CKM. However, once the
CKM is obtained and stored, the complexity of using it for
environment-aware communications is low, as the wireless
propagation characteristics in the environment can be easily
retrieved from the CKM. Nonetheless, directly obtaining the
MIMO channel coefficients requires a substantial amount
of computing and storage resources. As a solution to this
problem, we propose the following approach based on the
concept of CKM to obtain optimal beamforming.

B. Environment-Aware Active/Passive Beamforming

As discussed in the previous subsection, the channel infor-
mation in contemporary wireless systems is attainable based
on CKM. To provide optimal active/passive beamforming in
RIS-aided communications with no challenge in computing
and storage of CKM, the coverage area of the BS is divided
into several sections such that the large-scale parameters in
each section do not vary significantly. Hence, the wireless
channel gain in each section can be assumed to be a spe-
cific value (regardless of path loss which can be determined
precisely) provided by CKM. In the proposed scenario, only
the wireless channel information of the sections is stored
and calculated in CKM, which is significantly less than the
wireless channel information of all possible locations in the
cell. Therefore, based on CKM and UEs’ location, the wireless
channel gain of UEs (hk) can be attained considering the path
loss attenuation and the sections where the UEs are located.
Hence, by assigning the provided wireless channel gain of the
sections to the wireless channel gain of UEs (hk), EE will
be maximized by designing passive beamforming at RIS and
active beamforming at BS as follows

max
H

Ueff (H) s.t. C1:
∑
k∈K

∥fk∥2≤P, C2: |θn|2≤1,∀n∈N

In order to deal with the logarithm in the objective function,
the Lagrangian Dual Transform (LDT) is applied [15]. There-
fore, the problem can be expressed as follows

max
H,π

∑K
k=1(ln(1 + πk)− πk + (1+πk)SINRk

1+SINRk
)∑

k∈K ||fk||2 + PCir
, s.t. C1, C2.

where π = [π1, π2, . . . , πK ], and πk is auxiliary variable for
decoding SINRk. For given H, the optimal value of πk can
be found as πopt

k = SINRk. Thus, by substituting πopt
k in the

utility function, the optimization problem (OP) is reduced to

max
H

∑K
k=1

π̃kSINRk

1+SINRk∑
k∈K∥fk∥2+PCir

, s.t. C1, C2. (4)

where π̃k = (1 + πk). (4) is the multiple-ratio FP summa-
tion, and fractional programming techniques can solve the
non-convexity of the problem due to the ratio operation [15].
The following two subsections provide further details on how
to solve f by fixing Θ, and to solve Θ by fixing f , respectively.

1) Active BS Beamforming: Given fixed Θ in (4), the
sub-problem for active beamforming matrix f will be

max
f

∑K
k=1

( π̃k|h∗kfk|
2∑

j∈K |h∗kfj |2+σ2

)∑
k∈K∥fk∥2+PCir

, s.t. C1. (5)

Using quadratic transform to represent the numerator in (5),
we get the following problem

P1: max
f ,β

Ueff2(f , β)

≜

∑K
k=1

(
2
√

π̃kℜ(β∗kh∗kfk)−|βk|2
(∑

j∈K |h
∗
kf j |2+σ2

) )∑
k∈K ||fk||2 + PCir

,

s.t. C1. (6)

where β = {βk|∀k} are auxiliary variables. (6) is a biconvex
OP. To solve it, one method is to fix one of f and β, then
to solve the convex OP corresponding to the other [16]. The
optimal β given f is obtained by setting ∂Ueff2(f ,β)

∂β = 0 as

βopt
k =

√
π̃kh∗kfk∑

j∈K |h
∗
kf j |2 + σ2

. (7)

Then, fixing β, and considering ∆ ≜
∑

j∈K |βj |2hjh
∗
j , Γk ≜√

π̃kβ∗khk, Ueff2(f , β) can be represented as a fraction of the
concave function over the convex function

Ueff2(f) =
∑

k∈K (−f∗k∆fk + 2ℜ(f∗kΓk))∑
k∈K ||fk||2 + PCir

. (8)

The solution to single-ratio concave-convex fractional prob-
lems can be achieved by applying fractional program-
ming techniques such as Generalized Dinkelbach’s algorithm.
Hence, a global bound maximization for (8) can be expressed
as the following convex problem leads to the optimal f

P1.1(i): max
f

Ueff3(f (i))

≜
∑
k∈K

(−f∗k∆fk + 2ℜ(f∗kΓk))− y(i)
( ∑

k∈K

∥fk∥2+PCir

)
,

s.t. C1. (9)

where y is a new auxiliary variable, which is iteratively
updated with the iteration index (i) as

y(i+1) =

∑
k∈K

(
−f

(i)∗

k ∆f
(i)
k + 2ℜ(f (i)∗

k Γk)
)

∑
k∈K∥f

(i)
k ∥2+PCir

, (10)

As y is non-decreasing with each iteration of the algorithm,
convergence can be proved by updating y in accordance
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with (10) and solving for f in (9). The iterative algorithm
actually converges to the global optimum solution of (8) when
the single-ratio problem (8) is a concave-convex fractional
programming. To reach the optimal f , first, initialize y(0) from
a feasible point f (0) of the problem (6), after that, the OP in (9)
is solved iteratively to generate a sequence {f (i)}, i = 1, 2, . . .
of feasible and improved points toward the optimal solution
of (6). It is also notable that at iteration (i), f (i−1) is used as
a feasible point for solving (9) and obtaining f (i). Also, note
that CVX easily solves the OP in (9) as a convex quadratically
constrained quadratic program (QCQP). In order to achieve
convergence, a series of convex problems (9) must be solved
and repeated. For a given error tolerance ξ > 0, with the initial
feasible point f (0), the solution for problem (5) is achieved
when |Ueff3(f (i))− Ueff3(f (i−1))| ≤ ξ.

2) Passive RIS Beamforming: Similarly, given fixed f and
by denoting hk = GΘhrk

, the utility function in (4) is

max
Θ

∑K
k=1

( π̃k|(h∗rk
Θ∗G∗)fk|

2∑
j∈K |(h∗rk

Θ∗G∗)fj |2+σ2

)∑
k∈K∥fk∥2+PCir

, s.t. C2. (11)

By defining lj,k ≜ diag(h∗rk
)G∗f j , lj,k ∈ CN , and

|(h∗rk
Θ∗G∗)f j |2 = |θ∗diag(h∗rk

)G∗f j |2 = |θ∗lj,k|2, the
utility function in (11) is equivalently reformulated as

Ueff4(θ) ≜

∑K
k=1

(
π̃k|θ∗lk,k|2∑

j∈K |θ∗lj,k|2+σ2

)
∑

k∈K∥fk∥2+PCir
. (12)

Since the numerator in the fraction Ueff4(θ) is fractional
programming, on the basis of the quadratic transform, it can
be expressed as follows [15]

Ueff5(θ, ϵ)

≜
K∑

k=1

2
√

π̃kℜ(ϵ∗kθ∗lk,k)− |ϵk|2
( ∑

j∈K
|θ∗lj,k|2 + σ2

) ,

(13)

where ϵ = {ϵk|∀k} are auxiliary variables. The OP is therefore
reformulated as

P2: max
θ,ϵ

Ueff5(θ, ϵ) s.t. C2, (14)

For a given θ, the optimal ϵ can be analytically expressed as

ϵopt
k =

√
π̃kθ∗lk,k∑

j∈K |θ
∗lj,k|2 + σ2

. (15)

Given optimal ϵopt, the OP for θ is expressed as

max
θ

− θ∗Bθ + 2ℜ(θ∗N) s.t. C2, (16)

where ℜ(·) represents the real part of a complex number and

B ≜
∑
k∈K

|ϵk|2
∑
j∈K

lj,kl∗j,k, N ≜
∑
k∈K

√
π̃kϵ∗klk,k. (17)

Since lk,jl
∗
k,j for all k, j are positive definite matrice, B is a

positive definite matrix. Also, the utility function in (16) is a
quadratic concave function of θ. As a result, the problem can
only be characterized as QCQP, and its non-convexity can only
be attributed to the constraints. As an alternative to non-convex

Algorithm 1 Environment-Aware Active/Passive
Beamforming Algorithm

Input: Location information of the UEs, the environment
information offered by CKM;

Output: Environment-aware active/passive beamformers
1 Attaining the channel gain of UEs (hk) based on CKM;
2 Set î←− 0 and initialize f, θ;
3 while convergence not met and î < Iout do
4 Set î←− î + 1, i←− 0;
5 Compute π from πopt

k = SINRk;
6 Compute β from (7);
7 Initialize y(0);
8 while convergence not met and i < Iin do
9 Set i←− i + 1;

10 Solve convex program P1.1(i) from (9) to find
optimal solution f (i), using π,β, y(i);

11 Compute y(i+1) from (10), using f (i), β,π;

12 Compute ϵ from (15);
13 Solve convex program P2.1(̂i) to find θ;

constraints, the following convex quadratic constraints can be
substituted as θ∗ene∗nθ ≤ 1 for ∀n ∈ N where en ∈ RN

represents an elementary vector involving a one at the nth

position. As a result, the convex QCQP is formulated as

P2.1(̂i): max
θ
−θ∗Bθ+2ℜ(θ∗N) s.t. θ∗ene∗nθ≤1,∀n∈N ,

which is solved by CVX [17]. A summary of our proposed
environment-aware active/passive beamforming is provided in
Algorithm 1. In the proposed algorithm, two QCQP problems
are solved using CVX at each iteration. The size of the
problem is determined by the number of variables M , and
N , respectively. At both sub-problems, the constraints are
quadratic, and the objective function is also quadratic, which
means that the problem is convex and can be solved efficiently
using a suitable convex optimization solver. The complexity
of solving a convex OP using an interior-point method such
as those used by Gurobi, MOSEK, or SeDuMi is typically
polynomial in the size of the problem. In particular, the
complexity of interior-point methods is usually proportional to
M3, and N3, respectively. The complexity of Algorithm 1 can
be estimated by considering the number of variables in each of
the two QCQP sub-problems. The complexity of solving each
QCQP sub-problem using CVX is proportional to the cube of
the number of variables, which gives a complexity of M3 for
sub-problem P1.1 and N3 for sub-problem P2.1. Therefore,
the overall complexity of Algorithm 1 can be estimated as
M3 + N3.

IV. SIMULATION RESULTS

Based on the concept of CKM and knowing the UEs’
locations, the active beamformers at the BS and passive
beamformers at the RIS are optimized to achieve maximum
network EE. An actual physical environment is considered
while fixing the BS and RIS locations. Also, the UEs are
randomly distributed in a 50m×50m square area. BS and RIS
are placed in such a way that a LoS path exists between them,
but the links between BS and UEs are blocked. In addition
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Fig. 2. Average network SE and EE for perfect CSI, CKM based on
estimating the UEs’ locations with error, and training-based beamforming.

Fig. 3. Average network SE versus the number of RIS elements.

to these blockers, other obstructions may be located randomly
within the square area, which may affect the LoS link for the
RIS-UEs channels. There are 8×8 uniform planar array (UPA)
antennas installed at the BS. Besides, the RIS is composed of
10 × 10 reflecting passive elements. At the carrier frequency
of 73GHz, and the system bandwidth of 300MHz, the power
spectral density of the noise is −174dBm/Hz. Also, the
transmit power P at the BS varies from 20dBm to 40dBm.
It is assumed that the channel coherent time spans over for
S = 104 symbols, and the simulations presented below are
the result of averaging over 104 iterations.

Figure 2 shows the average network SE and EE for perfect
CSI, CKM based on estimating the UEs’ locations with error,
and channel training-based, respectively. By comparing the
curves, it is observed that although the error in estimating
the locations degrades the rate performance logarithmically,
it still outperforms the channel training-based scheme that
affects the communication rate linearly. Hence, the proposed
environment-aware beamforming demonstrates its robustness
to UE location errors in practice.

Considering the training overhead, the average network
SE is depicted in Fig. 3. The results indicate that the
training-based SE experiences a significant decrease as the
number of RIS arrays increases. This is because the training
overhead surpasses the resulting gain for RIS elements in
passive beamforming. In contrast, the proposed CKM schemes

consistently improve as N increases. As the number of reflec-
tive arrays grows, more signals can be reflected, which results
in enhanced passive beamforming.

V. CONCLUSION

We investigated environment-aware active/passive beam-
forming for RIS-aided communication enabled by CKM,
which requires no online training and reduces the overhead
for mmWave systems while achieving high energy-efficient
performance. According to simulation results, CKM can sig-
nificantly improve active/passive beamforming compared to
training-based beamforming and is quite robust to errors
associated with the location of UEs in practice.
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