
Bulletin of Electrical Engineering and Informatics

Vol. 12, No. 4, August 2023, pp. 2313~2327

ISSN: 2302-9285, DOI: 10.11591/eei.v12i4.4977 2313

Journal homepage: http://beei.org

New efficient fractal models for MapReduce in OpenMP

parallel environment

Muslim Mohsin Khudhair1,2, Furkan Rabee2, Adil AL_Rammahi3
1Department of Computer Information System, College of Computer Science and Information Technology, University of Basrah,

Basrah, Iraq
2Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq

3Department of Mathematical Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq

Article Info ABSTRACT

Article history:

Received Oct 9, 2022

Revised Nov 9, 2022

Accepted Jan 7, 2023

 Parallel data processing is one of the specific infrastructure applications

categorized as a service provided by cloud computing. In cloud computing

environments, data-intensive applications increasingly use the parallel

processing paradigm known as MapReduce. MapReduce is based on a

strategy called "divide and conquer," which uses ordinary computers, also

called "nodes," to do processing in parallel. This paper looks at how open

multiprocessing (OpenMP), the best shared-memory parallel programming

model for high-performance computing, can be used in the MapReduce

application using proposed fractal network models. Two fractal network

models are offered, and their work is compared with a well-known network

model, the hypercube. The first fractal network model achieved an average

speedup of 3.239 times while an efficiency ranged from 73-95%. In the second

model of the network, the speedup got to 3.236 times while keeping an

efficiency of 70-92%. Furthermore, the path-finding algorithm employed in

the recommended fractal network models remarkably identified all paths and

calculated the shortest and longest routes.

Keywords:

Cloud computing

Fractal

MapReduce

OpenMP

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muslim Mohsin Khudhair

Department of Computer Information System, College of Computer Science and Information Technology

University of Basrah

Basrah, Iraq

Email: muslim.khudhair@uobasrah.edu.iq or mos1970@yahoo.com

1. INTRODUCTION

The ability to offer computing resources and services on-demand has propelled the popularity of

computational clouds. A collection of applications is arranged on virtual machines, which then execute on

multiple server computers in data center networks (DCNs). These machines serve as the backbone for

computational clouds. With the popularity of cloud computing and mobile cloud computing, DCN is the

fundamental infrastructure and backbone supporting service delivery. The tree-based hierarchical structure is

among the most famous architectural type [1], [2].

Big data is becoming an increasingly effective approach for a corporation to improve its value

proposition or operations. Big data uses parallel computing to process large amounts of data quickly. Big data

supports several specialized programming paradigms and runtime technologies [3]. Spark and Hadoop are

map/reduce frameworks [4]. In GraphLab, Giraph, and GraphX, the Pregel model is implemented [5]. Storm

[6] handles data streaming. Each system uses threads and simple methods to create a parallel and distributed

computing environment. In contrast, the high-performance computing community developed programming

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2314

models that help build systems like the above and strike a balance between programming effort and

performance.

Having cloud computing has made MapReduce easier to use. The infrastructure services

(infrastructure-as-a-service) offered by cloud companies make it easy to set up large computing instances.

cloud providers such as Amazon and Microsoft offer MapReduce platform services (platform-as-a-service).

MapReduce clusters can now be put together at a lower cost or on a pay-per-use basis [7].

The implementation of parallel computation can be done in various ways. Generally, parallel

computing on the CPU is based on MPI or open multiprocessing (OpenMP), which are for distributed memory

parallelism systems and shared memory multiprocessor systems [8]. Consequently, the primary focus of this

research is on using the OpenMP program to simulate Mapreduce by employing presented fractal network

models to fulfil the needs for processing big data.

The remaining parts of this work are structured in the following manner. Section 2 provides a

condensed explanation of hypercube and MapReduce. The basic concepts and knowledge of the parallel

computing environment by OpenMP are presented in section 3. The fundamental ideas of fractals, which will

serve as the foundation for the suggested architectural frameworks, are introduced in section 4. Section 5, the

heart of this paper, explains the given proposal fractal models in detail. The specifics of the experiments and

an analysis of the findings are presented in section 6. Section 7 wraps up the paper and discusses further

research.

2. BASIC CONCEPTIONS

2.1. Hypercube
One of the best major connectivity networks in numerous topological aspects is the hypercube, often

known as a n-cube. These topological qualities include a low diameter and high connectivity relative to other

critical interconnection networks. A hypercube network structure improves network efficacy and stability and

reduces data transfer difficulties such as complexity, speed, and size [9].

The hypercube of order n is an undirected network with 2n nodes with labels ranging from 0 to 2n-1.

The number of linkages that are incident on a node is represented by its degree, which is written as n. The

hypercube is a building with logarithmic architecture. This is because log2N=n links are the maximum

connections a message must go over to reach its destination in a hypercube [10]. Also, one of the things that

makes the hypercube topology interesting is its diameter, which is the largest number of nodes a message must

pass through to get to its mate. The Figure 1 represents the hypercube in varying dimensions [11].

Figure 1. Hypercube with varying dimensions (n-D)

2.2. Mapreduce architecture

Google released MapReduce in 2004 to enable fast, fault-free, scalable, and load-balanced parallel

processing of enormous data sets. It is used in various fields, including data mining, extensive graph processing,

machine learning, text processing, statistical machine translation, and others. Hadoop, built by the Apache

Foundation, is one of many MapReduce implementations. Hadoop, like MapReduce, has two layers: a data

storage layer called Hadoop DFS (HDFS) and a data processing layer called Hadoop MapReduce framework.

HDFS, like Google's GFS, is controlled by a single master node [12].

MapReduce's master-slave concept is seen in Figure 2. The JobTracker manages tasks, progress, and

resources as the central controller. TaskTrackers are slaves in this architecture. They start and monitor local

mapper and reducer activities and provide JobTracker with updates and reports. The input data is automatically

split into smaller parts and processed in parallel by a mapper. After mapping the intermediate data, the

reduction stage produces the query's final result [13].

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2315

Figure 2. The basic architecture of MapReduce

2.2.1. MapReduce framework

There are two parts to the MapReduce model: map and reduce, which work on (key, value) pairs. The

following describes the process flow of the execution of MapReduce [13], [14]:

- The input reader splits the input into several smaller components (chunks). After that, a map function is

given responsibility for these blocks.

- In the map function, each element is partitioned into tuples referred to as (key, value) pairs.

- Within the shuffle function, the outputs of the mappers are moved to reducer nodes by the values of their

respective keys.

- The reduce function takes the intermediate tuples and merges them into a smaller collection of tuples, which

are then sent to the output.

- The job of the output writer is to ensure that the output is properly saved to storage, which may take the

form of a database or a file system.

3. OPEN MULTIPROCESSING

Symmetric multiprocessor platforms (SMPs) with numerous CPU cores are best for fine-grained

parallel computation using OpenMP. OpenMP-based computing reduces bandwidth and latency [15]. Compiler

directives enable loop-based parallelization, tasking, work-sharing, and synchronization in C/C++ and Fortran.

Because it's easy to run sequential applications in parallel, the OpenMP architecture is more enticing to

programmers [16]. OpenMP's primary parallelization technique is known as multithreading. As shown in

Figure 3, a single master thread separates multiple slave threads. In the serial context, the master thread

executes instructions sequentially. The slave threads in the parallel environment execute instructions

simultaneously and independently [17].

Because OpenMP uses a shared memory model, every thread can access the global memory by default.

Slave threads can communicate by reading and writing to the global memory. When they update global or

shared memory simultaneously, it can lead to a race condition that changes depending on how the threads are

scheduled [18]. When two or more threads access the same memory without the necessary synchronization,

this is called a "data race condition". Additionally, OpenMP enables the parallelization of parallel areas,

allowing parallel loops to be nested inside parallel loops. When this happens, the slave threads that were made

spawn mores threads to make the team [19].

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2316

Figure 3. A fork-and-join approach of OpenMP parallelism

3.1. Scheduling methods

Scheduling work becomes the most important part of parallelization. OpenMP gives you several ways

to set up a schedule, which are [17], [20]: i) the static schedule works best if all the iterations take the same

time to compute; ii) dynamic scheduling gives each thread a small amount of work; after it finishes, it gets

more. It improves load-balancing among OpenMP threads when a loop's iterations have uneven demand;

iii) the guided schedule sets the chunk size based on the number of unallocated iterations. So, the first sections

of the threads are greater. Chunk size reduces as iterations increase; iv) the auto schedule lets the compiler and

the runtime decide how to schedule things. The behaviour of the automatic schedule will differ depending on

the implementation-specific; and v) the runtime schedule lets a program wait until runtime to decide which

OpenMP schedule to use. Schedule and chunk-size options can be chosen at runtime.

3.2. Speedup and efficiency in parallel computing

Speedup and parallel efficiency measure how well a parallel algorithm works on a parallel

architecture. The equations listed are utilized in the process of determining them [19], [21]:

𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑇𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (1)

𝐸𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (2)

where S (parallel) is the parallel speedup, T (sequential) is the time it took for the sequential program to run,

T (parallel) is the time it took for the parallel program to run, and E (parallel) is the efficiency of parallel

processing, and N (parallel) is the number of processors used for parallel processing.

4. THE FUNDAMENTALS OF FRACTALS AND THEIR MEASUREMENTS

Fractals were first employed to describe nature's uneven geometry, such as tree branches, mountain

surfaces, and shoreline features [22]. Forms have whole-number topological dimensions in euclidean geometry.

A line has one dimension, a square two, and a cube three. Fractal objects need further explanation in this definition.

Every natural, artificial, and random fractal has an (often non-integer) dimension that can be used to measure or

quantify its complexity about its environment [23], [24]. The formula for finding the similarity dimension, Ds,

for self-similar fractals with N copies that are all scaled by the same factor r 1, is as (3):

𝐷𝑆 =
𝑙𝑜𝑔(𝑁)

𝑙𝑜𝑔(1/𝑟)
 (3)

Table 1 depicts the similarity dimensions of some of the most important fractals studied (in ascending order of

magnitude).

Table 1. Displays the dimension of similarity for a selection of well-known fractals
Fractal name Similarity dimension No. of copies (N) and scaling factor (r)

Cantor set 0.63100 r=1/n at the nth step of construction

Straight line 1.00000 N=1, r=1
Koch curve 1.26186 N=4, r=1/3

Box fractal 1.46497 N=5, r=1/ 3

Sierpinski triangle 1.58496 N=3, r=1/2

Sierpinski carpet 1.89279 N=4, r=1/4

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2317

4.1. Sierpinski triangle

The widely recognised Sierpinski triangle (Sierpinski, 1916), seen in Figure 4, is built using an

iterative process. The Sierpinski triangle is equilateral when the original configuration at initial iteration

𝑚 = 0 is denoted by the label 𝑆0. In the initial generation 𝑆1, we choose the intersection of the three sides of

the equilateral triangle (l), connect them to form four different triangles, and then eliminate the central triangle.

Like the previous generation, the second generation 𝑆2 links three midpoints of the sides (l/2) in each little

triangle. And to be more comprehensive, if we keep repeating the technique for all new little triangles, we will

eventually arrive at the basic deterministic fractal known as the Sierpinski triangle when the value of 𝑚 = ∞.

This means one of the critical characteristics of the Sierpinski triangle is its ability to contain an infinite number

of triangles inside a small space 𝑆0 [22], [25].

Figure 4. Sierpinski triangle with four levels

4.2. Sierpinski carpet

The Sierpinski carpet is an additional example of an ideal fractal object analogous to the Sierpinski

triangle. The carpet is distinctive since its main components are square. Starting with a square fundamental

particle 𝑆0, a bottom-up building method is described. To create a stage 𝑆1 aggregate, first, arrange eight

primary elements into a square loop. Then, leave a square hole in the center of the loop that is the same size as

the primary elements. For a stage 𝑆2 aggregate, put eight stages 𝑆1 aggregates in a square loop and leave a hole

in the middle that is the same size as a stage 𝑆1 aggregate (see Figure 5). Since the fundamental particles have

little touch with one another, the intrinsic perimeter of the Sierpinski carpet is not equal to the total of their

edges, as is the case with the triangle [22], [25], [26].

Figure 5. The first three stages of the Sierpinski carpet

4.3. The fractal models storage algorithm

A data structure can be stored in memory as a graph representation using linked lists [27], [28]. The

algorithm used to define the relationships and storage of nodes across multiple diagrams is represented by as

shown in Figure 6. This algorithm stores the suggested model fractal architectures in memory using a

programmed implementation of those architectures. It is possible to get a linkage between the nodes, which is

shown to be represented by the adjacency matrix and link lists in Figures 7-9.

4.4. The fractal models routing algorithm

Understanding how the potential routes between the nodes of the suggested model fractal architecture

are crucial [29], [30]. Therefore, as illustrated in Figure 10, a routing algorithm is developed for these structures

by taking advantage of the storage schemes from the previous storage algorithm. This algorithm has been

programmed into the proposed model fractal architectures. Using Figure 7 as an example, which has six nodes,

the following is the output of the program that was used to find the possible paths between nodes 0 and 5:

([0, 3, 1, 5], [0, 3, 5], [0, 3, 4, 2, 5], [0, 3, 4, 5], [0, 4, 2, 5], [0, 4, 3, 1, 5], [0, 4, 3, 5], and [0, 4, 5]).

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2318

Figure 6. Storage algorithm of the model fractal architectures

Figure 7. Storage data of the Sierpinski triangle (6 nodes)

Figure 8. Storage data of the Sierpinski triangle (15 nodes)

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2319

Figure 9. Storage data of the Sierpinski carpet (16 nodes)

Figure 10. Routing algorithm of the model fractal architectures

5. PROPOSED FRACTAL MODELS

The prototype of the Sierpinski triangle architecture is based on the fractal recursive formula

Sierpinski triangle (gasket) described in subsection 4.1. This model system positions processing elements at

the graph's vertices (nodes). The word count is an example of how efficiently the model network works. Word

count is a typical use of MapReduce, which reads text files and counts how many times each word appears.

The overall number of lines in the text input file is counted right at the beginning of the test for every model.

The file is then split into chunks, each with a certain number of text lines. In the context of OpenMP, the

simulations and actualizations of the following model architectures are being carried out.

5.1. The first model fractal architecture

A detailed explanation of the procedures involved in building the model, by the following steps:

- Counting the number of lines of the entered text data file.

- Splitting the lines of the text file into equal chunks and distributing these chunks regularly to the network

nodes, as in Table 2.

- In the first stage, a network is allocated so that each node represents a processing unit that performs the

mapping and shuffling process.

- Under the OpenMP environment parallel processing, each node is assigned a free thread to perform the

required processing (mapping and shuffling).

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2320

- The network outputs for this stage are (value, keys) stored in text files and considered inputs to the second

stage, as in Figure 11.

- In the second stage, within the OpenMP environment, network nodes are allocated to perform the Reducing

process in the same way as the processing nodes' data distribution (chunks) in the first stage.

- Finally, the output of this stage is the completion of the MapReduce operation to calculate the number of

word repetitions for the input text file.

The algorithm of the first model fractal architecture takes an input data file (IPs) and returns an output

file for repeating words (IPs). The Algorithm 1 describes the main essential steps implemented within the

OpenMP environment.

Table 2. Represents a method for distributing chunks of a text input file to network processing nodes
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

chunk 1 chunk 2 chunk 3 chunk 4 chunk 5 chunk 6
chunk 7 chunk 8 chunk 9 chunk 10 chunk 11 chunk 12

chunk 13 chunk 14 chunk 15 chunk 16 chunk 17 chunk 18

.. chunk n

Figure 11. The first model fractal architecture for implementing MapReduce

Algoritm 1. The first model of fractal architecture

Input:

fin: input file of line as IPs

chunkNo: number of chunks

nodeNo: number of nodes

threadNo: number of threads

Output:

fo: file of occurrences of IPs

Begin

1: set threadNo=6

2: call omp_set_num_threads(threadNo)

3: #pragma omp parallel shared ()

4: num=call omp_get_thread_num ();

5: #pragma omp single

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2321

6: for (index=1; index<=chunkNo; index++)

7: Node=index % 6 //Specify node number

8: #pragma omp task

9: if (Node) identical thread No. (num)

10: call mapping (chunk_index, fo_map)

11: call shuffling (fo_map, fo_shuffle)

12: end if

13: #pragma omp taskwait

14: end for //End phase mapping &

shuffling

15: #pragma omp parallel shared ()

16: #pragma omp single

17: for (index=1; index<=chunkNo: index++)

18: Node=index % 6

19: #pragma omp task

20: if (Node) identical thread No. (num)

21: call reducing (fo_shuffle, fo_reduce)

22: end if

23: #pragma omp taskwait

24: end for //End phase reducing

25: aggregating th previous output reducing to get the final output file (fo)

26: end begin

5.2. The second model fractal architecture

In this model, a single network model is used to process the three operations of the MapReduce during

one phase, as shown in Figure 12. So that the text file data splitting and distribution are similar to the first

model. The second model fractal architecture algorithm returns an output file for repeated words from an input

data file (IPs). OpenMP's major phases are described in Algorithm 2.

Figure 12. The second model fractal architecture for implementing MapReduce

Algorithm 2. The second model of fractal architecture

Input:

fin: input file of lines as IPs

chunkNo: number of chunks

nodeNo: number of nodes

threadNo: number of threads

Output:

fo: file of occurrences of IPs

Begin

1: set threadNo=6

2: call omp_set_num_threads(threadNo)

3: #pragma omp parallel shared ()

4: num=call omp_get_thread_num ();

5: #pragma omp single

6: for (index=1; index<=chunkNo; index++)

7: Node=index % 6 //Specify node

number

8: #pragma omp task

9: if (Node) identical thread No. (num)

10: call mapping (chunk_index, fo_map)

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2322

11: call shuffling (fo_map, fo_shuffle)

12: call reducing (fo_shuffle, fo_reduce)

13: end if

14: #pragma omp taskwait

15: end for

16: aggregating the previous output reducing to get the final output file (fo)

17: end begin

6. EXPERIMENTAL FINDINGS AND ANALISIS

In this section, we will study and discuss the outcomes of serial and parallel implementations of

recommended fractal architectural models and compare them to well-known architectural structures. The

experiment used a quad-core HP Laptop (60 GHz CPU, 16 GB RAM). C++ implements the experiment

program. Using gcc 4.9.2 and OpenMP 5.0 on Windows, we compiled the apps. Six text files were tested

(data 1, data 2, data 3, data 4, data 5, and data 6). Each file had data concerning IP addresses on lines that were

(10,000; 200,000; 300,000; 400,000; 500,000; and 600,000), accordingly.

6.1. Speedup and parallel efficiency

For the first model, the runtime calculation performs for various thread counts ranging from 1 to 12

using the OpenMP explicit tasks functionality, as displayed in Figure 13. As a result, it notes that execution

time dropped by an average of 69% for text data sets. The input data of this model is divided into chunks for a

second test. The amount of time needed to process data sets changes depending on the size of the chunk being

processed, as shown in Figure 14. As a result, it is thought to be a factor impacting network performance.

Figure 13. The running time for multiple distinct data sets with varying numbers of threads

Figure 14. The running time for several data sets with various chunk sizes runs parallel

0

200

400

600

800

1000

1 2 3 4 6 8 1 0 1 2

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS

Data1 Data2 Data3 Data4 Data5 Data6

0

50

100

150

200

250

6 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
)

NUMBER CHUNKS

Data 1 Data 2 Data 3 Data 4 Data 5

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2323

The third test of the model shown in Table 3 illustrates two measures to assess a program's

effectiveness: speedup and efficiency. The graph that can be seen in Figure 15 shows the relationship between

the speedup and the number of threads employed for text data sets. The performance of the suggested second

model fractal architecture is assessed based on the same technique carried out on the first model. This

performance is reflected by the Table 4 and Figures 16-18 which can be seen.

Table 3. Efficiency and speedup of the first model for diverse data sets at various thread counts
Thread no./Data sets 2 3 4

Data 1 Speedup 1.922 2.757 3.832

Efficiency 0.961 0.919 0.958
Data 2 Speedup 1.947 2.537 3.711

Efficiency 0.9735 0.846 0.928

Data 3 Speedup 1.819 2.394 3.197
Efficiency 0.9095 0.798 0.799

Data 4 Speedup 1.707 2.326 2.945

Efficiency 0.8535 0.775 0.736
Data 5 Speedup 1.756 2.238 2.810

Efficiency 0.878 0.746 0.703

Data 6 Speedup 1.542 2.088 2.941
Efficiency 0.771 0.696 0.735

Average Speedup 1.782 2.390 3.239

Efficiency 0.891 0.797 0.810

Figure 15. The running time for several data sets with different thread counts

Figure 16. The running for a variety of thread counts across many data sets

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 6 8

S
P

E
E

D
U

P
 F

A
C

T
O

R

NUMBER OF THREADS

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 6 8 1 0 1 2

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
)

NUMBER OF THREADS

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2324

Figure 17. Duration of the first model's execution for several data sets with different thread counts

Table 4. Efficiency and speedup of the second model for diverse data sets across varying thread counts
Thread no./Data sets 2 3 4

Data 1 Speedup 1.940 2.743 3.682

Efficiency 0.970 0.914 0.921
Data 2 Speedup 1.934 2.712 3.613

Efficiency 0.967 0.904 0.903

Data 3 Speedup 1.820 2.419 3.110
Efficiency 0.910 0.806 0.778

Data 4 Speedup 1.713 2.265 2.843

Efficiency 0.857 0.755 0.711
Data 5 Speedup 1.689 2.334 2.785

Efficiency 0.845 0.778 0.696

Data 6 Speedup 1.563 2.592 3.383
Efficiency 0.782 0.864 0.846

Average Speedup 1.776 2.511 3.236

Efficiency 0.889 0.83 0.809

Figure 18. The running time for multiple distinct data sets with chunks of different sizes running in parallel

0

50

100

150

200

250

6 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
)

NUMBER CHUNKS

Data 1 Data 2 Data 3 Data 4 Data 5

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 6 8

S
P

E
E

D
U

P
 F

A
C

T
O

R

NUMBER OF THREADS

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2325

It uses a well-known hypercube model to compare and evaluate the performance of the newly

presented fractal models, as shown in Figure 19 (described in subsection 2.1). This model evaluates using the

same methods as the proposed models. First, a comparison is made between the hypercube and the first

suggested model. According to Table 5 findings, the first model presented has a marginal advantage in

completing the task in a shorter amount of time. When the second model is contrasted with the hypercube, the

findings indicate that the hypercube is slightly preferred over the second model. This is illustrated in Table 6.

Figure 19. Traditional hypercube model architecture

Table 5. Results for data sets with different chunks of the first model and the hypercube
Data sets Number of chunks Running time of the first model (sec) Running time of the hypercube (sec)

Data 3 6 31.408 36.106

12 16.418 16.959

18 9.939 9.999

24 7.517 7.529

Data 4 6 60.080 64.716

12 27.746 34.591
18 18.485 25.981

24 12.737 13.181

Data 5 6 98.206 96.417
12 49.442 51.317

18 27.645 34.895

24 22.350 22.831

Table 6. Results for data sets with different chunks of the second model and the hypercube
Data sets Number of chunks Running time of the second model (sec) Running time of the hypercube (sec)

Data 3 6 32.532 32.369
12 17.861 16.800

18 11.915 11.741

24 7.954 7.247
Data 4 6 62.518 61.003

12 31.206 31.060

18 20.470 21.087
24 14.722 13.854

Data 5 6 99.642 98.704

12 49.350 48.208
18 37.021 32.243

24 26.077 24.011

7. CONCLUSION

The OpenMP parallel computing model analyzes the parallel performance of the given fractal models

to figure out the parallel speedup and efficiency. When these different models used the MapReduce method to

count the words, the results showed the following: i) the data results reveal that the first model performs

marginally better than the second model, which is especially clear in the large data sets; ii) a well-known

network model called the hypercube was used as a benchmark to assess how well the suggested models

performed. The findings indicated a preference for the first network model offered, whereas the second network

model proposed was quite similar to the first model regarding the percentage difference between them;

 ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2313-2327

2326

iii) more significant dynamic storage reduction, or better storage efficiency, was obtained using the storage

technique in conjunction with the suggested fractal models' linked lists; and iv) the path-finding algorithm used

in the suggested fractal models accomplished a great job of discovering all pathways and determining the

shortest and longest routes. Finally, considering the performance we saw in our experimental configuration, it

is possible to increase the performance with more powerful machines and a more significant number of cores.

Although it has limits in the parallel OpenMP context, using GPUs is another potential option for scaling

performance.

REFERENCES
[1] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Resource scheduling for infrastructure as a service (IaaS)

in cloud computing: Challenges and opportunities,” Journal of Network and Computer Applications, vol. 68, pp. 173–200, Jun.

2016, doi: 10.1016/j.jnca.2016.04.016.
[2] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for scheduling techniques in cloud computing,”

Journal of Network and Computer Applications, vol. 143, pp. 1–33, Oct. 2019, doi: 10.1016/j.jnca.2019.06.006.

[3] S. Heidari, M. Alborzi, R. Radfar, M. A. Afsharkazemi, and A. R. Ghatari, “Big data clustering with varied density based on
MapReduce,” Journal of Big Data, vol. 6, no. 1, pp. 1–16, Dec. 2019, doi: 10.1186/s40537-019-0236-x.

[4] A. Wakde, P. Shende, S. Waydande, S. Uttarwar, and G. Deshmukh, “Comparative analysis of Hadoop tools and Spark technology,”

in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–
4, doi: 10.1109/ICCUBEA.2018.8697577.

[5] A. Chuan, B. Chen, L. Liu, J. Dong, L. Hey, and X. Qiu, “Design and implementation of information dissemination simulation
algorithm in large-scale complex network based on Spark,” in 2018 IEEE Third International Conference on Data Science in

Cyberspace (DSC), Jun. 2018, pp. 457–464, doi: 10.1109/DSC.2018.00074.

[6] F. Jenhani, M. S. Gouider, and L. B. Said, “Streaming social media data analysis for events extraction and warehousing using
hadoop and storm: Drug abuse case study,” Procedia Computer Science, vol. 159, pp. 1459–1467, 2019, doi:

10.1016/j.procs.2019.09.316.

[7] V. Jain, S. Chouhan, and K. K. Goyal, “Analyzing heuristic job scheduling algorithms by varying cloudlet load in a cloud
infrastructure,” in 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), Dec.

2021, pp. 531–535, doi: 10.1109/SMART52563.2021.9676267.

[8] W. Kwedlo and P. J. Czochanski, “A hybrid MPI/OpenMP parallelization of K-means algorithms accelerated using the triangle
inequality,” IEEE Access, vol. 7, pp. 42280–42297, 2019, doi: 10.1109/ACCESS.2019.2907885.

[9] B. A. Mahafzah, M. Alshraideh, L. Tahat, and N. Almasri, “Topological properties assessment for hyper hexa-cell interconnection

network,” International journal of computers, vol. 13, pp. 115–121, 2019.
[10] M. Abd-El-Barr and F. Gebali, “Reliability analysis and fault tolerance for hypercube multi-computer networks,” Information

Sciences, vol. 276, pp. 295–318, Aug. 2014, doi: 10.1016/j.ins.2013.10.031.

[11] P. V. Reddy, S. Jena, and V. K. Prasa, “An efficient exchanged hyper cube for parallel and distributed network,” International
Journal of Recent Technology and Engineering, vol. 8, no. 2S10, pp. 821–829, Oct. 2019, doi: 10.35940/ijrte.B1150.0982S1019.

[12] S. Ramírez-Gallego, A. Fernández, S. García, M. Chen, and F. Herrera, “Big data: tutorial and guidelines on information and process

fusion for analytics algorithms with MapReduce,” Information Fusion, vol. 42, pp. 51–61, Jul. 2018, doi:
10.1016/j.inffus.2017.10.001.

[13] N. Maleki, A. M. Rahmani, and M. Conti, “MapReduce: an infrastructure review and research insights,” The Journal of

Supercomputing, vol. 75, no. 10, pp. 6934–7002, Oct. 2019, doi: 10.1007/s11227-019-02907-5.
[14] T.-C. Huang, K. Chu, G. Huang, Y.-C. Shen, and C.-K. Shieh, “Distributed control framework for MapReduce cloud on cloud

computing,” in NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, Apr. 2018, pp. 1–4, doi:

10.1109/NOMS.2018.8406180.
[15] J. Klinkenberg, P. Samfass, M. Bader, C. Terboven, and M. S. Müller, “Chameleon: reactive load balancing for hybrid

MPI+OpenMP task-parallel applications,” Journal of Parallel and Distributed Computing, vol. 138, pp. 55–64, Apr. 2020, doi:

10.1016/j.jpdc.2019.12.005.
[16] A. Afzal, C. A. Saleel, K. Prashantha, S. Bhattacharyya, and M. Sadhikh, “Parallel finite volume method-based fluid flow

computations using OpenMP and CUDA applying different schemes,” Journal of Thermal Analysis and Calorimetry, vol. 145, no.

4, pp. 1891–1909, Aug. 2021, doi: 10.1007/s10973-021-10637-1.
[17] X. Peng et al., “Parallel computing of three-dimensional discontinuous deformation analysis based on OpenMP,” Computers and

Geotechnics, vol. 106, pp. 304–313, Feb. 2019, doi: 10.1016/j.compgeo.2018.11.016.

[18] J. Zhao and M. Zhang, “Refactoring OpenMP code based on MapReduce model,” in 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing &

Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Dec. 2018, pp. 1040–

1041, doi: 10.1109/BDCloud.2018.00153.
[19] A. Afzal, Z. Ansari, and M. K. Ramis, “Parallelization of numerical conjugate heat transfer analysis in parallel plate channel using

OpenMP,” Arabian Journal for Science and Engineering, vol. 45, no. 11, pp. 8981–8997, Nov. 2020, doi: 10.1007/s13369-020-

04640-1.
[20] M. Aldinucci et al., “Practical parallelization of scientific applications with OpenMP, OpenACC and MPI,” Journal of Parallel and

Distributed Computing, vol. 157, pp. 13–29, Nov. 2021, doi: 10.1016/j.jpdc.2021.05.017.

[21] P. Yu, X. Peng, G. Chen, L. Guo, and Y. Zhang, “OpenMP-based parallel two-dimensional discontinuous deformation analysis for
large-scale simulation,” International Journal of Geomechanics, vol. 20, no. 7, pp. 1–14, Jul. 2020, doi: 10.1061/(ASCE)GM.1943-

5622.0001705.

[22] X. Yang, W. Zhou, P. Zhao, and S. Yuan, “Confined electrons in effective plane fractals,” Physical Review B, vol. 102, no. 24, pp.
1–10, Dec. 2020, doi: 10.1103/PhysRevB.102.245425.

[23] K. Kavitha, “Design of a Sierpinski gasket fractal bowtie antenna for multiband applications,” International Journal of Applied

Engineering Research, vol. 13, no. 9, pp. 6865–6869, 2018.
[24] F. Jahanmiri and D. C. Parker, “An overview of fractal geometry applied to urban planning,” Land, vol. 11, no. 4, pp. 1–23, Mar.

2022, doi: 10.3390/land11040475.

Bulletin of Electr Eng & Inf ISSN: 2302-9285

New efficient fractal models for MapReduce in OpenMP parallel environment (Muslim Mohsin Khudhair)

2327

[25] M. Saltan, “Intrinsic metrics on Sierpinski-like triangles and their geometric properties,” Symmetry, vol. 10, no. 6, pp. 1–12, Jun.
2018, doi: 10.3390/sym10060204.

[26] S. Anarova, F. Nuraliev, and O. Narzulloev, “Construction of the equation of fractals structure based on the rvachev r-functions

theories,” Journal of Physics: Conference Series, vol. 1260, no. 7, pp. 1–8, Aug. 2019, doi: 10.1088/1742-6596/1260/7/072001.
[27] M. Yıldırım, F. Y. Okay, and S. Özdemir, “Big data analytics for default prediction using graph theory,” Expert Systems with

Applications, vol. 176, pp. 1–17, Aug. 2021, doi: 10.1016/j.eswa.2021.114840.

[28] X. Mei, X. Cai, L. Yang, and N. Wang, “Graph transformer networks based text representation,” Neurocomputing, vol. 463, pp.
91–100, Nov. 2021, doi: 10.1016/j.neucom.2021.08.032.

[29] R. Yarinezhad and M. Sabaei, “An optimal cluster-based routing algorithm for lifetime maximization of internet of things,” Journal

of Parallel and Distributed Computing, vol. 156, pp. 7–24, Oct. 2021, doi: 10.1016/j.jpdc.2021.05.005.
[30] J. Li, H. Lu, K. Xue, and S. Member, “Temporal netgrid model-based dynamic routing in large-scale small satellite networks,”

IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 6009–6021, 2019, doi: 10.1109/TVT.2019.2910570.

BIOGRAPHIES OF AUTHORS

Muslim Mohsin Khudhair is a staff member in the Department of Computer

Information Systems, College of Computer Science and Information Technology, University

of Basrah, Basrah, Iraq. Currently a Ph.D student in the Department of Computer Science,

Faculty of Computer Science and Mathematics, at the University of Kufa. He received the

B.Sc. and M.Sc. degrees in computer science from the College of Science, University of

Basrah, Basrah, Iraq. His areas of interest include wireless sensor networks, artificial

intelligence, image processing, and applied mathematics. He can be contacted at email:

muslim.khudhair@uobasrah.edu.iq or mos1970@yahoo.com.

Furkan Rabee is a staff member in the Department of Computer Science,

Faculty of Computer Science and Mathematics, at the University of Kufa. He got B.Sc. and

M.Sc. in Computer Engineering from AL-Nahrian University in 2000 and 2008. He obtained

Ph.D in Computer Science and IT from the School of Computer Science and Engineering,

UESTC, Chengdu, China 2015. The research interests include real-time scheduling

algorithms, real-time locking protocols, operating systems, parallel processing, distributed

system, computer network, iot, mobile computing, cloud computing, and smart cities. He can

be contacted at email: furqan.rabee@uokufa.edu.iq.

Adil AL_Rammahi he has Ph.D from 2005 in fractal geometry and was awarded

the title of Professor of Mathematics in 2014. Included in the official business are the head

of the Department of Mathematics and the Assistant Dean for Administrative and Scientific

Affairs as well. He has several publications in Scopus journals and research contributions to

conferences in Los Angeles, London, Paris and Geneva. He has books on programming and

functional analysis. He can be contacted at email: adilm.hasan@uokufa.edu.iq.

https://orcid.org/0000-0002-8142-4029
https://scholar.google.com/citations?hl=id&user=haiFvhAAAAAJ
https://orcid.org/0000-0002-0517-2042
https://scholar.google.com/citations?hl=id&user=Vaf0dhoAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56278204800
https://orcid.org/0000-0003-3856-0663
https://scholar.google.com/citations?hl=id&user=MeQz8LUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56303428000

