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 Parallel data processing is one of the specific infrastructure applications 

categorized as a service provided by cloud computing. In cloud computing 

environments, data-intensive applications increasingly use the parallel 

processing paradigm known as MapReduce. MapReduce is based on a 

strategy called "divide and conquer," which uses ordinary computers, also 

called "nodes," to do processing in parallel. This paper looks at how open 

multiprocessing (OpenMP), the best shared-memory parallel programming 

model for high-performance computing, can be used in the MapReduce 

application using proposed fractal network models. Two fractal network 

models are offered, and their work is compared with a well-known network 

model, the hypercube. The first fractal network model achieved an average 

speedup of 3.239 times while an efficiency ranged from 73-95%. In the second 

model of the network, the speedup got to 3.236 times while keeping an 

efficiency of 70-92%. Furthermore, the path-finding algorithm employed in 

the recommended fractal network models remarkably identified all paths and 

calculated the shortest and longest routes. 
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1. INTRODUCTION 

The ability to offer computing resources and services on-demand has propelled the popularity of 

computational clouds. A collection of applications is arranged on virtual machines, which then execute on 

multiple server computers in data center networks (DCNs). These machines serve as the backbone for 

computational clouds. With the popularity of cloud computing and mobile cloud computing, DCN is the 

fundamental infrastructure and backbone supporting service delivery. The tree-based hierarchical structure is 

among the most famous architectural type [1], [2]. 

Big data is becoming an increasingly effective approach for a corporation to improve its value 

proposition or operations. Big data uses parallel computing to process large amounts of data quickly. Big data 

supports several specialized programming paradigms and runtime technologies [3]. Spark and Hadoop are 

map/reduce frameworks [4]. In GraphLab, Giraph, and GraphX, the Pregel model is implemented [5]. Storm 

[6] handles data streaming. Each system uses threads and simple methods to create a parallel and distributed 

computing environment. In contrast, the high-performance computing community developed programming 

https://creativecommons.org/licenses/by-sa/4.0/
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models that help build systems like the above and strike a balance between programming effort and 

performance. 

Having cloud computing has made MapReduce easier to use. The infrastructure services 

(infrastructure-as-a-service) offered by cloud companies make it easy to set up large computing instances. 

cloud providers such as Amazon and Microsoft offer MapReduce platform services (platform-as-a-service). 

MapReduce clusters can now be put together at a lower cost or on a pay-per-use basis [7]. 

The implementation of parallel computation can be done in various ways. Generally, parallel 

computing on the CPU is based on MPI or open multiprocessing (OpenMP), which are for distributed memory 

parallelism systems and shared memory multiprocessor systems [8]. Consequently, the primary focus of this 

research is on using the OpenMP program to simulate Mapreduce by employing presented fractal network 

models to fulfil the needs for processing big data. 

The remaining parts of this work are structured in the following manner. Section 2 provides a 

condensed explanation of hypercube and MapReduce. The basic concepts and knowledge of the parallel 

computing environment by OpenMP are presented in section 3. The fundamental ideas of fractals, which will 

serve as the foundation for the suggested architectural frameworks, are introduced in section 4. Section 5, the 

heart of this paper, explains the given proposal fractal models in detail. The specifics of the experiments and 

an analysis of the findings are presented in section 6. Section 7 wraps up the paper and discusses further 

research. 

 

 

2. BASIC CONCEPTIONS 

2.1.  Hypercube 
One of the best major connectivity networks in numerous topological aspects is the hypercube, often 

known as a n-cube. These topological qualities include a low diameter and high connectivity relative to other 

critical interconnection networks. A hypercube network structure improves network efficacy and stability and 

reduces data transfer difficulties such as complexity, speed, and size [9]. 

The hypercube of order n is an undirected network with 2n nodes with labels ranging from 0 to 2n-1. 

The number of linkages that are incident on a node is represented by its degree, which is written as n. The 

hypercube is a building with logarithmic architecture. This is because log2N=n links are the maximum 

connections a message must go over to reach its destination in a hypercube [10]. Also, one of the things that 

makes the hypercube topology interesting is its diameter, which is the largest number of nodes a message must 

pass through to get to its mate. The Figure 1 represents the hypercube in varying dimensions [11]. 

 

 

 
 

Figure 1. Hypercube with varying dimensions (n-D) 

 

 

2.2.  Mapreduce architecture 

Google released MapReduce in 2004 to enable fast, fault-free, scalable, and load-balanced parallel 

processing of enormous data sets. It is used in various fields, including data mining, extensive graph processing, 

machine learning, text processing, statistical machine translation, and others. Hadoop, built by the Apache 

Foundation, is one of many MapReduce implementations. Hadoop, like MapReduce, has two layers: a data 

storage layer called Hadoop DFS (HDFS) and a data processing layer called Hadoop MapReduce framework. 

HDFS, like Google's GFS, is controlled by a single master node [12]. 

MapReduce's master-slave concept is seen in Figure 2. The JobTracker manages tasks, progress, and 

resources as the central controller. TaskTrackers are slaves in this architecture. They start and monitor local 

mapper and reducer activities and provide JobTracker with updates and reports. The input data is automatically 

split into smaller parts and processed in parallel by a mapper. After mapping the intermediate data, the 

reduction stage produces the query's final result [13]. 
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Figure 2. The basic architecture of MapReduce 

 

 

2.2.1. MapReduce framework 

There are two parts to the MapReduce model: map and reduce, which work on (key, value) pairs. The 

following describes the process flow of the execution of MapReduce [13], [14]: 

- The input reader splits the input into several smaller components (chunks). After that, a map function is 

given responsibility for these blocks. 

- In the map function, each element is partitioned into tuples referred to as (key, value) pairs. 

- Within the shuffle function, the outputs of the mappers are moved to reducer nodes by the values of their 

respective keys. 

- The reduce function takes the intermediate tuples and merges them into a smaller collection of tuples, which 

are then sent to the output. 

- The job of the output writer is to ensure that the output is properly saved to storage, which may take the 

form of a database or a file system. 

 

 

3. OPEN MULTIPROCESSING 

Symmetric multiprocessor platforms (SMPs) with numerous CPU cores are best for fine-grained 

parallel computation using OpenMP. OpenMP-based computing reduces bandwidth and latency [15]. Compiler 

directives enable loop-based parallelization, tasking, work-sharing, and synchronization in C/C++ and Fortran. 

Because it's easy to run sequential applications in parallel, the OpenMP architecture is more enticing to 

programmers [16]. OpenMP's primary parallelization technique is known as multithreading. As shown in 

Figure 3, a single master thread separates multiple slave threads. In the serial context, the master thread 

executes instructions sequentially. The slave threads in the parallel environment execute instructions 

simultaneously and independently [17]. 

Because OpenMP uses a shared memory model, every thread can access the global memory by default. 

Slave threads can communicate by reading and writing to the global memory. When they update global or 

shared memory simultaneously, it can lead to a race condition that changes depending on how the threads are 

scheduled [18]. When two or more threads access the same memory without the necessary synchronization, 

this is called a "data race condition". Additionally, OpenMP enables the parallelization of parallel areas, 

allowing parallel loops to be nested inside parallel loops. When this happens, the slave threads that were made 

spawn mores threads to make the team [19]. 
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Figure 3. A fork-and-join approach of OpenMP parallelism 

 

 

3.1.  Scheduling methods 

Scheduling work becomes the most important part of parallelization. OpenMP gives you several ways 

to set up a schedule, which are [17], [20]: i) the static schedule works best if all the iterations take the same 

time to compute; ii) dynamic scheduling gives each thread a small amount of work; after it finishes, it gets 

more. It improves load-balancing among OpenMP threads when a loop's iterations have uneven demand;  

iii) the guided schedule sets the chunk size based on the number of unallocated iterations. So, the first sections 

of the threads are greater. Chunk size reduces as iterations increase; iv) the auto schedule lets the compiler and 

the runtime decide how to schedule things. The behaviour of the automatic schedule will differ depending on 

the implementation-specific; and v) the runtime schedule lets a program wait until runtime to decide which 

OpenMP schedule to use. Schedule and chunk-size options can be chosen at runtime. 

 

3.2.  Speedup and efficiency in parallel computing 

Speedup and parallel efficiency measure how well a parallel algorithm works on a parallel 

architecture. The equations listed are utilized in the process of determining them [19], [21]: 
 

𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑇𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (1) 

 

𝐸𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑆𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 (2) 

 

where S (parallel) is the parallel speedup, T (sequential) is the time it took for the sequential program to run, 

T (parallel) is the time it took for the parallel program to run, and E (parallel) is the efficiency of parallel 

processing, and N (parallel) is the number of processors used for parallel processing. 

 

 

4. THE FUNDAMENTALS OF FRACTALS AND THEIR MEASUREMENTS 

Fractals were first employed to describe nature's uneven geometry, such as tree branches, mountain 

surfaces, and shoreline features [22]. Forms have whole-number topological dimensions in euclidean geometry. 

A line has one dimension, a square two, and a cube three. Fractal objects need further explanation in this definition. 

Every natural, artificial, and random fractal has an (often non-integer) dimension that can be used to measure or 

quantify its complexity about its environment [23], [24]. The formula for finding the similarity dimension, Ds, 

for self-similar fractals with N copies that are all scaled by the same factor r 1, is as (3): 
 

𝐷𝑆 =
𝑙𝑜𝑔(𝑁)

𝑙𝑜𝑔(1/𝑟)
 (3) 

 

Table 1 depicts the similarity dimensions of some of the most important fractals studied (in ascending order of 

magnitude). 
 
 

Table 1. Displays the dimension of similarity for a selection of well-known fractals 
Fractal name Similarity dimension No. of copies (N) and scaling factor (r) 

Cantor set 0.63100 r=1/n at the nth step of construction 

Straight line 1.00000 N=1, r=1 
Koch curve 1.26186 N=4, r=1/3 

Box fractal 1.46497 N=5, r=1/ 3 

Sierpinski triangle 1.58496 N=3, r=1/2 

Sierpinski carpet 1.89279 N=4, r=1/4 
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4.1.  Sierpinski triangle 

The widely recognised Sierpinski triangle (Sierpinski, 1916), seen in Figure 4, is built using an 

iterative process. The Sierpinski triangle is equilateral when the original configuration at initial iteration 

𝑚 = 0 is denoted by the label 𝑆0. In the initial generation 𝑆1, we choose the intersection of the three sides of 

the equilateral triangle (l), connect them to form four different triangles, and then eliminate the central triangle. 

Like the previous generation, the second generation 𝑆2 links three midpoints of the sides (l/2) in each little 

triangle. And to be more comprehensive, if we keep repeating the technique for all new little triangles, we will 

eventually arrive at the basic deterministic fractal known as the Sierpinski triangle when the value of 𝑚 = ∞. 

This means one of the critical characteristics of the Sierpinski triangle is its ability to contain an infinite number 

of triangles inside a small space 𝑆0 [22], [25]. 

 

 

 
 

Figure 4. Sierpinski triangle with four levels 

 

 

4.2.  Sierpinski carpet 

The Sierpinski carpet is an additional example of an ideal fractal object analogous to the Sierpinski 

triangle. The carpet is distinctive since its main components are square. Starting with a square fundamental 

particle 𝑆0, a bottom-up building method is described. To create a stage 𝑆1 aggregate, first, arrange eight 

primary elements into a square loop. Then, leave a square hole in the center of the loop that is the same size as 

the primary elements. For a stage 𝑆2 aggregate, put eight stages 𝑆1 aggregates in a square loop and leave a hole 

in the middle that is the same size as a stage 𝑆1 aggregate (see Figure 5). Since the fundamental particles have 

little touch with one another, the intrinsic perimeter of the Sierpinski carpet is not equal to the total of their 

edges, as is the case with the triangle [22], [25], [26]. 

 

 

 
 

Figure 5. The first three stages of the Sierpinski carpet 

 

 

4.3.  The fractal models storage algorithm 

A data structure can be stored in memory as a graph representation using linked lists [27], [28]. The 

algorithm used to define the relationships and storage of nodes across multiple diagrams is represented by as 

shown in Figure 6. This algorithm stores the suggested model fractal architectures in memory using a 

programmed implementation of those architectures. It is possible to get a linkage between the nodes, which is 

shown to be represented by the adjacency matrix and link lists in Figures 7-9. 

 

4.4.  The fractal models routing algorithm 

Understanding how the potential routes between the nodes of the suggested model fractal architecture 

are crucial [29], [30]. Therefore, as illustrated in Figure 10, a routing algorithm is developed for these structures 

by taking advantage of the storage schemes from the previous storage algorithm. This algorithm has been 

programmed into the proposed model fractal architectures. Using Figure 7 as an example, which has six nodes, 

the following is the output of the program that was used to find the possible paths between nodes 0 and 5:  

([0, 3, 1, 5], [0, 3, 5], [0, 3, 4, 2, 5], [0, 3, 4, 5], [0, 4, 2, 5], [0, 4, 3, 1, 5], [0, 4, 3, 5], and [0, 4, 5]). 
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Figure 6. Storage algorithm of the model fractal architectures 

 

 

 
 

Figure 7. Storage data of the Sierpinski triangle (6 nodes) 

 

 

 
 

Figure 8. Storage data of the Sierpinski triangle (15 nodes) 
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Figure 9. Storage data of the Sierpinski carpet (16 nodes) 
 
 

 
 

Figure 10. Routing algorithm of the model fractal architectures 

 

 

5. PROPOSED FRACTAL MODELS 

The prototype of the Sierpinski triangle architecture is based on the fractal recursive formula 

Sierpinski triangle (gasket) described in subsection 4.1. This model system positions processing elements at 

the graph's vertices (nodes). The word count is an example of how efficiently the model network works. Word 

count is a typical use of MapReduce, which reads text files and counts how many times each word appears. 

The overall number of lines in the text input file is counted right at the beginning of the test for every model. 

The file is then split into chunks, each with a certain number of text lines. In the context of OpenMP, the 

simulations and actualizations of the following model architectures are being carried out. 

 

5.1.  The first model fractal architecture 

A detailed explanation of the procedures involved in building the model, by the following steps: 

- Counting the number of lines of the entered text data file. 

- Splitting the lines of the text file into equal chunks and distributing these chunks regularly to the network 

nodes, as in Table 2. 

- In the first stage, a network is allocated so that each node represents a processing unit that performs the 

mapping and shuffling process. 

- Under the OpenMP environment parallel processing, each node is assigned a free thread to perform the 

required processing (mapping and shuffling). 
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- The network outputs for this stage are (value, keys) stored in text files and considered inputs to the second 

stage, as in Figure 11. 

- In the second stage, within the OpenMP environment, network nodes are allocated to perform the Reducing 

process in the same way as the processing nodes' data distribution (chunks) in the first stage. 

- Finally, the output of this stage is the completion of the MapReduce operation to calculate the number of 

word repetitions for the input text file. 

The algorithm of the first model fractal architecture takes an input data file (IPs) and returns an output 

file for repeating words (IPs). The Algorithm 1 describes the main essential steps implemented within the 

OpenMP environment. 
 

 

Table 2. Represents a method for distributing chunks of a text input file to network processing nodes 
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

chunk 1 chunk 2 chunk 3 chunk 4 chunk 5 chunk 6 
chunk 7 chunk 8 chunk 9 chunk 10 chunk 11 chunk 12 

chunk 13 chunk 14 chunk 15 chunk 16 chunk 17 chunk 18 

.. .. .. .. .. chunk n 

 

 

 
 

Figure 11. The first model fractal architecture for implementing MapReduce 
 

 
Algoritm 1. The first model of fractal architecture 

Input: 

fin: input file of line as IPs 

chunkNo: number of chunks 

nodeNo: number of nodes 

threadNo: number of threads 

Output: 

fo: file of occurrences of IPs 

Begin 

1: set threadNo=6 

2: call omp_set_num_threads(threadNo) 

3: #pragma omp parallel shared () 

4: num=call omp_get_thread_num (); 

5: #pragma omp single 
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6: for (index=1; index<=chunkNo; index++) 

7: Node=index % 6                              //Specify node number 

8: #pragma omp task 

9: if (Node) identical thread No. (num) 

10: call mapping (chunk_index, fo_map) 

11: call shuffling (fo_map, fo_shuffle) 

12: end if 

13: #pragma omp taskwait 

14: end for                                          //End phase mapping & 

shuffling 

15: #pragma omp parallel shared () 

16: #pragma omp single 

17: for (index=1; index<=chunkNo: index++) 

18: Node=index % 6 

19: #pragma omp task 

20: if (Node) identical thread No. (num) 

21: call reducing (fo_shuffle, fo_reduce) 

22: end if 

23: #pragma omp taskwait 

24: end for                                          //End phase reducing 

25: aggregating th previous output reducing to get the final output file (fo) 

26: end begin 

 

 

5.2.  The second model fractal architecture 

In this model, a single network model is used to process the three operations of the MapReduce during 

one phase, as shown in Figure 12. So that the text file data splitting and distribution are similar to the first 

model. The second model fractal architecture algorithm returns an output file for repeated words from an input 

data file (IPs). OpenMP's major phases are described in Algorithm 2. 
 

 

 
 

Figure 12. The second model fractal architecture for implementing MapReduce 
 

 
Algorithm 2. The second model of fractal architecture 

Input: 

fin: input file of lines as IPs 

chunkNo: number of chunks 

nodeNo: number of nodes 

threadNo: number of threads 

Output: 

fo: file of occurrences of IPs 

Begin 

1: set threadNo=6 

2: call omp_set_num_threads(threadNo) 

3: #pragma omp parallel shared () 

4: num=call omp_get_thread_num (); 

5: #pragma omp single 

6: for (index=1; index<=chunkNo; index++) 

7: Node=index % 6                                       //Specify node 

number 

8: #pragma omp task 

9: if (Node) identical thread No. (num) 

10: call mapping (chunk_index, fo_map) 
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11: call shuffling (fo_map, fo_shuffle) 

12: call reducing (fo_shuffle, fo_reduce) 

13: end if 

14: #pragma omp taskwait 

15: end for 

16: aggregating the previous output reducing to get the final output file (fo) 

17: end begin 

 

 

6. EXPERIMENTAL FINDINGS AND ANALISIS 

In this section, we will study and discuss the outcomes of serial and parallel implementations of 

recommended fractal architectural models and compare them to well-known architectural structures. The 

experiment used a quad-core HP Laptop (60 GHz CPU, 16 GB RAM). C++ implements the experiment 

program. Using gcc 4.9.2 and OpenMP 5.0 on Windows, we compiled the apps. Six text files were tested  

(data 1, data 2, data 3, data 4, data 5, and data 6). Each file had data concerning IP addresses on lines that were 

(10,000; 200,000; 300,000; 400,000; 500,000; and 600,000), accordingly. 

 

6.1.  Speedup and parallel efficiency  

For the first model, the runtime calculation performs for various thread counts ranging from 1 to 12 

using the OpenMP explicit tasks functionality, as displayed in Figure 13. As a result, it notes that execution 

time dropped by an average of 69% for text data sets. The input data of this model is divided into chunks for a 

second test. The amount of time needed to process data sets changes depending on the size of the chunk being 

processed, as shown in Figure 14. As a result, it is thought to be a factor impacting network performance. 

 

 

 
 

Figure 13. The running time for multiple distinct data sets with varying numbers of threads 

 

 

 
 

Figure 14. The running time for several data sets with various chunk sizes runs parallel 
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The third test of the model shown in Table 3 illustrates two measures to assess a program's 

effectiveness: speedup and efficiency. The graph that can be seen in Figure 15 shows the relationship between 

the speedup and the number of threads employed for text data sets. The performance of the suggested second 

model fractal architecture is assessed based on the same technique carried out on the first model. This 

performance is reflected by the Table 4 and Figures 16-18 which can be seen. 
 

 

Table 3. Efficiency and speedup of the first model for diverse data sets at various thread counts 
Thread no./Data sets 2 3 4 

Data 1 Speedup 1.922 2.757 3.832 

Efficiency 0.961 0.919 0.958 
Data 2 Speedup 1.947 2.537 3.711 

Efficiency 0.9735 0.846 0.928 

Data 3 Speedup 1.819 2.394 3.197 
Efficiency 0.9095 0.798 0.799 

Data 4 Speedup 1.707 2.326 2.945 

Efficiency 0.8535 0.775 0.736 
Data 5 Speedup 1.756 2.238 2.810 

Efficiency 0.878 0.746 0.703 

Data 6 Speedup 1.542 2.088 2.941 
Efficiency 0.771 0.696 0.735 

Average Speedup 1.782 2.390 3.239 

Efficiency 0.891 0.797 0.810 

 

 

 
 

Figure 15. The running time for several data sets with different thread counts 
 

 

 
 

Figure 16. The running for a variety of thread counts across many data sets 
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Figure 17. Duration of the first model's execution for several data sets with different thread counts 

 

 

Table 4. Efficiency and speedup of the second model for diverse data sets across varying thread counts 
Thread no./Data sets 2 3 4 

Data 1 Speedup 1.940 2.743 3.682 

Efficiency 0.970 0.914 0.921 
Data 2 Speedup 1.934 2.712 3.613 

Efficiency 0.967 0.904 0.903 

Data 3 Speedup 1.820 2.419 3.110 
Efficiency 0.910 0.806 0.778 

Data 4 Speedup 1.713 2.265 2.843 

Efficiency 0.857 0.755 0.711 
Data 5 Speedup 1.689 2.334 2.785 

Efficiency 0.845 0.778 0.696 

Data 6 Speedup 1.563 2.592 3.383 
Efficiency 0.782 0.864 0.846 

Average Speedup 1.776 2.511 3.236 

Efficiency 0.889 0.83 0.809 

 

 

 
 

Figure 18. The running time for multiple distinct data sets with chunks of different sizes running in parallel 
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It uses a well-known hypercube model to compare and evaluate the performance of the newly 

presented fractal models, as shown in Figure 19 (described in subsection 2.1). This model evaluates using the 

same methods as the proposed models. First, a comparison is made between the hypercube and the first 

suggested model. According to Table 5 findings, the first model presented has a marginal advantage in 

completing the task in a shorter amount of time. When the second model is contrasted with the hypercube, the 

findings indicate that the hypercube is slightly preferred over the second model. This is illustrated in Table 6. 

 

 

 
 

Figure 19. Traditional hypercube model architecture 

 

 

Table 5. Results for data sets with different chunks of the first model and the hypercube 
Data sets Number of chunks Running time of the first model (sec) Running time of the hypercube (sec) 

Data 3 6 31.408 36.106 

12 16.418 16.959 

18 9.939 9.999 

24 7.517 7.529 

Data 4 6 60.080 64.716 

12 27.746 34.591 
18 18.485 25.981 

24 12.737 13.181 

Data 5 6 98.206 96.417 
12 49.442 51.317 

18 27.645 34.895 

24 22.350 22.831 

 

 

Table 6. Results for data sets with different chunks of the second model and the hypercube 
Data sets Number of chunks Running time of the second model (sec) Running time of the hypercube (sec) 

Data 3 6 32.532 32.369 
12 17.861 16.800 

18 11.915 11.741 

24 7.954 7.247 
Data 4 6 62.518 61.003 

12 31.206 31.060 

18 20.470 21.087 
24 14.722 13.854 

Data 5 6 99.642 98.704 

12 49.350 48.208 
18 37.021 32.243 

24 26.077 24.011 

 

 

7. CONCLUSION 

The OpenMP parallel computing model analyzes the parallel performance of the given fractal models 

to figure out the parallel speedup and efficiency. When these different models used the MapReduce method to 

count the words, the results showed the following: i) the data results reveal that the first model performs 

marginally better than the second model, which is especially clear in the large data sets; ii) a well-known 

network model called the hypercube was used as a benchmark to assess how well the suggested models 

performed. The findings indicated a preference for the first network model offered, whereas the second network 

model proposed was quite similar to the first model regarding the percentage difference between them;  
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iii) more significant dynamic storage reduction, or better storage efficiency, was obtained using the storage 

technique in conjunction with the suggested fractal models' linked lists; and iv) the path-finding algorithm used 

in the suggested fractal models accomplished a great job of discovering all pathways and determining the 

shortest and longest routes. Finally, considering the performance we saw in our experimental configuration, it 

is possible to increase the performance with more powerful machines and a more significant number of cores. 

Although it has limits in the parallel OpenMP context, using GPUs is another potential option for scaling 

performance. 
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