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 The use of a convolutional neural network (CNN) to analyze and classify 

electroencephalogram (EEG) signals has recently attracted the interest of 

researchers to identify epileptic seizures. This success has come with an 

enormous increase in the computational complexity and memory 

requirements of CNNs. For the sake of boosting the performance of CNN 

inference, several hardware accelerators have been proposed. The high 

performance and flexibility of the field programmable gate array (FPGA) 

make it an efficient accelerator for CNNs. Nevertheless, for resource-limited 

platforms, the deployment of CNN models poses significant challenges. For 

an ease of CNN implementation on such platforms, several tools and 

frameworks have been made available by the research community along 

with different optimization techniques. In this paper, we proposed an FPGA 

implementation for an automatic seizure detection approach using two CNN 

models, namely VGG-16 and ResNet-50. To reduce the model size and 

computation cost, we exploited two optimization approaches: pruning and 

quantization. Furthermore, we presented the results and discussed the 

advantages and limitations of two implementation alternatives for the 

inference acceleration of quantized CNNs on Zynq-7000: an advanced RISC 

machine (ARM) software implementation-based ARM, NN, software 

development kit (SDK) and a software/hardware implementation-based deep 

learning processor unit (DPU) accelerator and DNNDK toolkit. 
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1. INTRODUCTION 

Epilepsy is a nervous system disorder affecting more than 50 million people worldwide, according 

to the World Health Organization. The commonly used technique for the detection of epileptic seizures relies 

on the visual interpretation of electroencephalogram (EEG) by experts. Hence, several studies were 

conducted to build an automatic approach for the detection of epileptic seizures [1]. There are two major 

approaches in the literature for the development of an automatic epileptic seizure detection system: software-

based and hardware-based methods. 

With the development of machine learning algorithms, the classification accuracy of automated 

techniques for epilepsy detection is improving. According to Akyol [2], a new stacking ensemble technique 

based on deep neural network (DNN) for the detection of epileptic seizures was proposed with an accuracy of 

97.17%. To improve the detection accuracy of seizure, Choubey and Pandey [3] used the combination of 

statistical parameters and two classification algorithms, k-nearest neighbor (KNN) and artificial neural 

network (ANN), for the classification of EEG signals into healthy, inter-ictal and ictal states. For KNN and 
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ANN classifiers, the proposed technique achieved an accuracy of 98% and 94%, respectively. Research work 

on epilepsy detection has been fruitful, with certain epilepsy detection algorithms achieving 100% accuracy [3]. 

The computational cost of training and inference in these software-based solutions, as well as the 

need for real-time detection of epileptic seizures, has prompted several studies into hardware acceleration of 

these computationally intensive algorithms while taking into consideration the detection latency, hardware 

cost and power consumption. Bahr et al. [4] suggested a convolutional neural network (CNN) 

implementation of an epileptic seizure detection system on an ultra-low-power GAP8 microprocessor with 

the reduced instruction set computer-five (RISC-V) architecture. This work reached a sensitivity of 85%. In 

terms of power consumption, the proposed approach outperforms state-of-the-art work by a factor of 6. 

Elhosary et al. [5] proposed a seizure detection system based on a support vector machine (SVM) classifier. 

The system is implemented and evaluated on two different platforms: field programmable gate array (FPGA) 

(Xilinx Virtex-7 board) and application-specific integrated circuit (ASIC) (UMC 65 nm CMOS technology). 

The proposed seizure detection system achieved a sensitivity of 98.38%. Using the dynamic partial 

reconfiguration (DPR) technique, the authors proposed two optimized designs that resulted in a 64% 

reduction in power consumption. To reduce the computational complexity of the epilepsy detection system, a 

systolic array architecture using an SVM classifier was proposed in [6]. A fixed-point arithmetic unit was 

used to implement the proposed technique on the Xilinx Virtex 7. Compared to the existing system on chip 

and FPGA seizure detection systems, this work showed efficient results with an average accuracy of 97.2%.  

Due to the tremendous performance that deep learning algorithms have enabled, CNN has been used 

to seek solutions in a variety of medical applications. CNN-based techniques have emerged as the most 

promising alternative for seizure detection. This widespread comes at the cost of their increasing demands in 

computation and storage. For example, visual geometry group-19 (VGG-19) model needs up to 39 billion 

floating point operations for the classification of an input image with a size of 224×224 and more than 500 

MB of model parameters [7]. The complexity of these models increases the challenges of their hardware 

implementation, which must be performed with high speed (i.e., high throughput and low latency) and with 

minimal energy consumption. The need for this balance has grown critical in a number of areas, including 

real-time applications. To overcome these issues, many efforts have been dedicated to reducing the model 

size and the computation cost without affecting the accuracy by suggesting several optimization techniques. 

The most commonly used techniques are quantization [8] and pruning [9]. 

Taking advantage of these optimization methods, several research works have been carried out for 

the development of suitable hardware accelerators for CNN inference. For an efficiency in terms of power 

consumption and performance (runtime), several hardware CNN accelerators have been suggested in the 

literature using graphics processing units (GPUs) [10], ASICs [11] or FPGAs [12]. Other works have 

investigated CNN implementation on microcontrollers to gain lower power and cost [13]. Among these 

different proposed solutions, FPGAs played an important role and have known a great success [14] due to 

their high energy efficiency compared to GPUs and their flexibility compared to ASICs and the provided 

space for design exploration compared to microcontrollers. 

For the sake of achieving state-of-the-art classification accuracy on epileptic seizure detection, the 

size of CNN models gets deeper, which implies an increase in the computation and storage complexity as 

well as the inference time. For resource-constrained platforms, this is challenging by virtue of the limited 

resources and frequency. Hence, obtaining good performance and high energy efficiency from a straight-

forward FPGA based design implementation of CNN model should not be expected. Thus, there is a critical 

need for a flexible hardware accelerator that can handle different CNN architectures while achieving higher 

resource efficiency and optimum performance. In this regard, various tools have been introduced to decrease 

the complexity of CNN models and to enhance the implementation performance of FPGA-based CNN 

accelerators. For a further improvement in the performance of FPGA-based accelerators for CNN inference, 

Xilinx has provided an intellectual property (IP) core named deep learning processor unit (DPU) [15], which 

supports many basic functions of deep learning and can be used for any topology of CNN in contrast to other 

hardware accelerators based on FPGA. 

The main contributions of this work are: i) we explore an FPGA-based epileptic seizure detection 

architectures using VGG-16 and ResNet-50 models, ii) we validate our design model approach through a 

software implementation, iii) we apply filter and weight pruning on the convolution layers of VGG-16 and 

we evaluate the results in terms of accuracy loss and reduction in model parameters, iv) we use the advanced 

RISC machine (ARM) NN software development kit (SDK) toolkit for the execution of quantized ResNet-50 

and Inception-V4 models on the ARM Cortex-A9 of ZedBoard, and v) we use the Xilinx deep neural 

network development kit (DNNDK) to quantize, compile and deploy ResNet-50 and Inception-V4 models on 

the DPU IP implemented on ZedBoard. The reminder of this paper is organized as: section 2 presents our 

proposed method, the implementation results and discussion are provided in section 3. Finally, conclusions 

are presented in section 4. 
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2. METHOD 

For this study, to validate the hardware implementation of our proposed epilepsy detection system 

on ZedBoard, we investigated some of the available tools and frameworks in the research community to 

reduce the complexity of CNN models and facilitate their implementation on low performance FPGA boards. 

To reduce the CNN model size and its complexity, we will use different pruning techniques. Additionally, we 

will explore the software implementation of some complex CNN models using the ARM neural network 

(NN) SDK toolkit. For a further exploration of the CNN implementation on these platforms, we will 

introduce a hardware acceleration on Zynq FPGA using the DPU IP accelerator. 

 

2.1.  Dataset description 

The dataset used for this work is the Children’s Hospital Boston-Massachusetts Institute of 

Technology (CHB-MIT), which is an open-access dataset available on PhysioNet [16]. The dataset consists 

of scalp EEG (sEEG) recordings of 23 pediatric subjects. The sampling frequency of the dataset used was  

256 Hz. EEG recordings consist of 23 channels and contain multiple seizure occurrences. A preprocessing 

step based on the short-time fourier transform (STFT). This generates time-frequency spectrum images at the 

input of the CNN model. 

 

2.2.  Development board 

The target board is a development kit for the Xilinx Zynq-7000 all-programmable system on chip 

(SoC). To enable a large variety of applications, this board includes all the essential interfaces and supporting 

functions. It has a Zynq7020 SoC and a dual-core ARM Cortex-A9 processing system (PS), on-chip DDR3 

memory (512 MB), quad serial peripheral interface (QSPI) flash memory (256 MB), LUTs (53,200) and flip-

flops (106,400) [17]. 

 

2.3.  Convolutional neural network models 

We conducted experiments using three well-known CNN networks: VGG-16, ResNet-50 and 

Inception-V4. Table 1 shows the different properties of these networks. VGG-16 was trained using the 

Canadian Institute For Advanced Research (CIFAR-10) dataset. This dataset consists of sixty thousand 

images (50,000 images for the training and 10,000 images for the test) with 32×32 resolution and it contains 

ten classes. ResNet-50 and Inception-V4 were trained using ImageNet dataset. It is a well-known dataset that 

has been used for CNN benchmarks in many applications, such as object detection and object classification. 

This dataset contains about 10 million images scaled to 224×224 with 1,000 classes. 
 

 

Table 1. Properties of the used CNN models 
CNN model ResNet-50 Inception-V4 VGG-16 

Layers 50 81 16 

Number of parameters (million) 25.6 33 138.3 

Operation (GFLOPs) 7.7 24.5 30.97 

 

 

2.4.  Application of pruning techniques 

At first, to explore the reduction of CNN model size, we targeted two approaches: filter pruning and 

weight pruning. The evaluation of these approaches has been done on the VGG-16 model. The 

implementation of both pruning techniques is based on PyTorch. In these experiments, we focused on the 

convolutional layers, which are the most computationally intensive layers in CNNs. Thus, in our weight 

pruning method, only the weights in the convolutional layers were pruned. After the network training, the 

unimportant connections (i.e., whose weight is lower than a given threshold) are pruned and at last the 

network is retrained in order to fine tune the remaining connections weights. Considering the filter pruning 

method, for the selection of unimportant filters we used L1-norm, which calculates the sum of the absolute 

weights of a filter. 

 

2.5.  Application of quantization technique 

For the evaluation and test of the quantization technique, we exploited two approaches. The first 

approach is based on the ARM NN SDK for the software implementation of a TensorFlow lite quantized 

CNN model on the ARM Cortex-A9 of the target board. The second relies on the employment of the Xilinx 

DNNDK for the hardware implementation of quantized CNN models on the FPGA target. 

 

2.5.1. Software implementation with ARM NN SDK 

Lately, ARM revealed the NN SDK and ARM compute library [18] as a set of open-source machine 

learning software, libraries, and tools enabling existing high-level neural network frameworks  
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(i.e., TensorFlow, TensorFlow lite, caffe and ONNX) to run on the ARM Cortex-A family of CPU processors 

and the ARM Mali family of GPUs. The deployment of deep learning application inference on ARM-based 

processors is done through the functions from the NN SDK API, which translate neural networks to the 

internal ARM NN format using the optimized functions provided by the compute library. The general 

workflow is illustrated in Figure 1. 

 

 

 
 

Figure 1. Deployement of deep learning application using ARM NN SDK 

 

 

We took advantage of the ARM NN SDK toolkit for the execution of CNN models on the ARM 

Cortex-A9 of ZedBoard. As mentioned above ARM NN SDK supports TensorFlow lite which is a an 

opensource framework that was developed to enable the deployment of machine learning models inference in 

resource constrained devices such as mobile, embedded and IoT devices. This framework supports model 

optimization through quantization. It provides several options (different lower precision formats) for model 

quantization. In our work, we used a TensorFlow lite model with INT8 precision. For the set up and the built 

of the ARM NN environment on our board, more than 4 GB of storage space is needed for the dependencies 

of some large libraries such as TensorFlow and other required tools. Given the limited memory of our board, 

we used another alternative recommended by ARM to target the Arm Cortex CPU of ZedBoard, which is the 

cross-compilation of ARM NN using an x86_64 system. 

 

2.5.2. Hardware acceleration using xilinx DPU IP 

In this part, we have opted to switch to a strictly hardware acceleration of CNNs on ZedBoard using 

the Xilinx DPU. We used the suggested pipeline shown in Figure 2 to deploy a CNN model on an FPGA 

utilizing DPU IP. The model is initially trained on the host PC using the TensorFlow framework. Then, we 

quantized, compiled, and deployed this model on DPU IP using the Xilinx DNNDK. 

DNNDK is an integrated framework provided by Xilinx [19], that enables the development and 

deployment of CNNs on DPUs. It was designed especially for the acceleration of CNN inference on Xilinx 

FPGA platforms, edge devices (i.e., Xilinx Zynq MPSoC), as well as cloud-based data center systems  

(i.e., Xilinx Alveo accelerator cards). For an efficient mapping of CNN inference on FPGAs integrated with 

hard CPU cores, DNNDK offers a set of toolchains including compression, compilation, deployment and 

profiling. It provides high-level user-space APIs in C++. DNNDK takes in CNN models generated in caffe, 

TensorFlow or Darknet. The main steps of the deployment of deep learning applications into Xilinx DPU 

platforms using DNNDK flow are as (Figure 3):  

- Model compression through quantization with a tool named DECENT, which converts a floating point 

(FP 32) CNN model to a fixed-point (INT8) model without a loss in accuracy. 

- Compilation of the quantized fixed-point model into DPU kernels using a deep neural network compiler 

(DNNC). The DPU kernels are ELF format object files containing the DPU instructions and parameters 

for the network model. 

- Hybrid compilation to produce the executable for the target DPU platform. 

- Run the executable on the target DPU platform to see the results. 
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Figure 2. Methodology flow of CNN inference on ZedBoard using Xilinx DPU IP 
 

 

 
 

Figure 3. DNNDK workflow 
 
 

The DPU IP is a soft-processor implemented in the programmable logic (PL) with direct 

connections to the PS and the external memory. It includes a complex module of computing responsible for 

the computational tasks of CNN, such as convolutions, and pooling. This module contains a certain number 

of processing elements (PEs). In order to control the computing complex operations, the DPU retrieves 

instructions from offchip memory. For high throughput and efficiency, the on-chip memory is utilized to 

buffer input, intermediate and output data. Figure 4 illustrates the DPU hardware architecture. 
 
 

 
 

Figure 4. Hardware architecture of DPU 
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After integrating the DPU IP into the hardware design using Vivado, a bitstream file is generated 

and the hardware description file (.hdf) is exported to be used for the software build. The board-specific 

components are built using Petalinux, where the required settings for DPU are included. To deploy CNN 

models on the DPU, the Xilinx DNNDK is used. This tool enables the model compression using a deep 

compression tool (DECENT). Then, it generates through the DNNC compiler a DPU.elf file that contains the 

DPU instructions and the parameters of the model. This file will be compiled in a hybrid compilation 

together with C/C++ program instructions for the deployment of the CNN application on ZedBoard. Finally, 

all the needed files (the generated executables, i.e., boot.bin, image.ub and application.elf) are gathered on 

the SD card to be loaded in ZedBoard. For a comprehensive analysis and evaluation of these two approaches 

of quantization, we chose ResNet-50 and Inception-V4 models, which have different numbers of layers. The 

parameter size of these models alters from a few MBs to hundreds of MBs, as presented in Table 1. 

 

 

3. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed approach, software experiments were conducted on a 

laptop computer with a NVIDIA GeForce MX 150 and a 64-bit operating system. The achieved accuracy for 

epileptic seizure detection with the VGG-16 model is about 97.75%, which outperforms ResNet-50 

(96.17%). The focus of this paper is the implementation of an epileptic seizure detection system on  

resource-limited platforms using two large CNN models (VGG-16 and ResNet-50). To ensure the proposed 

approach, we first leverage the different available solutions for the implementation of these CNN models on 

Zynq-7,000 platforms and investigate some of them.  

We first explored two different techniques of pruning to reduce CNN model size with a minimal 

accuracy drop namely filter and weight pruning. The performance of the pruning techniques used in our 

experiments is evaluated in terms of accuracy loss and model parameters reduction. The results of the weight 

pruning of VGG-16 on the CIFAR-10 dataset is presented in Figures 5(a) and (b).  
 
 

 
(a) 

 

 
(b) 

 

Figure 5. Weight pruning results (a) weight pruning results of VGG-16 on CIFAR-10 in terms of accuracy 

and (b) number of remaining parameters in the convolution layers for each pruning ratio of weights 
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Figures 6(a) and (b) show the results of the filter pruning approach on VGG-16 model in terms of 

accuracy, the remaining parameters in convolution layers and accuracy loss in different pruning ratio of 

filters. With a pruning ratio of 90% of filters there is an accuracy loss of 6.4%. This can be explained by the 

sensitivity of some layers and when pruning them it may be difficult to recover accuracy. While for the 

weight pruning, a considerable reduction of weight parameters with small accuracy loss has been achieved. 

As depicted in Figure 5(a), with a pruning ratio of 90%, an accuracy loss of 0.48% is obtained. However, 

such non-structured method where arbitrary weights are pruned leads to an irregular structure of the network. 

In contrast, filter pruning as a structured pruning technique induces sparsity in a hardware-friendly way 

which make it a suitable choice for the acceleration of CNNs. 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Filter pruning results (a) filter pruning results of VGG-16 on CIFAR-10 in terms of accuracy and 

(b) number of remaining parameters in the convolution layers for each pruning ratio of filters 

 

 

Moreover, we investigated the quantization technique by evaluating the implementation of quantized 

CNN models through two different approaches. The software implementation using the ARM NN SDK and 

the software/hardware implementation using the DPU accelerator. As shown in Table 2, for the software 

implementation on the ARM Cortex-A9 of ZedBoard by using TensorFlow lite quantized ResNet-50 and 

Inception-V4 models, a speed-up of about 1.75× was achieved compared to the floating-point models. 

In spite of that, the quantization of ResNet-50 and Inception-V4 models through the Xilinx DNNDK 

(DECENT) tool and their hardware implementation using the DPU IP provides better results in terms of 

execution time with 85× for ResNet-50 and 79× for Inception-V4 compared to the software implementation 
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approach (Table 3). In addition, a performance evaluation of the inference acceleration of ResNet-50 and 

Inception-V4 models on ZedBoard using Xilinx DPU was done in terms of throughput and runtime as 

presented in Table 4. The performance evaluation of Xilinx DPU IP has proved the feasibility of running 

large CNN models with complex architectures (ResNet-50 and Inception-V4) on ZedBoard without the need 

to develop a custom accelerator. 
 

 

Table 2. Execution time comparison of INT8 and FP32 ResNet-50 and Inception-V4 models implementation 

on the ZedBoard ARM Cortex-A9 
 Execution time (ms) 

Precision FP32 INT8 

ResNet-50 15000 8571.4 
Inception-V4 44000 25882.3 

 

 

Table 3. Implementation results of quantized CNN models using the two approaches in terms of execution 

time 
Target ZedBoard with DPU accelerator ARM Cortex-A9 of ZedBoard 

Frequency 90 (MHz) 33.333 (MHz) 

Tool Xilinx DNNDK ARM NN SDK 

Models ResNet-50 Inception-V4 ResNet-50 Inception-V4 
Execution time (ms) 100.636 327.162 8571.1 25882.3 

 

 

Table 4. Implementation results of CNN models on ZedBoard using DPU IP 
Board ZedBoard with DPU accelerator 

Dataset ImageNet 

CNN model ResNet-50 Inception-V4 
Wokload (GOPS) 7.71 24.5 

Execution time (ms) 100.636 327.162 

Throughput (GOPS/s) 76.6127 74.9155 

 
 

Nevertheless, running more complex CNN models, such as VGG-16, on Zynq-7,000 platforms using 

DPU IP remains a challenge. Even with the quantization of the VGG-16 model with Xilinx DNNDK, the 

model size is 132 MB [20]. To complete the large amount of calculation needed for VGG-16, a DPU core 

with the maximum size realized on the ZCU102 board was used, which is the B4096 core [20]. Compared to 

the available resources on Zynq-7,000 platforms, this DPU core uses over 3.2× of DSP, 1.12× of LUT, and 

1.9× of BRAM. Moreover, for Zynq-7,000 platforms only one DPU core can be used. The main goal of this 

work was to implement on ZedBoard our epilepsy detection system with the CNN model that gives the best 

accuracy, which is VGG-16. However, as mentioned in the discussion above, the implementation of VGG-16 

on platforms with limited resources, such as ZedBoard is a challenging task. This makes the implementation 

of our approach for epilepsy detection using VGG-16 on ZedBoard not possible. 

At last, after our exploration of the proposed tools and techniques, we have encountered some 

difficulties. During our experiments of pruning methods which were conducted on host PC  

(intel core I5-8250U), we faced some issues including the computational complexity associated with pruning 

and the retraining step which demands a lot of time. Also, the choice of hyperparameters like the sparsity of 

the network pruning is a tedious and time-consuming task. 

In addition, after our use of the Xilinx DNNDK tool, we have noticed that it has some limitations. A 

limited number of pre-trained CNN models can be successfully run on ZedBoard using DNNDK. In addition, 

the DECENT pruning tool requires a license and only the Xilinx pruning tool is supported. If the network is 

pruned using third-party pruning tools, DNNDK will not support it. Even when using the same technique 

adopted by the Xilinx pruning tool, which is coarse-grained pruning (iterative channel pruning). Thus, it is 

not possible to implement an optimized model on DPU without going through Xilinx tools. This has been 

concluded after our different attempts to implement pruned CNN models on ZedBoard using DPU, which are: 

- We applied channel pruning to the ResNet-50 model based on the caffe framework. However, we were 

not able to quantize this model using the DECENT tool. 

- We applied channel pruning to a simple CNN model (4 convolution layers and 2 fully connected layers). 

- We managed to get the model quantized with DECENT, unfortunately the execution on the board stops at 

the last layer of convolution. 

- When trying to implement the provided pruned models by the Xilinx model zoo repository (SSD, 

RefineDet, VPGNet, OpenPose), we encountered some problems due to the need for additional DNNDK. 

- Binaries and libraries, which are for arm-64 and they don’t support Zynq-7,000. 
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4. CONCLUSION 

This work presented an FPGA implementation of epileptic seizure detection using CNN model. This 

paper has examined the efficiency of two pruning methods, filter and weight pruning, applied on the 

convolution layers of VGG-16 model in the reduction of the model parameters and in keeping the accuracy. 

In this paper the inference implementation of large CNN models on resource constrained platforms, as a case 

ZedBoard, has been investigated from two aspects, a software implementation on the ZedBoard ARM 

Cortex-A9 and a hardware implementation using Xilinx DPU IP accelerator. A complete flow for such an 

implementation has been presented, including the implementation flow, the development frameworks used in 

these implementations as well as the hardware architecture design. 
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