
Data-centric ML pipeline for data drift and data preprocessing
Hongsup Shin

hongsup.shin@arm.com

SciPy 2023

ML enables efficient hardware verification
• The goal of hardware verification is to find almost all design bugs 

in time to achieve near bug-free design.
• But hardware design space is massive. Thus, engineers use 

constrained random testing; they generate random test inputs to 
probe various design spaces. Each test returns pass/failure 
where a failure means a bug is found.

• We use ML to increase efficiency in hardware verification by 
guiding the testing behavior.

Data problems cause most MLOps issues
Data preprocessing
• Need for dtype correction (e.g., “True”)
• Difficult-to-understand features w/ high dimensionality
• Complex regex patterns in string features
• Multiple interpretations available for categorical features 
Data drift
• Frequent feature space change

• Worsening class imbalance over time

• dtype of a feature can change over time: (e.g., bool -> str)
Automation feasibility
• Frequent interventions from domain experts required to 

understand any changes in data
• Brittle ML pipeline due to frequent data drift
• Heavy reliance on domain experts: delayed early deployment

Data-centric ML pipeline
Principles
• Data-driven: the ML pipeline preprocesses raw data based on 

the contents of the data (less dependent on domain experts)
• Flexible & robust: adaptive to changes in training data
• Observable: data preprocessing is transparent and trackable
• Automated: digests raw data automatically
Overview

Schema for monitoring, casting, and preprocessing

• Generated every time new data arrives (training and serving)
• Infer granular dtypes using pandas.api.types.infer_dtype and 

numpy.dtype.kind
• Pre-defined mapping for translating the inferred dtypes to others
From schema to preprocessor 
• Backbone: a scikit-learn pipeline with a ColumnTransformer step
• Pre-defined preprocessing methods (e.g., OneHotEncoder for 

“nominal_str”) for all dtypes fetched to build column transformer
• Easy to observe and change data preprocessing methods
Data-drift handling
• Not all data drifts are significant
• Schema built during serving and compared with training schema
• First, mismatches are resolved (using dummies) and serving job is 

run. Any mismatches are logged and trigger alerts.
Vs. Pandera

Data (preprocessing) tuning matters
Why data tuning makes sense
• Data tuning: tuning data preprocessing methods like model 

hyperparameters
• Difficult-to-understand features (specific to a hw component)
• Multiple interpretations available
• Risks from data-driven schema inference w/o domain knowledge
• Interpretability is not important yet
Benchmark experiments
• 20 post-deployment datasets (~500k rows per dataset) w/ 

roughly 3:1 time-dependent train-test split
• Lightgbm (sklearn API) w/ daskML randomized search
• 8 different category encoders are used for data tuning (model 

hyperparameters are kept identical between groups)
Tuning model & data together > tuning model alone

Best model performance after tuning

How data is preprocessed affects model performance
Min-max performance range from 100 hyperparameter searches

when using the best or worse preprocessor

Remaining challenges 
Compute and pipeline structure
• Difficult to tune data preprocessing methods without any 

redundant computation unless transformed data is pre-
computed and saved (numerous combos are possible)

• Difficult to configure a streamlined ML pipeline with multiple 
transformed datasets

• Even more challenging to build a pipeline with cross validation 
without any data leakage

• Generally challenging to solve interoperability issues when using 
multiple libraries in a highly customized setting

Interplay between data and model
• Why some features prefer specific preprocessing methods over 

others?
• What is the role of data preprocessing when tuning model 

hyperparameters?

Test candidates
(random input)

Simulate all

Default (No ML)

Simulate top K
(save compute)

Bug Hunting (ML)

Test candidates
(random input)

Trained binary classifier

Only run K tests w/ the 
highest proba. 
(Find a similar no. of failures 
with a smaller no. of tests)

P(fail) = f (input)

• Parsed cmd line input
• High dimensionality
• Batch generation

vs.

dtypes
Inferred Casting Preprocessor

Feature 0 “mixed” dtype('<U') “lists”
Feature 1 "mixed-integer-U" dtype('<U') “nominal_str”
…

Pandera: data validation
Data preprocessing

• Type inference (numpy)
• Type casting
• Detect column mismatch
• Error logging

• Data validation checks
• Hypothesis testing
• Data synthesis
• Custom row-based 

transformation

• More granular type 
inference

• Build preprocessor from 
schema 

• Resolve column mismatch


