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A B S T R A C T

This paper focuses on the state of health (SOH) estimation of lithium-ion batteries, which is critical for the
reliable operation of electric vehicles. First, a convolutional autoencoder (AE) and a recurrent AE are designed
to automatically extract health features (HFs), which are the low-dimensional mappings of the charging profiles
at different aging stages. This feature extraction method with two AEs can avoid the artificial definition of
HFs and the additional operation on the charging profiles. On this basis, an ensemble learning (EL) method
is proposed to improve the SOH estimation accuracy, which consists of a series of sequentially trained gate
recurrent unit (GRU) networks. This pattern of sequential training makes that the current GRU network can
focus on the poor-performing samples of the previous trained network. Finally, four battery datasets under
different cycling test conditions are used to verify the efficiency of the proposed SOH estimation method with
the two AEs and the EL. The experimental results reveal that the proposed method can provide accurate battery
SOH estimation, with the root mean square error and mean absolute error of Leave-One-Out cross validation
(LOO) are 1.04% and 0.77%.
1. Introduction

With the goal of peak carbon dioxide emissions and carbon neutral-
ity proposed in various countries, electric vehicles have attracted more
and more attention. Lithium-ion batteries have become the preferred
choice for electric vehicle power battery because of their high energy
density, long lifespan and high working voltage [1]. However, with
the increase of the running time of the battery, its performance will
inevitably decline, resulting in aging phenomena such as the decrease
of capacity and the increase of internal resistance [2]. Hence, the
accurate estimation of state of health (SOH) to reflect the aging status of
the battery is crucial to the rational use and replacement of the battery.
In addition, accurate state of charge (SOC) relies on the correction
of the maximum available capacity of the battery by the SOH, thus
ensuring safe and reliable operation of electric vehicles [3].

1.1. Literature review

At present, there are a variety of relevant estimation approaches
have been proposed, which can be roughly divided into three cate-
gories: empirical model-based methods, battery model-based methods,
and machine learning (ML)-based methods. Empirical model-based
methods are to obtain the battery life decay model by fitting the
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laboratory aging data. A set of models representing battery aging
characteristics in different cycles and calendars were established by
using interactive multiple model Kalman filter, and the most repre-
sentative model was selected [4]. Considering the interaction between
battery aging and electrothermal behavior, Ecker et al. [5] coupled the
impedance-based electrothermal model to the original aging model.
However, the accuracy of the empirical models are limited to the
conditions similar to the experimental data, so they are difficult to
apply to the real vehicle operation.

Battery model-based methods generally establish the battery model
at first, and then employ adaptive algorithms to identify the battery
aging parameters, and finally calculate the SOH. Common battery mod-
els include the equivalent circuit model (ECM) and the electrochemical
model (EM). In Ref. [6], the parameters such as resistance and capac-
itance which can reflect aging in the second-order ECM was estimated
by genetic algorithm (GA) in real time. Considering the influence of
aging parameters on the estimation accuracy of SOC, Song et al. [7]
adopted multi-scale extended Kalman filter to update SOC and the first-
order ECM parameters. However, accurate estimation of battery model
parameters depends on accurate SOC, which is directly related to the
available capacity of the battery and is generally difficult to obtain.
EMs are a class of models that can describe the internal reactions
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and characteristics of battery, such as Pseudo-Two-Dimensional (P2D)
model and single particle model (SPM) [8]. In Ref. [9], an SPM-
based degradation model was developed by including Solid Electrolyte
Interface (SEI) layer formation, which can quickly predict capacity
fade according to the cycle number and temperature. However, with
a series of nonlinear coupled partial differential equations, the high
computational difficulty and load of EM hinders its practicability.

ML-based methods get more attention because of their high pre-
cision and model independence characteristics [10]. The current ML-
based methods for SOH estimation are mainly divided into two steps.
First, the health features (HFs) that can reflect the aging degree are
extracted from the charging data, and then the mapping relationship
between these HFs and SOH is established. The reason for extracting
HFs is that the original charging sequence is too long to be directly used
as input, otherwise the large number of model parameters will lead to
inefficient calculation and easy over-fitting. Common HFs are extracted
from the following sources. At most, the geometric or statistical features
of the charging curves are selected as the HFs, such as the time stamp
when the voltage reaches the interval point [11], the slope of local
curve [12], sample entropy of voltage [13], etc. These features directly
reflect the differences of charging curves in different aging degree from
different angles. Second, the incremental capacity (IC) curve, obtained
by the differential of capacity to voltage, has been proved to clearly
show the capacity degradation [14]. In Ref. [15,16], the authors took
the positions of the equal-voltage spacing and the positions of the
peaks on the IC curve as HFs, respectively. Similar to the IC curve,
there is also the differential voltage (DV) curve [17]. Third, some
researchers also extracted the HFs from the voltage response curve
of pulse current [18,19]. In addition, a few researchers input the
original charging data directly into the designed model by increasing
the sampling interval [20]. After obtaining the HFs, the ML methods
are used to learn the nonlinear relationship between them and capacity.
Here, common ML methods for SOH estimation include support vector
machine (SVM) [21], Gaussian process regression (GPR) [22], and neu-
ral network (NN) [23]. Generally, these methods have strong nonlinear
mapping ability.

Although the above-mentioned researches have achieved good per-
formance in feature extraction and model design, there are still two
critical problems that can be improved. First, most of the existing
HFs are extracted manually, which often requires additional manpower
consumption, such as the IC curves that need to be smoothed by
filtering algorithms [15,16] and the impulse current response curves
that require additional operation on the battery [18,19]. Although
some HFs have been proved to be highly related to the battery aging
process, their adequacy and availability should be considered. For
example, the HFs extracted only from the voltage curves ignore the
influence of battery temperature on charging performance [24], and
the duration of constant current (CC) phase and constant voltage (CV)
phase requires complete charging data that is difficult to obtain in the
actual operation of the battery [25]. Therefore, a more reliable and
convenient HFs extraction method is needed. Considering that battery
aging is a time-related process, some researchers have applied gated
recurrent neural network (RNN) to the SOH estimation problem, this
is a neural network that can utilize past information to improve the
accuracy of current estimation [26]. In Ref. [27] and Ref. [28], an long
short-term memory (LSTM) network and a gate recurrent unit (GRU)
network were used to estimate SOH, respectively. As two extensions
of RNN, the GRU and LSTM have similar performance in improving
the long-term dependencies of RNN, but the structure of the former
is simpler than that of the latter. However, the performance of neural
networks is highly data-dependent, and the acquisition of battery aging
data is generally time-consuming and laborious. Therefore, to improve
the SOH estimation accuracy of the gated RNN under the condition of
limited number of samples is the second problem to be addressed in
2

this study. Ensemble learning (EL), a class of methods that integrates
multiple differential learners through a certain strategy to improve ac-
curacy and robustness, is a feasible solution for the proposed problem.
Shen et al. [29] trained eight convolution neural networks (CNN) and
employed a fully-connected ensemble layer to combine the capacity
estimates. In Ref. [30], the random forest was used to capture the
relationship between the extracted HFs and SOH. However, in these
bagging EL methods, the similar training sets and the independent
properties result in the base learners having similar variances and
biases, so their ensemble focuses more on reducing the estimation
variance rather than bias. In contrast, the boosting algorithms that can
effectively reduce the estimation bias should get more attention in the
SOH estimation problem. In addition, the base learners used by existing
EL methods cannot make full use of previous measurements to predict
the current SOH value.

1.2. Motivation and contributions

In order to solve the two problems mentioned above, this paper
proposes a combined SOH estimation method based on autoencoders
(AEs) and ensemble learning (EL). First, a convolutional AE (CAE) and
a recurrent AE (RAE) are designed to automatically extract HFs from
the partial charging voltage and temperature curves. Then, based on
the extracted HFs, an EL method using the GRU network as the base
learner is proposed to estimate the SOH. Finally, the proposed method
is validated by the Leave-One-Out cross validation and compared with
other existing SOH estimation methods. The main contributions of the
paper are elaborated below:

(1) The proposed AEs can automatically extract the low-dimensional
maps of the partial charging voltage and temperature profiles
as the HFs. Compared with the manual extraction methods, this
method avoids artificially defining HFs and does not require
additional operations on the charging profiles or the batteries.
The experimental results demonstrate that the extracted HFs can
be effectively used for SOH estimation.

(2) An EL algorithm is introduced to the GRU network, which
first gives weights to the original dataset, and then adjusts the
weights according to the results of the trained GRU network to
make the new GRU network focus more on the previous samples
with poor performance. In this way, the method can use the
limited number of samples to obtain a strong learner composed
of a set of distinct and associated GRU networks, thus improving
the accuracy of SOH estimation.

1.3. Organization of the paper

The structure of this paper is arranged as follows: Section 2 intro-
duces the dataset used in this paper and some processing procedures.
Section 3 describes two AEs for HFs extraction, namely CAE and RAE.
Section 4 presents the proposed AdaBoost algorithm-based EL method
for capacity estimation. Section 5 provides the experimental results and
discussion. Finally, the paper is summarized in Section 5.

2. Experimental data

2.1. Experimental data analysis

The experimental data used in this paper was obtained from the
National Aeronautics and Space Administration (NASA) battery aging
dataset, which records the experimental data of charge and discharge
experiments on a series of 18650 batteries.

Table 1 lists the detailed operational profiles of the batteries adopted
in this paper. It should be noted that the specific charging process
is divided into two stages, charging in a constant current (CC) mode
at 1.5 A until the battery voltage reached 4.2 V, and then continued

in a constant voltage (CV) mode until the charge current dropped to
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Table 1
The four batteries’ specific cycle condition.
Battery Charging cut-off

voltage (V)
Charging constant
current (A)

Discharging cut-off
voltage (V)

Discharging
constant current (A)

Temperature (◦C)

B0005 4.2 1.5 2.7 2 24
B0006 4.2 1.5 2.5 2 24
B0007 4.2 1.5 2.2 2 24
B0018 4.2 1.5 2.5 2 24
Fig. 1. The battery charging profiles and capacity degradation profiles. (a) Charging voltage curves of B0005. (b) Capacity degradation curves of the four batteries.
20 mA. Fig. 1(a) shows the partial charging voltage curves of B0005
under multiple cycles. It can be observed that as the number of cycles
increases, the time of the battery charging process in the CC phase
is gradually shortened, while the time in the CV phase is gradually
increased. In other words, the charging voltage curves are able to
reflect the aging process of the battery. Therefore, a large number of
researchers have adopted the charging data to estimate SOH [31]. In
contrast, the difference and complexity of discharge profiles restrict
their scope of application.

In this paper, we also intercepted part of the voltage curve (3.5 V–
4.2 V) of each cycle for research, and the difference of the curves in
this interval is obvious. Considering that temperature is an important
factor affecting charging performance, the charging voltage curves of
the same capacity may be different due to different temperatures.
Therefore, the temperature curves are also taken as part of the input.
The battery capacity is chosen as the prediction target and used to
calculate the SOH, the formula is as follows

𝑆𝑂𝐻 =
𝐶𝑁
𝐶0

× 100% (1)

where 𝐶𝑁 and 𝐶0 are the battery capacities for the current cycle and
the initial cycle, respectively. The capacity degradation curves of the se-
lected four batteries are shown in Fig. 1(b). It should be explained that
the capacity degradation process does not show a smooth downward
trend, which is due to the phenomenon of local capacity regeneration.

2.2. Experimental data processing

After selecting the aging data, the authors processed them as fol-
lows. First of all, the sampling intervals of the original charging curves
are not uniform. In order to avoid the negative effects on the subse-
quent model used to process the sequences, the linear interpolation
method is applied to distribute the data evenly. Second, the aging
experimental data the aging samples have the characteristics of small
number and long sequence, which makes the model prone to over-
fitting in the training process. Therefore, the data augmentation tech-
nology is adopted in this paper. Specifically, the long input sequence
is sampled at equal intervals into three short sequences and reordered.
Since the input and output of the autoencoder are the same, the original
3

Fig. 2. The structure of a simple autoencoder.

pair of input and output can be expanded into 3 × 3 groups, which facil-
itates the autoencoder to extract more representative HFs. Finally, the
data is normalized to eliminate the influence of different measurement
units and speed up the learning rate of the neural network.

3. Health features extraction

3.1. Autoencoder

As an unsupervised learning neural network, the autoencoder (AE)
can automatically learn the effective coding from a set of data, which is
often used to reduce data dimensionality or extract features [32]. The
AE generally consists of an encoder and a decoder, and its structure is
shown in Fig. 2. For a set of D-dimensional samples 𝑥(𝑛) ∈ 𝑅𝐷, 1 ≤ 𝑛 ≤
𝑁 , the encoder 𝐹 is responsible for mapping them to the feature space
to get the coding of each sample 𝑧(𝑛) ∈ 𝑅𝑀 , 1 ≤ 𝑛 ≤ 𝑁 , as shown in
Eq. (1). On the contrary, the decoder 𝐺 reconstructs the coding from
the encoder to the original samples 𝑥′(𝑛), as shown in Eq. (2). Therefore,
the learning goal of the AE is to minimize the refactoring error 𝜏, as
shown in Eq. (3). After completing the training of AE, the decoder is
generally removed and the output of the encoder is used as the input
of the next step.
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Table 2
Specifications of the CAE architecture.

Type Layer Input Kernel
number

Step size Output

C 2 × 512 16 4 16 × 128
P 16 × 128 2 – 16 × 64
C 16 × 64 16 2 16 × 32

Encoder P 16 × 32 2 – 16 × 16
C 16 × 16 32 1 32 × 16
P 32 × 16 2 – 32 × 8
C 32 × 8 32 1 32 × 8
P 32 × 8 2 – 32 × 4

TC 32 × 4 32 2 32 × 8
Decoder TC 32 × 8 16 2 16 × 16

TC 16 × 16 16 4 16 × 64
TC 16 × 64 2 8 2 × 512

C = Convolutional layer, P = Maxpooling layer,
TC = Transposed Convolution layer.

𝑧(𝑛) = 𝐹 (𝑥(𝑛)) (2)

𝑥′(𝑛) = 𝐺(𝑧(𝑛)) (3)

𝜏 =
𝑁
∑

𝑛=1
‖𝑥(𝑛) − 𝑥′(𝑛)‖2

=
𝑁
∑

𝑛=1
‖𝑥(𝑛) − 𝐺(𝐹 (𝑥(𝑛)))‖2

(4)

Obviously, if the dimension 𝑀 of the feature space is smaller than
that of the original data 𝐷, the AE can be regarded as a method of fea-
ture extraction. Based on this point, this paper selects AE as the feature
extractor to extract effective health features from the charging data,
and then use these health features to estimate SOH. It should be pointed
out that the hidden layers of simple AE are all fully connected layers.
Considering that the charging data are time-based series and compared
with ordinary fully connected neural networks, one-dimensional CNN
and RNN are adept at dealing with such sequence data. Therefore, we
separately designed a convolutional autoencoder (CAE) and a recurrent
autoencoder (RAE) to extract health features.

3.2. Structure of the CAE network

Convolution neural network (CNN) is a deep neural network with
the characteristics of local connection and weight sharing. Compared
with fully connected neural networks, CNN can efficiently find features
in large-scale data with fewer parameters, so it is widely used in
image processing [33]. Similarly, the characteristics of CNN make it
particularly effective for sequence processing, where time can be seen
as a spatial dimension. For one-dimensional convolution operation,
each output 𝑦𝑖 of the convolution kernel 𝑤 is defined as

𝑦𝑖 = 𝑓 (𝑤⊗ 𝑥𝑖 + 𝑏)

= 𝑓 (
𝐾
∑

𝑘=1
𝑤𝑘𝑥𝑖,𝑘 + 𝑏)

(5)

where 𝑥𝑖 is the segment of length 𝐾 in the input sequence 𝑥 and 𝐾 is
the length of the convolution kernel, 𝑓 (⋅) is the non-linear activation
function, such as the ReLU function, ⊗ represents the convolution
operation, 𝑏 is the bias. Generally, 𝐾 is much smaller than the length
of the sequence 𝑥, so the feature sequence 𝑦 with definite length can
be obtained after selecting the appropriate step size. In fact, we can
design multiple convolution kernels to extract different features of the
sequence. In addition, a pooling layer is added generally after the
convolutional layer to reduce the feature dimension, so as to extract
prominent features.
4

Fig. 3. The architecture detail of GRU cell.

The proposed CAE replaces the original fully connected layers of AE
with one-dimensional convolution layers. For the convolution layer, the
main parameters include the length and number of convolution kernels,
step size and number of layers. Generally, the small convolution kernel
not only has a relatively small amount of computation, but also has
excellent performance, so smaller kernels and step size are designed in
the CAE. With the increase of the convolutional layer, the number of
convolution kernels can be appropriately increased to extract higher-
level features. In addition, considering the scarcity of samples, too
many feature parameters will lead to the over-fitting phenomenon
of the SOH estimation in the next step. Therefore, we appropriately
increase the number of convolutional layers and add pooling layers
to reduce the output dimension of the encoder. Correspondingly, the
decoder applies transposed convolution layers to perform the opposite
operation to the encoder. The detailed configurations of the designed
CAE architecture are shown in Table 2, and its encoder outputs 32
4-dimensional features.

3.3. Structure of the RAE network

Recurrent neural network (RNN) is a kind of neural network with
short-term memory ability, which is widely used in tasks such as speech
recognition and language modeling [34]. Compared with ordinary
fully connected neural network, its current output depends not only
on the current input, but also on past information, so it is adept at
solving time-related sequences. Furthermore, as a variant of RNN, gated
recurrent unit (GRU) network introduces gating mechanism to update
information, which solves the problem of gradient disappearance or
explosion in ordinary RNN [28]. As shown in Fig. 3, for a GRU unit,
it includes an update gate and a reset gate. The reset gate can control
whether the calculation of the candidate state ℎ′𝑡 depends on the state
of the previous moment ℎ𝑡−1, that is

ℎ′𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (6)

where 𝑥𝑡 is the input of the current moment, 𝑟𝑡 ∈ [0, 1]𝐷 is the reset
gate, 𝑊ℎ, 𝑈ℎ and 𝑏ℎ are the weight and bias matrices in the neural
network, respectively. ⊙ stands for vector element product operation,
tanh function can push the values to be between −1 and 1. The update
gate can control the amount of information that the current state ℎ𝑡
needs to obtain from the historical state ℎ𝑡−1 and the candidate state ℎ′𝑡
respectively, that is

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡)⊙ ℎ′𝑡 (7)

where 𝑧𝑡𝜖[0, 1]𝐷 is the update gate. The reset gate and the update gate
are generated as follows

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (8)
𝑧 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 ) (9)
𝑡 𝑧 𝑡 𝑧 𝑡−1 𝑧
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Table 3
Specifications of the RAE architecture.

Type Layer Input Units Step size Output

Rs 2 × 512 – 8 64 × 2 × 8
Encoder G 64 × 2 × 8 64 8 64 × 64 × 8

G 64 × 64 × 8 2 1 64 × 2

Rp 64 × 2 – 8 64 × 2 × 8
Decoder G 64 × 2 × 8 64 8 64 × 64 × 8

D 64 × 64 × 8 2 8 64 × 2 × 8
Rs 64 × 2 × 8 – 1 2 × 512

Rs = Reshape layer, G = GRU layer,
Rp = Repeat layer, D = Dense layer.

where 𝑊𝑟, 𝑈𝑟,𝑊𝑧, 𝑈𝑧 and 𝑏𝑧, 𝑏𝑧 are the weight and bias matrices in the
reset gate and the update gate. 𝜎(⋅) stands for Logistic function, and its
output range is 0 to 1. The structure of the GRU cell is shown in Fig. 3.

Similar to CAE, the proposed RAE replaces the original fully con-
nected layers with GRU layers. However, it is unreasonable to enter the
complete charging sequence into the RAE. Although GRU improves the
long-term dependence of RNN, its sequential calculation will still cause
the long sequence to lose the previous information. In other words,
entering the complete charging sequence directly will probably not get
the desired results. In addition, too long input sequences will seriously
increase the amount of calculation of the GRU layer. Therefore, we split
the original sequence into several segments, and the RAE compresses
them into several feature vectors. Here, we divide the original charging
sequence into 64 segments, and the dimension of each segment is (2, 8).
The detailed configurations of the designed RAE are shown in Table 3,
and its encoder outputs 64 2-dimensional features.

Remark 3.1. The original charging sequences are too long to be
directly used to estimate SOH, which is a challenge for SOH estimation.
Therefore, this paper applies the autoencoders to realize the automatic
extraction of HFs. Specifically, the designed CAE and RAE extract fea-
tures with dimensions (32, 4) and (64, 2) from the charging sequence
with dimensions (2, 512 × 3), respectively. The validity of the extracted
HFs is judged by the reconstruction error of the sequences, and their
value will be evaluated by the final SOH estimation results.

Remark 3.2. Compared with the ordinary autoencoder composed of
fully connected layers, both the designed CAE and RAE are not affected
by the sequence length. Specifically, the convolution kernels in the CAE
are applicable to the entire sequences, and the RAE is applicable to all
fragments of the sequences.

4. SOH estimation method

4.1. Ensemble learning

Ensemble learning (EL) is a kind of machine learning method that
integrates multiple models through a certain strategy to complete
learning tasks. Compared with a single model, EL generally has higher
accuracy and stronger robustness [35]. As one of the excellent strate-
gies, the Adaboost algorithm improves the accuracy of the EL by
increasing the difference of each weak learner. Specifically, in the pro-
cess of sequentially training the weak learners, the Adaboost algorithm
increases the weights of the samples that are incorrectly predicted by
the existing weak learners, so that the next weak learner can pay more
attention to them. In this paper, the input 𝑥(𝑛) and output 𝑦(𝑛), 1 ≤ 𝑛 ≤ 𝑁
re the extracted features and battery capacity respectively, and 𝑁 is
he number of samples. The steps of the algorithm are as follows, where

is the number of weak learners.

(1) Initialize the weights of the training samples

𝜔(𝑛) = 1 , 𝑛 = 1, 2,… , 𝑁
5

1 𝑁
(2) For 𝑘 = 1, 2,⋯ , 𝐾

a. Use the training set with sample weights 𝜔(𝑛)
𝑘 = 1

𝑁 , 𝑛 =
1, 2,… , 𝑁 to train the weak learner ℎ𝑘(𝑥)

b. Calculate the maximum error of the samples in the train-
ing set

𝐸𝑘 = max |𝑦(𝑛) − ℎ𝑘(𝑥(𝑛))|

c. Calculate the relative error of each sample

𝑒(𝑛)𝑘 =
|𝑦(𝑛) − ℎ𝑘(𝑥(𝑛))|

𝐸𝑘

d. Calculate regression error rate

𝜀𝑘 =
𝑁
∑

𝑛=1
𝜔(𝑛)
𝑘 𝑒(𝑛)𝑘

e. Calculate the weight of the weak learner ℎ𝑘

𝛼𝑘 =
𝜀𝑘

1 − 𝜀𝑘

f. Update the weights of samples

𝜔(𝑛)
𝑘+1 =

𝜔(𝑛)
𝑘
𝑍𝑘

𝛼
1−𝑒(𝑛)𝑘
𝑘

where

𝑍𝑘 =
𝑁
∑

𝑛=1
𝜔(𝑛)
𝑘 𝛼

1−𝑒(𝑛)𝑘
𝑘

(3) Constitute the strong learner 𝐻(𝑥)

𝐻(𝑥) =
𝑁
∑

𝑛=1
ln( 1

𝛼𝑘
)ℎ′(𝑥)

where ℎ′(𝑥) is the median of the weighted outputs 𝛼𝑘ℎ𝑘 of all
base learners.

.2. Structure of the GRU network

The principle of the GRU network has been introduced in Sec-
ion 3.3, and a GRU network that can accurately estimate the capacity
ased on the extracted health features is designed here. In this section,
set of hyperparameters was determined by combining the grid search
ethod and empirical tuning. They can be roughly divided into two

ategories, structural hyperparameters and training hyperparameters.
he hidden layers consist of three GRU layers, each with 128 units,
nd a dropout layer is added after each layer to prevent overfitting. The
utput layer is a fully-connected (Dense) layer with Sigmoid activation
unction, and its output range is 0–1. Compared with the structural
yperparameters, the training hyperparameters are easier to be deter-
ined. We used the root mean square error (RMSE) as the loss function,
hich is often adopted in regression problems. For the optimizer, the
dam optimizer can not only calculate efficiently but also adjust the

earning rate automatically. More detailed hyperparameters are shown
n Table 4.

emark 4.1. The scarcity of samples will limit the SOH estimation
ccuracy, which is another challenge for SOH estimation. The proposed
L method can update the weight of HFs according to the SOH esti-
ation results of the previous GRU network, so that the newly trained
RU network can focus on the samples with large errors. Therefore, the
ccuracy of the global SOH estimation can be improved by assembling
ultiple GRU networks with their own strengths.

emark 4.2. Considering that the aging process of the battery is also a
ime-related problem, so we again apply the GRU network as the base
earner for the Adaboost algorithm. In addition, the EL does not require
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Fig. 4. Framework of the SOH estimation using the proposed combined AEs and EL-GRU method.
Table 4
Hyperparameter settings of the GRU network.
Type Hyperparameter Value

Structure Number of GRU layers 3
Number of GRU units 128
Step size 2
Dropout 0.5

Training Learning rate 0.001
Batch size 256
Training epoch 200
Optimizer Adam
Loss function RMSE

the optimal hyperparameters of the GRU network, thus reducing the
time-consuming and tedious procedure of the SOH estimator design.

4.3. The framework of SOH estimation

The overall framework of the SOH estimation method proposed in
this paper is shown in Fig. 4, and the method can be divided into three
steps. First, local charging data are selected from the NASA dataset,
and processed such as data augmentation and normalization. Then,
two autoencoders, CAE and RAE, are designed to automatically extract
health features from the charging data. At last, an EL method based
on GRU network (EL-GRU) is established to estimate the capacity, and
then to obtain the SOH of the lithium battery.
6

5. Results and discussions

5.1. Network training and evaluation index

In this section, the performance of the proposed combined AEs and
the ELGRU method is validated and analyzed using Leave-One-Out
cross validation (LOO). Specifically, three of the four batteries are used
as the training set and the remaining one as the test set. The proposed
combined model is trained and tested four times so that each battery
is used to test the model. The result of LOO is the average of the four
test results. Meanwhile, the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE) are adopted to evaluate the performance of
the proposed method. They are defined as follows

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑥𝑖 − 𝑥′𝑖| (10)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

( 𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝑥′𝑖
)2
)

(11)

where 𝑁 is the sample size of the test set, and 𝑥𝑖 and 𝑥′𝑖 are the true
and estimated values, respectively.

5.2. Health features extraction with the CAE and RAE

In Section 3, we designed two autoencoders, the CAE and RAE,
which can extract 32 four-dimensional features and 64 two-dimensional
features respectively. Whether these features are representative and
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Fig. 5. Decoding results of the CAE and RAE for B0007 at cycles 1, 31, 61, 91, 121, 151. (a) CAE, (b) RAE.
Table 5
Decoding results of the CAE and RAE for four batteries.

Battery B0005 B0006 B0007 B0018 LOO

CAE MAE 0.00272 0.00255 0.00345 0.00252 0.00281
RMSE 0.00369 0.00367 0.00478 0.00533 0.00437

RAE MAE 0.00103 0.00111 0.00108 0.00114 0.00109
RMSE 0.00231 0.00323 0.00230 0.00396 0.00295

distinguishable will be verified in this section. The decoding results
of the two autoencoders for multiple cycles of the battery B0007 are
shown in Fig. 5. Obviously, the decoded temperature and voltage
curves can accurately track the original curves, the RMSE is less than
0.005. The detailed decoding errors of all the normalized charging
curves are shown in Table 5. The results indicate that the extracted
health features can be accurately reduced to charging curves by the
corresponding decoders. In other words, these features are able to
represent the charging curves.

For the features extracted by the CAE, the number of features is de-
termined by the number of convolution kernels in the last convolution
layer, that is, each convolution kernel is a feature extractor. There is
no clear correlation between these features, and each feature reflects a
local shape of the charging curves. For example, the features extracted
by the 5th and 15th convolution kernels are shown in Figs. 6(a) and
(b). It can be seen that the trend of the feature vectors extracted from
the same convolution kernel is similar, and the differences in specific
values are consistent with the aging trend. Different from the CAE, the
features extracted by RAE are still time-related sequences. The feature
sequences of the two dimensions were compared respectively, as shown
in Figs. 6(c) and (d). Obviously, the sharp rise of voltage in the early
stage and the voltage inflection point caused by the end of the CC
phase are both exhibited. When the voltage is in the CV phase, the
difference in the feature curve is caused by the continuous change of
temperature. In general, both the CAE and RAE designed in this paper
are able to extract distinguishable features from the charging curves of
different aging degrees. It should be noted out that whether the SOH
can be accurately estimated based on the extracted health features is
the main criterion to evaluate the validity of the features. Therefore,
we will estimate the SOH of four batteries based on these features in
Section 5.3.

5.3. SOH estimation with the EL-GRU network

After the features are extracted by the autoencoders, we will es-
timate the capacities of four batteries to verify the performance of
the proposed combined method in this section. In Section 4, we have
designed the GRU network as the base learner of EL. In addition, the
7

number of base learners was determined to be 10 and the learning
rate was 0.2 by comparing multiple groups of parameters in advance.
Based on the proposed method, the SOH estimation results and errors
of the four batteries are shown in Fig. 7. For the battery B0006, due
to its over-discharge operation, the upper and lower limits of capacity
far exceeds that of other batteries, as shown in Fig. 1. Therefore, the
estimation results of the 30th to 100th cycles (1.43 Ah–1.87 Ah) are
intercepted here, as shown in Fig. 7(b). It can be seen that the pro-
posed combination method can accurately track the trend of capacity
degradation.

The results show that the proposed combined AEs and the EL-GRU
method can accurately estimate the SOH, and the RMSE and MAE of
LOO are 1.04% and 0.77%. By observing the SOH prediction results
and errors of B0005 and B0007, it is easy to find that large errors often
occur in the place of capacity regeneration. The reason is that the base
learner of EL, the GRU network, takes the previous results as part of the
current input. When the capacity jumps unexpectedly, the continuity of
the input sequence disappears, and the network is delayed due to the in-
fluence of past information. Nevertheless, the maximum error between
the two batteries is still less than 3.2%, and the downward trend of SOH
can be tracked after the capacity regeneration. The capacity downward
trend of B0006 and B0018 fluctuate more frequently and violently than
that of B0005 and B0007, so the errors are relatively larger, with the
maximum errors less than 5% and 6%. In addition, the rapid aging of
B0006 shows that the study of SOH has important guiding significance
for the rational use and life extension of Lithium-ion batteries.

5.4. Comparisons

In order to verify the superiority of the proposed combined method,
this section compared it with two other methods, including the GRU
network and the EL-GRU network using the manually extracted HFs
(labeled as EL-GRU2). The GRU network uses the same HFs as the EL-
GRU network. The HFs used by EL-GRU2 network are the timestamps
of the equal interval voltages. The comparison of the training results
of B0005 is shown in Fig. 8. It can be observed that, compared with
the GRU network, the EL-GRU network can re-fit the downward trend
of SOH more quickly after capacity recovery occurs. The test results
of the three methods for B0005 are shown in Fig. 9, and a detailed
comparison of their SOH predictions for the four batteries is shown in
Table 6. The results show that the introduction of EL method effectively
improves the estimation accuracy of the GRU network, and reduces the
RMSE and MAE of LOO from 1.59% and 1.27% to 1.04% and 0.77%.
It is also demonstrated that for the SOH estimation, the HFs extracted
using the AEs outperform the manually extracted HFs.

Meanwhile, the authors also lists the SOH estimation results of the
LSTM network in Table 6. The results show that the GRU and LSTM,



Journal of Energy Storage 55 (2022) 105708J. Wu et al.
Fig. 6. Health features extracted from B0007 by the CAE and RAE. (a) The 5th feature extracted by CAE. (b) The 15th feature extracted by CAE. (c) The 1st dimension features
extracted by RAE. (d) The 2nd dimension features extracted by RAE.
Table 6
Comparison of SOH estimation for four batteries using the proposed method and other methods.

Features source Model B0005 B0006 B0007 B0018 LOO

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CAE + RAE EL-GRU 0.74% 0.92% 0.70% 1.11% 0.40% 0.59% 1.22% 1.53% 0.77% 1.04%
Charge curves EL-GRU 2.27% 2.90% 2.45% 2.63% 1.18% 1.47% 1.31% 1.74% 1.80% 2.19%
CAE + RAE GRU 1.54% 1.73% 1.03% 1.54% 0.57% 0.74% 1.94% 2.35% 1.27% 1.59%
CAE + RAE LSTM 1.53% 1.80% 1.21% 1.64% 0.68% 0.88% 1.89% 2.47% 1.33% 1.70%
Charge curves GPR 0.80% 0.96% 1.65% 1.67% 1.21% 1.29% 2.26% 2.28% 1.48% 1.55%
IC curves SVM 5.21% 1.94% 4.71% 2.16% 4.36% 1.53% – – 4.76% 1.88%
IC curves WNN 1.81% – 1.61% – 1.53% – 1.67% – 1.66% –
as two extensions of RNN, have similar accuracy in SOH estimation.
Compared with LSTM, the GRU has a simpler structure and fewer
parameters, and has higher computational efficiency in theory. How-
ever, the decline of battery capacity is slow, and the SOH is generally
estimated only once after a long interval, such as a charge–discharge
cycle. Therefore, without considering the calculation rate, both the
GRU and LSTM can be selected as the base learners of the EL method
proposed in this paper. In addition, we also compared the estimation
results of the EL-GRU network with the WNN [23], GPR [36], SVM [21]
to prove its superiority in estimation accuracy. It should be noted that
a large number of literatures use the local aging data of one battery
for training and the rest as a test set, while this paper is devoted to
predicting the complete aging trend of one battery.

6. Conclusions

A new SOH estimation method has been proposed in this paper by
combining two AEs and an EL method. With this method, the health
8

features are first automatically extracted from voltage and temperature
charging curves by the CAE and RAE, then the ELGRU is designed
to estimate the capacity, and finally the SOH is obtained. To verify
the performance of the proposed combined method, four batteries
from the NASA dataset are used for training and testing, respectively.
Experimental results indicate that the proposed method can accurately
estimate the SOH with the RMSE and MAE of LOO are 1.04% and
0.77%. With the proposed method, we neither need to artificially
calculate and screen health features, nor need to carefully design the
parameters of the GRU network, which are often time-consuming and
laborious. Based on the above, this method may have a broad applica-
tion prospect in practice. Especially with the development of chip and
vehicle networking, further hardware support and data support will be
provided for the real vehicle application of such data-driven methods.

In future work, the effects of ambient temperature and battery
discharge conditions on SOH estimation will be considered. Further-
more, lightweight autoencoders and base learners will be introduced
to facilitate the application of the proposed method in real vehicles.
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Fig. 7. SOH estimation results of the ELGRU network for four batteries. (a) B0005, (b) B0006, (c) B0007, (d) B0018.
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Fig. 8. Training results of B0005 using the EL-GRU network and the GRU network.

Fig. 9. Text results of B0005 using the three methods, including the EL-GRU, GRU
and EL-GRU2.
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