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Motivated by the need to perform large-scale kinetic Monte Carlo (KMC) simulations, in the context of unravelling complex phenomena such 
as catalyst reconstruction and pattern formation, we extend the work of Ravipati et al. [Comput. Phys. Commun., 2022, 270, 108148] in 
benchmarking the performance of a distributed-computing, on-lattice KMC approach. The latter, implemented in our software package 
Zacros, combines the graph-theoretical KMC framework with the Time-Warp algorithm for parallel discrete event simulations, and entails 
dividing the lattice into subdomains, each assigned to a processor. The cornerstone of the Time-Warp algorithm is the state queue, to which 
snapshots of the simulation state are saved regularly, enabling historical KMC information to be corrected when conflicts occur at subdomain 
boundaries. Focusing on three model systems, we highlight the key Time-Warp parameters that can be tuned to optimise performance. The 
frequency of state saving, controlled by the state saving interval, δsnap, is shown to have the largest effect on performance, which favours 
balancing the overhead of re-simulating KMC history with that of writing state snapshots to memory. Also important is the global virtual time 
(GVT) computation interval, ∆τGVT, which has little direct effect on the progress of the simulation but controls how often the state queue 
memory can be freed up. We also find that pre-allocating memory for the state queue data structure favours performance. These findings will 
guide users in maximising the efficiency of Zacros or other distributed KMC software, which is a vital step towards realising accurate, meso-
scale simulations of heterogeneous catalysis.

1 Introduction
On-lattice kinetic Monte Carlo (KMC) is widely used to study
the dynamics of physico-chemical processes of complex materi-
als, among them heterogeneous catalysts.1–12 It treats adsorp-
tions, desorptions, diffusional hops and elementary reactions as
discrete events with pre-parameterised rate constants, which are
typically calculated using transition state theory (TST)13,14 com-
bined with density functional theory (DFT).15 Inasmuch as these
approaches are valid and appropriate for the system under study,
dynamical properties calculated with KMC are expected to be ac-
curate.16

KMC simulations can tackle much longer physical time scales
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than methods like molecular dynamics, which require the trajec-
tory of each atomic nucleus to be simulated explicitly. This in-
cludes fast vibrational motion, which is time consuming to simu-
late as it limits the time step to the fs scale.17 In contract, the
barrier crossing events which are the building blocks of KMC,
corresponding to, e.g., elementary chemical reactions, occur on
a time scale up to ms. Still, for simulating large (meso-scale)
lattices, motivated by the need to capture phenomena such as
pattern formation on catalytic surfaces,18 the computational time
and memory required for KMC are large enough to preclude serial
calculations from being practically feasible. For instance, in the
spiral wave patterns observed by Nettesheim et al. 19 , the smallest
wave-length is about 10 µm, corresponding to more than 25,000
atomic diameters, with the spiral pattern itself spanning more
than 106 atomic diameters. KMC simulations to understand the
fundamentals underpinning such phenomena would require lat-
tices with a number of sites on the order of hundreds of thou-
sands to billions, which are intractable with serial algorithms.
On the other hand, distributed-memory parallelisation of KMC
codes based on domain decomposition is complicated by the in-
herently sequential nature of the underlying algorithm. Put sim-
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ply, events that are executed in one area of the lattice can enable,
prevent, or change the propensities of subsequent events occur-
ring in other areas of the lattice. Naive attempts to decompose
the lattice into independent subdomains are therefore plagued by
violations of causality.20 Thus, one can either resort to sophis-
ticated controlled-error approximations,21,22 or attempt to deal
with such causality violations in an exact way, potentially at the
cost of algorithmic complexity.

Following the second option for exact distributed KMC simu-
lations, one can broadly identify two viable strategies, both are
based on the basic principle that if event A causes event B, then
event A must be executed before (in real-time terms) event B.
The ‘conservative’ strategy is not to tolerate any errors, for in-
stance by necessitating that a given event is executed only when
the local KMC time, tKMC, is less than or equal to that in each of
the neighbouring subdomains.23 While conceptually straightfor-
ward, the conservative strategy often suffers from poor scaling, as
it is limited by the worst-case scenario—a subdomain may be left
idle even when its future events would not lead to any causality
violation.24

The other, ‘optimistic’ strategy is to allow errors (i.e., bound-
ary conflicts) to occur but correct them retroactively, for instance
via rollback and re-simulation.24–26 A number of different ex-
act optimistic algorithms have been proposed. These notably in-
clude Lubachevsky and co-workers’ synchronous relaxation (SR)
algorithm,26–28 and variations thereof, such as optimistic syn-
chronous relaxation (OSR),29 and optimistic synchronous re-
laxation with pseudo-rollback (OSRPR).30 To summarise these
methods in brief, the simulation progresses in chunks or ‘cy-
cles’, at the end of each of which it is ensured that the sub-
domains are synchronised by means of global communications
and conflict resolution. This reliance on global operations lim-
its the scalability of such algorithms.30 To overcome this, Shim
and Amar 28 proposed the semi-rigorous synchronous sublattice
(SL) algorithm,28 which scales very favourably but sacrifices ex-
actness of KMC propagation.30 An alternative, exact optimistic
approach—that does not rely on global operations—is exempli-
fied by Jefferson’s ‘Time-Warp’ algorithm, which allows the subdo-
mains to evolve completely asynchronously. Boundary events are
detected as they occur and communicated between neighbouring
subdomains, prompting rollbacks and re-simulations on a local
basis when necessary to resolve conflicts.25

Recently, Ravipati et al. 31 coupled the Time-Warp algorithm
with the graph-theoretical KMC (GT-KMC) framework of Sta-
matakis and co-workers, in which the lattice is represented as a la-
belled, undirected graph.32,33 Compared to traditional on-lattice
KMC, GT-KMC has the advantage that complex chemistries—
involving multidentate species and intricate surface geometries—
are treated just as naturally as simpler chemistries. Additionally,
GT-KMC can capture coverage-effects, i.e. the influence of lateral
interactions between spectators and reactants on the rates of ele-
mentary reaction events. Thus, the implementation of the Time-
Warp algorithm in Zacros, our GT-KMC software package, con-

stitutes the first validated,* general-purpose KMC code with dis-
tributed computing capabilities.31 An overview of the algorithm
is given in section 2.

The Time-Warp algorithm, like other domain decomposition
schemes, enables statistically meaningful KMC simulations of spa-
tially extended systems, particularly those exhibiting large-scale
spatial inhomogeneities. While it is beyond the scope of the
present study, we note that there is nothing to prevent one from
using the Time-Warp algorithm in combination with other ap-
proaches to KMC acceleration that address different sources of
computational expense. For example, Zacros includes a proce-
dure for kinetic downscaling of fast, quasi-equilibrated reactions,
along the lines of similar methods proposed in Refs. 34–36. Un-
like the Time-Warp algorithm, kinetic downscaling is an approx-
imation and the magnitude of the error it introduces is difficult
to estimate a priori.37 Moreover, as an alternative to domain de-
composition, the KMCLib software package of Leetmaa and Sko-
rodumova 7 applies MPI parallelisation to process-site matching
and rate constant evaluation, which is highly effective for systems
with dense, three-dimensional lattices and long-range energetic
interactions.7 Since Zacros supports only two-dimensional lat-
tices, we expect domain decomposition to scale more favourably.

The efficiency of our distributed KMC implementation relies
upon a favourable balance between the speedup due to increased
processing power (relative to serial simulations) and the over-
head carried by communication and conflict resolution at the
subdomain boundaries. For systems with fast diffusion and/or
long-range lateral interactions among adsorbates, this overhead
is expected to be substantial, as a significant fraction of CPU time
will be spent re-simulating (and correcting) KMC history. Prelim-
inary benchmarks carried out by Ravipati et al. 31 showed that
distributed parallelisation outperforms serial simulation for suffi-
ciently large lattices, although the magnitude of the speedup is
strongly system-dependent. In particular, the authors studied the
scaling behaviours of two toy models of reversible CO adsorp-
tion. The models are differentiated by the factor responsible for
coupling between subdomains:

• System 1 involves CO∗ diffusion, but no lateral interactions;

• System 2 involves nearest-neighbour lateral interactions
among CO∗, but no diffusion.

In weak-scaling benchmarks, where the number of sites nsites and
the number of processing elements (PEs) nPE are increased pro-
portionally, System 1 displayed an initial drop in speed relative to
serial simulations (see Fig. 6(d) of Ref. 31). This was attributed
to the overhead of resolving conflicts by way of the Time-Warp
algorithm. However, the relative impact of conflict resolution
was found to lessen as the system size increased, leading to a
considerable, but sub-linear, speed-up relative to serial simula-
tions. Interestingly, parallelisation of System 2 displayed much
more pronounced, super-linear, speed-ups (see Fig. 6(e) of Ref.
31). This was explained by noting that the simulation bottleneck

* Validation of the Time-Warp implementation is achieved by verifying that it produces
results identical to those of a ‘parallel-emulation’ serial algorithm. 31
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is the computation of lateral energetic interactions, which is nec-
essary to update the reaction rates and is decoupled from Time-
Warp related operations. The weak-scaling results for distributed
runs of both systems are reproduced in Fig. S1 of the ESI.†

Similar considerations were found to be relevant to strong-
scaling benchmarks (fixed nsites with increasing nPE).31 There,
parallelisation of System 1 again effected an initial drop in speed,
but was found to become beneficial when the number of proces-
sors exceeded 100 (see Fig. 7(d) of Ref. 31). In contrast, paralleli-
sation of System 2 led to appreciable speed-ups with only nPE = 9
(see Fig. 7(e) of Ref. 31). In both cases, the strong-scaling effi-
ciency eventually plateaus, as the relative area of the halo regions
(see Section 2) increases and the cost of conflict resolution starts
to dominate. These conclusions were further validated in Ref. 31
(Fig. 8 therein) by means of strong-scaling benchmarks of a more
realistic system representing CO oxidation dynamics on Pd(111).

The preliminary benchmarks of Ref. 31 thus demonstrated that
distributed parallelisation can be successful in improving simula-
tion efficiency. However, the performance of the Time-Warp algo-
rithm relies upon fine-tuning a number of user-controlled param-
eters, and further investigations are necessary to understand the
interplay of these parameters and their effects on the net rate of
KMC-time advancement. These considerations comprise the fo-
cus of the present study. Aside from the number of processing
elements (PEs), nPE, which we assume to be fixed over the course
of a distributed run, four relevant parameters are identified. All
of them pertain to the state queue (stateQueue), into which KMC
state snapshots are stored at regular intervals (see Section 2):

• the type of data structure used to store stateQueue—
currently, linked list and vector data structures are imple-
mented (see Section 2);

• the amount of memory allocated to stateQueue on each PE;

• the KMC state saving interval, δsnap, measured in terms of
locally executed KMC events between each saved snaphot;

• the GVT computation interval, ∆τGVT, measured in real time
units (this concerns stateQueue because obsolete states can
be safely deleted after each GVT computation in order to
free up memory; see Section 2).

To further simplify things, we assume the memory allocated to
stateQueue to be fixed according to the limitations of the available
hardware, thus its effect is not investigated further in this paper.†

Crucially, changing any of the parameters above has no effect on
the results of the simulation, which depend solely on the initial
conditions and the (pseudo-)random numbers used to schedule
KMC events.

The rest of the paper is structured as follows: in Section 2,
we provide a brief overview of the distributed GT-KMC approach,
then in Section 3, we describe the performance benchmarks car-
ried out thereof. The results of these benchmarks are presented
and discussed in Section 4, and Section 5 concludes the paper.

† The internal structure sizes in Zacros have been hand-optimised to make best use of
the available memory. A way to automate this is currently under development.

2 Overview of distributed GT-KMC
Full details of the Time-Warp algorithm as applied to GT-KMC
are given in Ref. 31. Here we give just an overview of the key
components.

Suppose the lattice to be simulated contains NC
α and NC

β
unit

cells tiled along the unit cell vectors α and β , respectively (dis-
tributed simulations of irregular, custom-built lattices are not yet
supported in Zacros). We divide the NC

α ×NC
β

simulation lattice

into MP
α × MP

β
subdomains, each containing SZ × SZ unit cells,

such that

NC
α = MP

α ·SZ

NC
β
= MP

β
·SZ.

(1)

Note that the requirement for the subdomains to be equally sized,
with an equal number of unit cells along each direction, is an im-
plementation choice rather than a fundamental property of the
Time-Warp algorithm; see Ref. 31 for a more detailed discussion
of this point. Each subdomain is assigned to a different process-
ing element (PE), of which there are nPE = MP

α ×MP
β

. However,
in addition to the sites within its assigned subdomain, each PE
also keeps track of a ‘halo’ region surrounding that subdomain.
This region contains lattice sites lying within a system-dependent
width ω of the boundary, which belong to neighbouring subdo-
mains. The code ensures ω is large enough to account for possible
couplings across the boundaries due to reactions, lateral interac-
tions and/or multidentate adsorbates.31

At every KMC step, all possible elementary events associated
with a given subdomain are stored by the associated PE in a
process queue (procQueue).31 In the graph-theoretical formalism,
such elementary events are identified by solving subgraph isomor-
phism problems as outlined in Ref. 32. Their inter-arrival times
are generated as exponential deviates with rate parameters equal
to their rate constants, which are estimated using standard Eyring
transition state theory (TST).13,14 The environment-dependent
activation energies are approximated by Brønsted-Evans-Polanyi
(BEP) equations, which are linear correlations between activa-
tion energy and reaction energy.38 The latter is parameterised
by means of a cluster expansion (CE) Hamiltonian that encodes
the energy of the adlayer and can thus be used to compute the
energy difference between the final versus initial state of a reac-
tion.39,40 Computing the effects of lateral energetic interactions
thus boils down to solving more subgraph isomorphism prob-
lems, but where the query graphs correspond to energetic pat-
terns (clusters) rather than reaction patterns.33

During KMC propagation, each PE independently calculates
rate constants and executes processes pertaining to its own sub-
domain. Care is required when the impact of an event spills
over into the halo region, either directly affecting the coverage
therein or introducing/eliminating energetic clusters that could
affect activation energies. Such ‘boundary events’ must be com-
municated to the PEs which manage the impacted neighbouring
subdomains. This is achieved by means of messages,25 which
are stored by both the sending and receiving PEs in a message
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queue (messgQueue), and instruct the receiving PE to schedule
the boundary event appropriately in its own procQueue.31

Complications arise when the time-stamp, tmessage, of a mes-
sage received by a PE is less than the current KMC time in its sub-
domain, i.e. the message instructs the PE to execute an event in
the past. This constitutes a violation of causality, which can only
be resolved by ‘rolling back’ in time25 and re-simulating KMC
history. Furthermore, ‘un-doing’ previously executed boundary
events and simulating new ones in the process of ‘correcting’ the
history of the affected subdomain might trigger further violations
(conflicts), which in turn might give rise to even more, and so on.
Thus, the worst-case scenario involves a cascade of conflicts that
propagates throughout the entire lattice.31

To make it feasible for the PEs to deal with this on a local
level (i.e., avoiding the need for global synchronisation), snap-
shots of the local KMC state are saved by each PE to a state
queue (stateQueue) at regular intervals of δsnap KMC steps. This
state-saving is a core component of the Time-Warp algorithm,
as it enables a PE to roll-back to a KMC state with time-stamp
tstate < tconflict

message (where tconflict
message corresponds to the message that

triggered the conflict). Any messages that were sent by the PE
after tconflict

message are no longer valid and must be undone by sending
corresponding ‘anti-messages’, which instruct PEs to delete the
invalid messages from their messgQueues.25 The PE can then be-
gin ‘rollback propagation’, which re-simulates the original KMC
timeline until tconflict

message, at which point the pertinent (conflict-
triggering) message can finally be acted upon.31 The key ele-
ments of the Time-Warp algorithm are illustrated in Fig. 1.

Note that, if one was able to save KMC state snapshots after
every KMC event, no rollback propagation would be necessary.
However, this is infeasible in practice; KMC states are saved af-
ter several KMC events, and thus, having a saved KMC snapshot
available just before the conflict-triggering message is typically
unlikely. Note also that, when a rollback occurs in Zacros, the
entire state of the simulation is restored, including the adjustable
parameter δsnap (see the discussion of stateQueue sparsification in
Section 4.1).

The snapshots of the system saved to each stateQueue can oc-
cupy large amounts of memory and may need to be accessed fre-
quently, so it is pertinent to consider the most appropriate data
structure for this purpose. Currently, linked list and vector data
structures are implemented in Zacros. In the linked list, the nodes
(kmc_state objects) are not necessarily stored contiguously in
memory, rather each node points (‘links’) to the next in the se-
quence. This means that memory can be allocated and deallo-
cated as needed each time a snapshot is saved or deleted. In con-
trast, the vector has a fixed number of slots in a one-dimensional
array of type kmc_state, plus an additional one-dimensional ar-
ray for indexing purposes. The memory thus needs to be allocated
once and for all at the start of the simulation.

Whichever data structure is chosen, to avoid exhausting the
memory available, it is also important to have a robust protocol
by which PEs can delete any snapshots that are no longer needed.
This leads naturally to the concept of global virtual time (GVT),
tglob, which is defined as the minimum among all the KMC times
and time-stamps of buffered messages (i.e., those sent but not yet

Fig. 1 Schematic of procedures used to resolve causality violations among
multiple PEs in the Time-Warp algorithm. KMC timelines are represented
by orange stripes, with black rounded squares representing saved snap-
shots of the simulation state. Black and red circles represent sent and
received (anti-)messages, respectively, with each message indicated by a
solid arrow and each anti-message by a block arrow. A dashed outline
indicates of an (anti-)message that it is received ‘in the past’ and there-
fore triggers a rollback. In (a), PE 2 receives a message from PE 3 with
timestamp t5, which violates causality. In (b), PE 2 performs a rollback,
reinstating the simulation state saved at t4 then re-simulating history un-
til t5. PE 2 also sends an anti-message corresponding to the previously
sent message at t6, which is received by PE 1. Since this anti-message
also violates causality, in (c), PE 1 reinstates the simulation state saved
at t3 then re-simulates history until t6.

acted upon) across all PEs.25 On each PE, the earliest KMC state
that could need to be reinstated to restore causality is the last
one saved with a time-stamp tstate = tGVT−

state < tglob. All those with
tstate < tGVT−

state are obsolete can can be safely deleted. Likewise, any
obsolete messages may be deleted from messgQueue. In practice,
tglob is calculated by means of a global communication event at
regular clock-time intervals of ∆τGVT. Knowledge of tglob is also
used to decide when to terminate the simulation.31

3 Details of benchmarks
Having discussed the main features and procedures of the im-
plementation of Time-Warp within GT-KMC, we now proceed to
discuss the performance benchmarks thereof.

3.1 Systems studied

The present benchmarks focused on three systems. Physically,
Systems 1 and 2 are highly idealised and differ only in the factor
responsible for coupling between subdomains. As described in
Ref. 31, System 1 models reversible CO adsorption on a square
lattice, with one site per unit cell. The adsorbed CO molecules do
not interact with one another and are allowed to diffuse between

4 | 1–11Journal Name, [year], [vol.],



Table 1 Rate constants of elementary events and energetic interaction
parameters for Systems 1 and 2.

System kads
(
s−1) kdes

(
s−1) kdiff

(
s−1) εsite (eV) εCO∗ (eV)

1 1.0 1.0 10.0 0.0 0.0
2 1.0 1.0 0.0 0.0 0.1

nearest-neighbour sites. The elementary steps involved are:

CO+∗
kads−−⇀↽−−
kdes

CO∗ (2)

CO∗+∗
kdiff−−→ ∗+CO∗ (3)

System 2 is the same aside from two key differences: surface dif-
fusion is forbidden (i.e., kdiff = 0) and a repulsive interaction ex-
ists between CO molecules adsorbed on nearest-neighbour lattice
sites. The rate constants and energetic interaction parameters for
each system are given in Table 1. In both cases the external tem-
perature and pressure are set to 500 K and 1 bar, respectively. If
neither the diffusion of System 1 nor the lateral interactions of
System 2 were present (i.e., if kdiff = 0s−1,εCO∗ = 0eV), the par-
allelisation would be trivial as there would be no coupling among
subdomains and therefore no boundary conflicts.

Our final system is based on the ‘Brusselator’ model of chemical
oscillations41 and entails the following elementary steps:42

X+∗
kX

ads−−⇀↽−−
kX

des

X∗ (4)

X∗+B
k1−−⇀↽−−

k−1
Y∗+D (5)

2X∗+Y∗ k2−−→ 3X∗ (6)

X∗+∗
kX

diff−−→ ∗+X∗ (7)

Y∗+∗
kY

diff−−→ ∗+Y∗ (8)

X∗+Y∗ kXY
diff−−→ Y∗+X∗ (9)

We will refer to this as System 4, in order to be consistent with the
numbering convention of Ref. 31, in which ‘System 3’ was used to
refer to a realistic model of CO oxidation on Pt(111). Similarly to
Systems 1 and 2, the lattice of our ‘Brusselator’ variant is chosen
to be square, with one site per unit cell. The adlayer is assumed to
be ideal (no lateral interactions), and the rate constants are given
in Table 2. We have chosen this system because it exhibits oscilla-
tory dynamics, as well as complex and long-range spatiotemporal
pattern formation, namely rotating spiral waves. This will gen-
erate strong, causal relationships between events spanning the
entire simulated domain, thereby constituting a demanding test
of the efficiency of our Time-Warp implementation. Unlike Sys-
tems 1 and 2, the dynamics of System 4 are spatially inhomo-
geneous, so we expect the computational load to be shared un-
evenly among PEs. This property makes System 4 the most rep-

Table 2 Rate constants of elementary events for System 4.

Rate constant Value
(
s−1)

kX
ads 0.7

kX
des kX

ads/0.91
k1 9.0

k−1 0.6
k2 3.8

kX
diff 400.0

kY
diff 4.0

kXY
diff 400.0

resentative of ‘real’ systems for which one might wish to employ
distributed parallelisation, since one cannot faithfully capture the
inhomogeneity without simulating a sufficiently large lattice.

3.2 Simulation details
Our choice of performance metric is the elapsed clock time per
unit of KMC time,

τ
∗ =

τclock
tKMC

. (10)

In practice, τ∗ was estimated from the final KMC time recorded
during a fixed clock-time interval (1 hour for Systems 1 and 2, 3
hours for System 4). It was important to ensure that the bench-
mark simulations progressed under stationary conditions, such
that the rate of event execution would remain roughly constant.
This way, the KMC time would advance roughly linearly with
clock time, establishing τ∗ as a meaningful performance metric.
Steady states of Systems 1 and 2 were prepared by running a
long simulation of each system on a 100×100 lattice. These were
then tessellated (tiled) as needed to generate initial state input
for the 200×200 and 1200×1200 lattices employed in our bench-
marks, with each PE assigned one 100× 100 subdomain giving
nPE = 4 and nPE = 144, respectively. These were both used as data
points in the weak-scaling benchmarks of Ref. 31 (see Fig. S1
of ESI†). The crude approach to upscaling used for Systems 1
and 2 is justified by their spatially homogeneous dynamics. On
the contrary, System 4 exhibits pattern formation on mesoscopic
length scales, thus an appropriate initial state for System 4 was
prepared by explicitly simulating a 4000×4000 lattice to the point
of (approximate) stationarity. This was found to be enough in or-
der to observe near-linear KMC-time advancement long enough
to obtain reliable benchmarks. On smaller lattices, one observes
oscillations in the rate of advancement that are commensurate
with those of the total X* and Y* coverages. The initial state of
the benchmarks of System 4 is visualised in Fig. 2. For System 4
benchmarks, each PE was assigned a 160×160 subdomain, giving
nPE = 625.

All simulations contributing to the performance benchmarks
were carried out on Thomas (https://www.rc.ucl.ac.uk/
docs/Clusters/Thomas/), a UK National Tier 2 High Perfor-
mance Computing Hub in Materials and Molecular Modelling,
which is a CPU-based computational cluster. Each computational
node contains 24 CPU cores (2 × 12-core Intel® Xeon® E5-2650
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Fig. 2 Initial state of System 4, showing the coverages of species X*
and Y* exhibiting a pair of well-developed spirals.

v4) and 128 GB RAM.

4 Results and discussion

4.1 System 1
In Figs. 3 and 4, we plot the scaled KMC-time advancement, τ∗,
for System 1 against δsnap (left) and ∆τGVT (right), for two dif-
ferent lattice sizes: 200 × 200 and 1200 × 1200. Note that the
left-hand and right-hand plots for each stateQueue data structure
contain the same data, only presented differently. Comparing the
two figures, one sees that the performance is worse in general
(τ∗ larger) for the larger lattice size. As discussed in Ref. 31, this
is because the conflict resolution overhead becomes more signifi-
cant when there are more subdomain boundaries.

Moving on to our discussion of the tunable parameters, our first
observation is that faster KMC-time advancement is achieved with
the vector data structure than with the linked list. This is true
for both lattice sizes and over the full set of values of δsnap and
∆τGVT. It can be attributed to the additional time spent allocating
and deallocating memory to stateQueue when the linked list is
employed. In contrast, the size of the vector structure is fixed and
all its needed memory allocated only once, at the beginning of
the simulation.

Unsurprisingly, the performance of each KMC simulation is
seen to depend strongly on δsnap. Naively, one may expect a
monotonic improvement in performance as δsnap is reduced, since
this reduces the total amount of time spent in rollback propaga-
tion. However, the performance is observed to improve only up
to a point, upon reducing δsnap. In fact, we observe optimum per-
formance (i.e., miminum τ∗) around δsnap = 100 when using the
vector stateQueue data structure, and slightly higher for the linked
list. The sharp rise in τ∗ for smaller values of δsnap is attributed
to the additional time spent saving and deleting snapshots, which
constitute the simulation bottleneck in this regime.

On the other hand, the choice of ∆τGVT hardly affects the over-
all performance, indicating that the global communication over-
head is negligible. That said, one should refrain from choosing
absurdly small values of ∆τGVT lest the simulation output files oc-
cupy vast quantities of disk space.‡ One must also ensure that,

‡ After each GVT computation, Zacros prints information to each of the nPE

general_output*.txt files, which consequently would become extremely large if,
say, the GVT were computed every 1 s for several hours. See the Zacros User Guide
for further details.

for a given choice of δsnap, ∆τGVT is sufficiently small such that
obsolete snapshots are deleted before the memory allocated to
stateQueue is filled up. This is exemplified by the several ‘missing’
data points in Figs. 3 and 4, e.g. all points for which δsnap = 5,
∆τGVT > 10 (∆τGVT > 5) are absent with the linked list (vector)
stateQueue structure in Fig. 3. A data point is omitted wherever
stateQueue in at least one PE became too large to fit in the avail-
able memory before the allocated 1 hour of clock time had passed.

It is important to stress that the missing data points just de-
scribed do not imply failed simulations. This is because, when
memory does fill up, Zacros is configured to ‘sparsify’ stateQueue
by deleting every second snapshot. The frequency with which fu-
ture KMC states are saved is correspondingly reduced by doubling
δsnap. This sparsification procedure can occur, in principle, arbi-
trarily many times on each PE, such that a poorly chosen input
(initial) value for δsnap will not result in simulation failure. In
Systems 1 and 2, we found that sparsification tended to occur ei-
ther permanently§ throughout most of the PES, or not at all. This
behaviour can be attributed to the spatial homogeneity of the dy-
namics, with the upshot that τ∗ for such simulations is not truly
reflective of the input δsnap value, since the latter changes during
the run. Thus, we opted to omit the results of any simulations
during which sparsification of stateQueue occurred.

4.2 System 2

Figs. 5 and 6 show how the KMC simulation performance for Sys-
tem 2 varies with δsnap and ∆τGVT. Comparing with Figs. 3 and
4, we see that τ∗ is typically smaller for System 2 than for System
1 by more than an order of magnitude. This is consistent with
the absence of CO∗ diffusion in System 2, which for System 1 is
fast and therefore constitutes the vast majority of events in the
process queue (see Table 1). Thus, the KMC time advances faster
for System 2, even if the rate of event execution is comparable.

Aside from this, the behaviour of System 2 as a function of
δsnap, ∆τGVT, and stateQueue data structure is broadly similar to
that of System 1. This suggests that the main sources of com-
putational effort in the Time-Warp algorithm are independent of
whether conflicts arise during event execution (System 1) or en-
ergetics calculation (System 2). The optimal δsnap values are
slightly smaller for System 2, at around 50 across both lattice
sizes and stateQueue data structures, which could be indicative of
a greater proportion of KMC time having been spent in rollback
propagation.

4.3 System 4

As noted in Section 3, System 4 differs greatly from Systems 1
and 2 in its chemical characteristics. The production of Y* from
X*, followed by the autocatalytic regeneration of X*, leads lo-
cally to oscillations in the coverage of each species. Coupled with
slow versus fast surface diffusion for X* versus Y*, respectively,
as well as appropriate initial conditions, these oscillations man-

§ ‘Permanently’ in this context means that δsnapwas not subsequently reverted to its
input value by means of a rollback.

6 | 1–11Journal Name, [year], [vol.],



10

20

30

40

50 Linked list

GVT (s)
2
5
10
30
60
120

Linked list

snap (# events)

5
10
20
50
100
200
300
400
500

10
1

10
2

snap (# events)

10

15

20

25 Vector

10
1

10
2

GVT (s)

Vector

*
(s

 / 
K

M
C

 ti
m

e 
un

its
)

Fig. 3 Results of the performance benchmarks of System 1 with lattice size 200×200 (distributed over 4 processors). The KMC-time advancement
per unit of clock time, τ∗, is plotted against the state saving interval, δsnap (left) and GVT computation interval, ∆τGVT (right).

50

100

150
Linked list

GVT (s)
2
5
10
30
60
120

Linked list

snap (# events)

5
10
20
50
100
200
300
400
500

10
1

10
2

snap (# events)

20

40

60
Vector

10
1

10
2

GVT (s)

Vector

*
(s

 / 
K

M
C

 ti
m

e 
un

its
)

Fig. 4 As in Fig. 3 but for lattice size 1200×1200 (distributed over 144 processors).
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Fig. 6 As in Fig. 5 but for lattice size 1200×1200 (distributed over 144 processors).
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ifest as rotating spiral waves spanning the entire simulated do-
main. The dynamics are thus highly spatially inhomogeneous,
such that each subdomain exhibits a qualitatively different cover-
age pattern at any given time. In this context, a robust scheme
for conflict resolution at the boundaries is essential if one is to
capture the propagation of the spiral wavefronts accurately, since
the characteristic wavelength of the pattern exceeds the size of
the subdomains.

In spite of these differences, our performance benchmarks
paint a broadly similar picture for System 4 (Fig. 7) as for Systems
1 and 2. Optimal performance is obtained with δsnap ≃ 150, while
the choice of ∆τGVT has little overall effect. In contrast to Systems
1 and 2, we have not indiscriminately omitted data points for
which sparsification occurred; due to the spatial inhomogeneity,
stateQueue can be sparsified in a small fraction of the 625 proces-
sors without significantly affecting the overall performance. In
fact, such isolated sparsifications are often found to be reversed
by subsequent rollbacks. This is illustrated in Fig. 8, which shows
how δsnap varied with clock time during selected simulations of
Systems 2 and 4. The ‘missing’ data points in Fig. 7 correspond to
(δsnap,∆τGVT) values for which large-scale sparsification was to be
expected based on the predicted memory requirements.

5 Conclusions
We have built on the work of Ravipati et al. 31 to understand
how the performance of distributed on-lattice KMC, facilitated by
Jefferson’s Time-Warp algorithm,25 depends on the treatment of
state snapshot saving during the simulation. In particular, we
were interested in how overall performance is affected by the fre-
quency of saving events, quantified by the state saving interval
δsnap, as well as the global virtual time (GVT) computation inter-
val, ∆τGVT, which determines how often the obsolete snapshots
are erased from memory. We also investigated whether a linked
list or vector data structure (currently the default in Zacros) is
preferable for storing the state queue (stateQueue).

Our benchmarks focused on three systems. Systems 1 and 2 are
both highly simplified models of reversible CO adsorption, spa-
tially homogeneous and identical except in the factor responsible
for coupling between subdomains (diffusion and lateral energetic
interactions, respectively). In contrast, System 4 – a lattice-based
adaptation of the well-known ‘Brusselator’ model – exhibits com-
plex and large-scale spatiotemporal pattern formation, and is thus
an ideal test case for our Time-Warp implementation. For all sys-
tems, we found consistently that using a vector data structure to
store stateQueue leads to faster KMC propagation than using the
linked list, which we attribute to the overhead of allocating and
deallocating memory in the latter case. We also found, however,
that the state saving interval, δsnap is by far the most impor-
tant tunable parameter in controlling Time-Warp performance.
We reasoned that optimising δsnap corresponds to minimising the
combined overheads of rollback propagation and that of saving
and deleting snapshots. On the other hand, ∆τGVT was seen to
have minimal effect on simulation performance, provided it is
small enough to prevent the memory allocated to stateQueue from
filling up.

Currently in Zacros both δsnap and ∆τGVT are set by the user at

the beginning of the simulation. However, if stateQueue runs out
of available memory, δsnap is updated dynamically and memory is
freed by way of ‘sparsification’, whereby every second snapshot in
stateQueue is deleted and δsnap is correspondingly doubled. In the
case that the initial value of δsnap is ‘optimal’, i.e. maximises the
KMC-time advancement rate, each sparsification event will result
in performance degradation for the remainder of the run. A more
desirable approach might be to enable dynamic updates also to
∆τGVT such that it can be reduced when stateQueue is seen to be
filling up the available memory too quickly. This would be chal-
lenging to implement in practice, since, while δsnap is declared
locally on each PE (so sparsification is a local operation), ∆τGVT

is a global variable. Hence, dynamic optimisation of ∆τGVT would
rely on global communication among PEs, which currently only
occurs during the GVT computation events themselves.

Some important aspects of performance optimisation remain
unaddressed, notably the best way to estimate the optimal MPI
configuration (number of PEs) and δsnap value in general (without
resorting to extensive benchmarking case-by-case). One should
expect the optimal δsnap to decrease as nPE increases in the strong-
scaling regime (fixed lattice size), as smaller subdomains will de-
mand less CPU time for saving/deleting snapshots while incur-
ring more frequent boundary conflicts. Preliminary strong-scaling
benchmarks of System 4 appear to support this hypothesis. An-
other issue that we have yet to address fully is load balancing;
so far, we have focused on benchmarking systems in which the
time-averaged surface coverages are roughly constant across the
simulated domain. However, in situations where the coverage is
inherently dispersed, the topological restrictions imposed on do-
main decomposition in Zacros (see Section 2) may inhibit good
scaling efficiency. We are considering generalising our code in
the future to relax these restrictions. Notwithstanding, the bench-
marks presented herein highlight the key principles that should
guide Zacros users towards maximising the performance of dis-
tributed GT-KMC simulations.
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Weak-scaling results
In Fig. S1 we reproduce the weak-scaling results of ref. 1 for distributed runs of Systems 1 and 2. The weak-scaling efficiency, 𝜂WS,
is plotted against the number of lattice sites, 𝑛sites. Using the notation introduced in Section 3.2 of the main text, the weak-scaling
efficiency can be defined as

𝜂WS = 𝜏∗serial/𝜏
∗, (S1)

where 𝜏∗serial is the elapsed clock time per unit of KMC time for a serial run of a 100 × 100 lattice (i.e., the size of one subdomain
in the distributed runs).

Figure S1 Weak-scaling results from Ref. 1 for distributed runs of (a) System 1 and (b) System 2, as defined in the
main text. Desirable behaviour is represented by a constant weak-scaling efficiency, 𝜂WS, such that no overheads are
incurred as more processors are utilised to simulate progressively larger lattices. For both systems, we observe that a
roughly constant efficiency is reached for sufficiently large runs, employing about 60 processors. The data points that
correspond to the lattices used in the present study (200 × 200 and 1200 × 1200) are plotted using blue filled squares.
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