
*Author for correspondence (m.stamatakis@ucl.ac.uk).

†Present address: Laboratory of theory and simulation of materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015

Lausanne, Switzerland

Exact Distributed Kinetic Monte Carlo Simulations for
On-Lattice Chemical Kinetics: Lessons Learnt from

Medium- and Large-Scale Benchmarks
Giannis D. Savva1,†, Raz L. Benson1, Ilektra-Athanasia Christidi2, Michail

Stamatakis*,1
1 Thomas Young Centre and Department of Chemical Engineering, University College London, Torrington

Place, London WC1E 7JE, United Kingdom
2 Research Software Development Group, Advanced Research Computing Centre, University College

London, Gower Street, London WC1E 6BT, United Kingdom

Keywords: Kinetic Monte Carlo, Lattice, Time-Warp algorithm, Catalysis, Materials Science,
Distributed Simulation

Summary

Kinetic Monte-Carlo (KMC) simulations have been instrumental in multiscale catalysis studies, enabling the
elucidation of the complex dynamics of heterogeneous catalysts and the prediction of macroscopic
performance metrics, such as activity and selectivity. However, the accessible length- and time-scales have
been a limiting factor in such simulations. For instance, handling lattices containing millions of sites with
‘‘traditional’’ sequential KMC implementations is prohibitive owing to large memory requirements and long
simulation times. We have recently established an approach for exact, distributed, lattice-based simulations of
catalytic kinetics which couples the Time-Warp algorithm with the Graph-Theoretical KMC framework,
enabling the handling of complex adsorbate lateral interactions and reaction events within large lattices. In
this work, we develop a lattice-based variant of the Brusselator system, a prototype chemical oscillator
pioneered by Prigogine and Lefever in the late 60’s, to benchmark and demonstrate our approach. This system
can form spiral wave patterns, which would be computationally intractable with sequential KMC, while our
distributed KMC approach can simulate such patterns 16 and 36 times faster with 625 and 1600 processors,
respectively. The medium- and large-scale benchmarks thus conducted, demonstrate the robustness of the
approach, and reveal computational bottlenecks that could be targeted in further development efforts.

mailto:m.stamatakis@ucl.ac.uk

2

Main Text

Introduction

Kinetic Monte Carlo (KMC) simulations have made a significant contribution towards understanding and

predicting the dynamic properties of materials (1-4). Among the different fields, heterogeneous catalysis has

widely adopted lattice-based KMC simulations, whereby the catalytic surface is represented by a set of

connected sites, on which adsorbates can bind and react. Crucially, the rate constants of the pertinent

elementary reaction events, i.e., adsorption/desorption, surface site hopping (diffusion), and reaction, can be

calculated by lower-level methods, e.g., ab initio quantum chemistry methods or molecular dynamics.

Combining KMC with these methods grants it significant predictive power and makes it the method of choice

for unravelling the complexity of catalytic kinetics. The increasing popularity of lattice-based KMC is

evidenced by the number of mature software codes available that implement this method. Some examples of

widely adopted such codes include Zacros (5-10), SPPARKS (11, 12), KMCLib (13), and kmos (14, 15).

While increasingly popular, KMC simulations can be computationally challenging. The cost of a KMC

simulation is, in principle, determined by the complexity of the chemical system under study in terms of

number of reactions and adsorbate-adsorbate lateral interactions (either short- or long-range). For the most

complex chemical reaction systems, KMC runs can require wall times ranging from several hours to several

days for a sufficient number of elementary events to be executed, and accurate statistics to be obtained. A key

computational limitation is the serial (sequential) nature of KMC (16), whereby execution of an event, e.g. an

adsorption on a certain site, depends on the previous history, e.g. past events that result in that adsorption site

being empty. Events must therefore be executed sequentially to ensure that the simulated history is self-

consistent. This serial execution has limited the applicability of ‘‘traditional’’ KMC algorithms to small

domains, on the order of a few tens of nm (17, 18).

Broadening the applicability of KMC to larger systems and improving its computational efficiency is an active

area of research, and tends to focus on tackling specific needs, for example addressing the timescale disparity

(19-21), or on generic algorithms and implementations that improve certain procedures without affecting the

accuracy (see e.g. Refs (6, 9, 22-24)). Despite these developments, KMC simulations on larger lattices, with

millions of sites, have remained generally intractable.

Such large simulations may indeed be necessary to capture phenomena like spatiotemporal pattern formation

and oscillations exhibited by reactions taking place in extended media. Pertinent research efforts are

3

motivated by the need to unravel the complexity of such systems (i.e., obtain fundamental understanding),

but also by the potential benefits of controlling, improving, and/or engineering novel chemical systems for

technologies of practical interest. For instance, CO oxidation on Pt catalysts in surface science experiments (25)

and in reactors (26-28), partial oxidation of methane on Pd catalysts (29), N2O decomposition on Cu-ZSM5

(30), and the NO reduction by CO, H2, or NH3 on Pt surfaces (31, 32) have all been shown to exhibit

oscillations that may markedly affect activity or selectivity. In general, it has been argued that oscillations and

spatiotemporal pattern formation may lead to potentially dangerous operating regimes in industrial reactors,

but when properly managed and effectively controlled they could lead to enhancements in the conversion

(33), thereby motivating fundamental studies to better understand such phenomena. Moreover, patterns such

as spiral waves have been observed in extended chemical media, a well-known case being the Belousov-

Zhabotinsky reaction (34). Applications of such spatiotemporal complexity that might be of practical interest

encompass the development of chemical systems that can perform computations (35) or the control of

biological systems (36).

When it comes to computational investigations of such phenomena with KMC, the size of the lattice that is

required to capture the dynamics of interest is dictated by the characteristic wavelength of the pattern. For

example, the spiral waves reported by Nettesheim and co-workers for the catalytic CO oxidation on Pt(110)

(25), the wavelengths are on the order of a few μm, requiring tens of millions of sites to be reproduced. Since

the serially executed KMC implementations are unable to simulate systems in which patterns form on the μm

scale, other means must be sought to make such simulations possible.

This has motivated the development of approaches in which the computational workload is distributed to

multiple processing units (computer processors), thereby enabling the execution of KMC simulations in

parallel (37-42). Conceptually, these methods involve domain decomposition and algorithmic protocols to

execute elementary events concurrently, in such a way that (eventually) the simulated history is self-

consistent, i.e., free of conflicts due to events occurring on the boundaries of the subdomains. This self-

consistency is achieved either via synchronisation or by rolling back in time and correcting (re-simulating) the

history that is invalidated because of the boundary conflicts. In the latter approach, each processing unit

generates a KMC trajectory for its subdomain and once all those trajectories are validated as consistent up to a

specific point in time, they are all ‘‘registered’’ to the global history that corresponds to the entire

computational lattice.

Due to the technical complexities of such distributed KMC simulation approaches, software implementations

thereof in the fields of catalysis and materials science are currently scarce. For instance, SPPARKS (11, 12) has

implemented the approximate semi-rigorous synchronous sublattice algorithm (39) and SPOCK (43) includes

4

an exact parallel KMC implementation based on the Time-Warp paradigm (37). Still though, the latter

implementation is not generic, and the user needs to provide system-specific code when building custom

models. Also, both approaches mentioned above, lack validation procedures that would verify the correctness

of the implementation.

To address these challenges and deliver a generic, parallel KMC implementation that can be validated,

Stamatakis and co-workers have coupled the optimistic Time-Warp algorithm with the graph-theoretical KMC

framework into the software package Zacros (5). Preliminary benchmarks have demonstrated acceleration

factors of more than 3 orders of magnitude on 400 processing units for a simple system with

adsorption/desorption and up to 1st nearest-neighbour lateral interactions (5). The better-than-expected

performance was attributed to the smaller memory requirements and faster memory reading and writing, in

addition to distributing the time-consuming operations to several processing units. A more complex system

was also benchmarked in Ref. (5), which includes 22 elementary events capturing CO oxidation dynamics on a

Pd(111) lattice with two site types (fcc and hcp), and incorporates a cluster expansion with 88 patterns,

including single-, two- and three-body patterns (44). For this system, a speedup factor of about 110× was

obtained when simulating a lattice with more than 13.4 million sites on 729 processing units, compared to a

serial run.

While demonstrating the power of the new approach coupling the Time-Warp algorithm with the graph-

theoretical KMC framework, all these benchmarks entailed systems in which the adsorbate layer is

homogeneous on the nanometre scale and beyond. Indeed, while local site-to-site correlations can be

observed, e.g. (2×2) or (√3×√3) ordering, no large-scale concentration gradients are exhibited by these systems.

Since, as argued earlier, pattern formation is of particular interest in chemical kinetics and catalysis, this work

focuses on benchmarks of our approach on a prototype system capable of exhibiting spiral wave pattern

formation. This system is a lattice-based variant of the Brusselator system invented by Prigogine and Lefever

to study non-equilibrium instabilities (45-47). We demonstrate that our distributed KMC algorithm is capable

of reproducing the spiral wave patterns of this system, and we explore the robustness and computational

efficiency of the approach.

The rest of this paper is organised as follows. First, we provide a brief overview of the Time-Warp algorithm.

Then, we provide a detailed description of the lattice benchmark model. Finally, we present our results and

discuss some technical and computational aspects regarding the observed performance.

5

Methodology

Overview of the Time-Warp algorithm

The concept of Virtual Time and the Time-Warp algorithm are thoroughly discussed in the original paper by

Jefferson (37), and the full details of our implementation coupling this algorithm with the graph-theoretical

KMC can be found in Ref. (5). Below, we provide a brief overview thereof.

Based on the Time-Warp paradigm, the main idea behind distributed KMC simulation is to decompose the

entire lattice domain into smaller, non-overlapping, subdomains, each one of which is assigned to a different

processing unit (PU) (also referred to as a processing element (PE)). A PU (or PE) is conventionally a CPU

core. Each PU stores and deals with not only the lattice state of the subdomain to which it has been assigned,

but also a ‘‘halo’’ region comprising sites from neighbouring subdomains. The depth of this halo region is

chosen to be just large enough to handle all possible boundary events, by considering the spatial extent of all

the adsorbates (which may be multi-dentate), elementary reactions and lateral energetic interactions involved

(5). In general, a halo region with a small area relative to that of each subdomain is associated with good

parallel efficiency, since each PU executes the usual KMC method independently from other PUs for events

within the ‘‘private portion’’ of its subdomain. The latter encompasses sites that are essentially far enough

from shared boundaries that they don’t immediately affect events happening in other domains. However,

events that occur close to such boundaries, i.e. within one or more halo regions, necessitate some

‘‘collaboration’’ between the PUs sharing these boundaries.

Thus, all events that happen away from the boundaries are executed concurrently by each PU, whereas the

events at the boundaries are communicated among PUs and handled appropriately. Due to the asynchronous

nature of the execution of events and the random time advancement in KMC simulations, each PU has its own

simulation time; hence, causality violations may occur, as will be discussed in more detail shortly. For the

KMC trajectory to be exact, these violations need to be resolved in an algorithmically robust manner. The

Time-Warp algorithm provides the required ‘‘machinery’’ so that exact KMC simulations can be performed in

a distributed manner.

Consider a scenario in which process PU1 executes an event at a boundary shared with its neighbour PU2 (see

Figure 1 for a visual representation). The latter PU needs to have knowledge about this event, and thus, an

appropriate message is sent from PU1 to PU2. If the receiving processor, PU2, is lagging behind PU1, then

handling the message is straightforward. The message is put into a queue and appropriate action is taken

when PU2 reaches that particular KMC time. What is less straightforward, however, is when the sender, PU1

lags behind the receiver, PU2. To better appreciate this, suppose that the message about an event that had just

6

occurred on the timeline of PU1 is communicated to PU2. That message has a timestamp of t1. However, PU2 is

ahead (t2 > t1) and therefore the message pertains to its past. The history of PU2 from time t1 onwards is wrong

because the communicated event has not been accounted for; this constitutes a causality violation.

The only way to resolve this causality violation is to revert (roll back) to a time before t1 and re-simulate the

history, taking into account the communicated event. To enable such rollbacks, all PUs need to have snapshots

of the system available along their history, so that they can revert to them when needed. Therefore, as each PU

propagates only its allocated subdomain, it takes complete snapshots of its entire simulation state and stores

them in memory at regular intervals during the course of the KMC simulation, e.g., every 1000 KMC steps.

The situation described above is even more complicated if PU2 had sent messages to other units, after KMC

time t1 but before the causality violation occurred. Since the history of PU2 between t1 and t2 is now being re-

simulated, any actions performed by other PUs as a result of such messages need to be corrected. Then, PU2

needs to send each of those units an ‘‘anti-message’’, that encodes an ‘‘undo’’ action to a previously sent

message. The PUs that receive these anti-messages may have to revert back as well and correct their histories

(this would happen if the timestamp of an anti-message is smaller than the current KMC time of the receiving

PU). A schematic representation of causality violations involving three processing units is illustrated in Figure

1. It is possible that the causality violations and the rollback procedure produce a cascade of violations that

could affect the entire domain and slow down the whole simulation. However, such cases are system-

dependent and are rare in practice. In any case, the Time-Warp algorithm provides all the procedures

necessary to resolve such conflicts and ensure the consistency of the simulated history.

As already noted, rolling back in KMC history necessitates that PUs regularly save snapshots of the entire

state of the simulation in the memory. However, since the latter is limited, the simulation needs a procedure to

free up memory and delete the snapshots that are no longer needed. Such a procedure involves global

communications. Therefore, at regular intervals, all PUs communicate with each other to determine which one

has the smallest KMC time, ts. Assuming that there are no pending messages, the histories of all PUs are

mutually consistent up until ts, and thus, any snapshots taken before ts may be safely deleted. If there are

pending messages, the smallest between the PUs’ KMC times and the timestamps of pending messages is

taken as ts. The latter (ts) is referred to as Global Virtual Time (GVT) and represents the time-point up to which

the global simulation history is consistent and will never again be revised (corrected). Thus, the GVT serves as

a metric to quantify the overall progress of the KMC simulation and decide when the simulation can be

terminated (i.e., when the GVT exceeds the final simulation time set by the user).

7

An important detail regarding the Time-Warp implementation pertains to the case in which all the available

memory is filled up before a global communication takes place to remove the no-longer-needed snapshots. In

this case, certain procedures must be invoked to: (a) sparsify the queue in which snapshots are saved, e.g., by

deleting every other snapshot to free memory, and (b) increase the interval over which snapshots are taken so

that the queue does not fill up again after the GVT is calculated (e.g., instead of saving a snapshot every 1000

KMC steps, now save every 2000 KMC steps). If needed, the above procedures are invoked again to ensure

that the frequency of saving snapshots is appropriate, given the available memory.

The Time-Warp algorithm, as briefly introduced above, includes two user-defined parameters that affect the

computational performance. These are (a) the number of KMC steps after which the PUs take a snapshot and

(b) the real time interval after which the global communication takes place. The investigation of the impact of

these parameters on the performance of the Time-Warp algorithm is, however, out of the scope of the current

study. For this reason, in our simulations we have chosen optimal values following a limited number of

shorter runs and we kept them fixed for all the runs presented in the following section.

Lattice-based Brusselator Benchmark System

The Brusselator reaction mechanism was introduced by Prigogine and Lefever in the late 60’s to study

symmetry-breaking instabilities in dissipative systems (46). It involves two main species, one of which

promotes its own production in an autocatalytic manner. This results in rich dynamic behaviour, specifically

oscillations, under certain parametric constraints and assuming fast diffusion (well-mixed system).

Furthermore, if the reaction is embedded into a spatially extended medium into which molecular species can

diffuse (in addition to reacting), an instability occurs when diffusion is slow compared to reaction, and as a

result, the system can exhibit spatiotemporal pattern formation. Such a system is therefore ideal for

demonstrating the capabilities of our distributed KMC approach by reproducing such spatiotemporal patterns

at large scales.

To use our KMC approach on the Brusselator system, the reaction mechanism of the latter needs to be adapted

for on-lattice simulation. The pertinent elementary reactions (excluding diffusion events) are shown in Table 1,

vis-à-vis those of the original system (Ref. (46)). In the surface events, a star, ∗, denotes an empty site, and a

species with a star, e.g. Y∗, represents an adsorbed molecule. Thus, in the lattice-based Brusselator, two

reactions that produce and consume species X in the ‘‘original’’ Brusselator are lumped into an

adsorption/desorption event. The trimolecular step is simulated with Y∗ in the middle, surrounded by two X∗

molecules. The conversion of X∗ into Y∗ is considered as a reversible Eley-Rideal reaction with B and D as gas

phase species. The reason that this reaction was taken to be reversible in our model, is to avoid getting

8

trapped into a state in which the lattice is completely covered by Y∗ species. In such a case, if the reaction in

discussion was irreversible, there would be no mechanism for X∗ molecules to reappear on the surface: X

would no longer be able to adsorb, since there would be no empty sites, and there would be no mechanism to

convert Y∗ into X∗; hence, the surface would be poisoned. This is not a concern in the ‘‘original’’ Brusselator, in

which there are no constraints on the molecule numbers (or species concentrations) and thus reaction (a) of

Table 1, which brings X∗ into the system, never ceases. Furthermore, we neglect species A and E of the

‘‘original’’ Brusselator, without distorting the dynamics of the reaction mechanism, since anyway the

concentrations of both of these species were kept constant in the analysis of Prigogine and Lefever (46). In our

lattice-based Brusselator, defining the kinetic and thermodynamic constants for adsorption (the latter being

the ratio between the kinetic constants of adsorption versus desorption) enables us to precisely tune the fluxes

of X into and out of the system. Moreover, the partial pressures of B(gas) and D(gas) are kept constant, in line

with the concentrations of species B and D of the ‘‘original’’ Brusselator being maintained at constant levels.

The spatially extended medium onto which the reactions are happening is represented as a two-dimensional

(2D) 4-fold (square) lattice. To ensure effective adlayer mixing at a local level, three diffusion steps were

considered: diffusion of X∗, as well as Y∗, to a neighbouring vacant site, but also exchange between X∗ and Y∗

(last three rows of Table 2). The diffusion of Y∗ was taken to be 100 times slower than the other two diffusion

events, in order to induce the instability necessary for spiral wave formation. The activation energies of all

events were taken to be zero and there are no adsorbate lateral interactions in this model. Thus, the rate

constants of surface events were equal to the corresponding pre-exponential (Afwd or Arev), and for events

involving gas-phase species, the pre-exponentials were multiplied by the corresponding partial pressures. For

instance, for the adsorption step (i)-forward, the rate constant is 0.7⋅PX
(gas)

 while for the desorption it is

0.7/0.91 = 0.769 s---1. The gas species partial pressures were: PX
(gas)

 = 0.4 bar, PB
(gas)

 = 0.4 bar, PD
(gas)

 = 0.2 bar, and

the rate constants calculated with these values are shown in Table 2. Finally, note that in the latter table, step

(ii) is depicted with an angle of 90° but it can also occur when the three sites (occupied by the Y∗ and two X∗

adsorbates) occupied by the two X∗ and Y∗ adsorbates) are co-linear. A detailed discussion on the preliminary

investigations that led to the choice of the parameter values just noted, appears in the Supplementary

Information.

9

Results and Discussion

We now proceed to discuss the results of a lattice-based Brusselator simulation in which the evolution of

spiral wave patterns was observed from an appropriate initial state (initial condition). This simulation was

performed with the Time-Warp algorithm and the graph-theoretical KMC approach as implemented in our

KMC software Zacros. A domain of size 4000×4000 was used (16 million sites in total) and the simulation

started from an initial state in which molecules of species X∗ and Y∗ were seeded throughout the domain in

such a way as to invoke the formation of spiral waves (Figure 2), by creating a ‘‘broken’’ wavefront that curls

around its edges at opposite directions. The mechanism of wave propagation is discussed in detail below, but

we can already note that at the front-end of the wave, the ‘‘activator’’ species X∗ exhibits a sharp increase in

coverage, which propagates through the medium as Y∗ gets converted into X∗. This peak coincides with a drop

of Y∗ coverage, while this species is gradually repleted at the rear-end of the wave. Imposing solely a higher

initial coverage of X∗ in a linear segment of the lattice would result in an oval wave, since conversion of Y∗

would be possible in all directions. To create a ‘‘broken’’ wavefront, we additionally impose low coverage of

Y∗ (pink shaded domain in Figure 2) so that the wave can propagate only towards the upper right corner of

the domain (since there is not enough Y∗ to get converted at the opposite direction), and then curl

spontaneously around at its edges. Some preliminary simulations in smaller domains helped in adjusting the

thicknesses of the domains and identifying minimum lengths for which prominent spiral patterns would

emerge.

Representative snapshots of the average coverages of the two species over time are shown in Figure 3. The

initial state of Figure 2, also shown at t = 0 s in Figure 3(a, d), gives rise to two spirals that rotate in opposite

directions. To explain how these patterns emerge, we first revisit the dynamics of the underlying reaction

network from a qualitative standpoint, noting that the key feature of the Brusselator is the competition

between the rapid conversion of Y∗ into X∗ in the presence of pre-existing X∗, and the slower conversion of X∗

back into Y∗. More specifically, the first conversion is achieved via the autocatalytic reaction (ii) of Table 2,

which requires two molecules of X∗ to be located at neighbouring sites with Y∗, resulting in a quadratic rate-

versus-coverage dependence. The latter dependence leads to threshold behaviour: for low coverages of X∗ the

reaction rate is negligible, while, for higher coverages, the rate rises sharply. Of course, the rate also depends

on the coverage of Y∗, so when this species gets depleted, the rate of conversion of Y∗ to X∗ drops dramatically.

At that point, the system relies on the forward step of reaction (iii) of Table 2 for Y∗ to be replenished. This

reaction, however, exhibits first order kinetics with respect to the coverage of X∗ and therefore proceeds

relatively slowly. Consequently, the Brusselator exhibits oscillations in which the coverage of X∗ rises rapidly

and concurrently with a depletion of Y∗ (‘‘activation’’ phase) followed by a more gradual or delayed repletion

10

of Y∗ (‘‘refractory’’ phase). Such oscillations are indeed observed during the initial times of the simulation, as

shown in Figure 4(a).

In the spatially extended medium simulated, these oscillatory dynamics in tandem with the diffusion of the

two interacting species play a key role in the formation of wavefronts that propagate through the medium.

Crucially, the diffusion rate of the activator species X∗ needs to be higher than that of Y∗, so that any gradients

in the coverage of the latter persist for sufficiently long timescales, enabling the wavefront to propagate

effectively towards regions with high Y∗ coverages. Thus, in the absence of any external influence, the inherent

noise of the KMC simulation leads to the emergence of wavefronts from random points in the lattice. These

can be clearly seen in Figure 3(b, e), in the areas far beyond the rectangles imposed in the initial state as a

perturbation. The latter, led purposely into a situation in which a ‘‘broken’’ wavefront started rotating around

its tip, a behaviour known as ‘‘re-entry’’ in the study of chemical waves and excitable systems (48), which

eventually leads to the formation of the two spiral waves. The range of these spirals extends progressively,

which also leads to the attenuation of the oscillations of Figure 4(a) due to the averaging-out of the species

coverages over the spatial coordinates. Eventually, at around 400 s, the spiral patterns take up the entire

domain (Figure 3(h, k)). The time to form the fully developed spirals depends mainly on the period of the

rotation of the spiral and the size of the lattice: at every rotation of the spiral the pattern expands slightly,

because the period of rotation is slightly shorter than that of the oscillation. In our simulation, it took about 27

to 28 spiral rotations to reach a fully developed at time around 300 s (for comparison, during this time

interval, regions far from the spiral would have exhibited only about 25 oscillation peaks). Larger lattices

would require longer times for the spirals to take over the entire domain, and faster rotations would result in

shorter times for this to happen.

While the patterns are robust, they are subject to perturbations due to noise (stochasticity); for instance, at time

around 413 s, a secondary wavefront emerges close to the tip of the lower spiral and pushes the tip slightly

closer to the centre of the domain (Figure 3(i, j)). In the Supplementary Material we plot spatial reactivity

maps within a short time interval at that time, showing the location where each of the elementary events of

Table 2 took place. The overall statistics, averaged in space and time appear in Figure 4(b).

Next, we focus on some technical (computational) aspects of these KMC runs. Due to the large size of our

lattice, the simulation was distributed over 25×25=625 PUs, so that each one of them is assigned a subdomain

of 160×160 sites. The entire simulation was run on Thomas, the UK National Tier 2 High Performance

Computing (HPC) Hub in Materials and Molecular Modelling. The computational nodes on Thomas each

11

contain 24 CPU cores (2 × 12-core Intel(R) Xeon(R) E5-2650 v4) and 128 GB RAM. Because of the wall time

restrictions, this simulation was broken into ‘‘chunks’’ of 24 or 48 hours each. Zacros’s core implementation

provides a functionality for stopping and resuming a simulation, and consequently, runs that use this

checkpointing feature produce identical results with continuous runs, while being more robust against system

faults. The simulation reached an overall KMC time of about 620 KMC seconds and involved more than 1.6

trillion elementary events (though, due to the rollbacks of the Time-Warp algorithm, the actual times and

number of events executed by the PUs were larger, as will be discussed later). In terms of real time, the

distributed simulation was running for 38 days.

Figure 5 illustrates the overall progression of the simulation. More specifically, we plot the GVT against the

wall time for the entirety of the simulation, with red dashed lines used to indicate where the simulation was

paused and later resumed. Each chunk is also numbered using its restart index shown at the top of Figure 5

(restart index of 0 denotes the initial run). As explained above, the GVT is to be interpreted here as a metric to

quantify the progression of the overall KMC simulation, keeping in mind, of course, that the subdomains

evolve asynchronously. For most of the simulation chunks, the distributed simulation has a consistent

progression rate. This, however, is not the case for the early stages of the simulation. Up to the seventh chunk,

the GVT appears to be progressing with a fluctuating rate. At first glance, one might attribute this behaviour

to the evolving nature of the adsorbate layer as the spirals began to develop from the initial conditions. Yet,

upon closer inspection, one notices that the GVT advancement rate within each chunk is almost linear. In

addition, simulation chunks with restart indices 2, 6 and 7 have a suspiciously low GVT advancement rate

that does not appear to correlate with the dynamics of our benchmark system.

To further investigate this behaviour, we examine the number of snapshots taken during the interval between

two global communications. The latter interval is also termed as ‘‘GVT computation block’’. Since the

snapshots are saved regularly by all PUs, i.e. at every fixed number of KMC steps, one may conclude that the

PUs that save more snapshots execute more KMC steps whereas the PUs that save fewer snapshots are

executing fewer KMC steps. Figure 6 illustrates two such cases. In panel (a), that corresponds to the 4th

simulation chunk (cf. Figure 5), all but one of the 625 PUs are saving approximately the same number of

snapshots during a GVT computation block. Having one fast-progressing PU was observed in all the runs,

and this was attributed to the way processors from different nodes of the HPC cluster Thomas were allocated.

In particular, since each node on Thomas had 24 processors, the allocation was done by utilising all processors

of 26 nodes and only one processor of an additional (27th) node; the latter processor was the fast-processing

PU, and all other PUs exhibited slower but equal (on average) speeds. On the contrary, for the slowly

progressing 6th simulation chunk (Figure 6(b)), there is number of PUs that save considerably fewer snapshots

per GVT computation block. Upon further investigation, it was identified that all of the slowly progressing

12

PUs belonged to a limited number of computational nodes. This was an indication that either the hardware of

the aforementioned nodes was not operating at full capacity or certain background processes were consuming

computational resources. In subsequent chunks, the ‘‘problematic nodes’’ were excluded and thus, we started

observing a consistent pattern in the GVT progression (8th chunk onwards in Figure 5).

It is pertinent to consider the extent to which, if any, the asynchronisation of processors grows over time.

Kolakowska and Novotny (49) among others (50-52) have applied techniques from non-equilibrium surface

growth to understand the evolution of the virtual time horizon (VTH), defined as the collection of all local

virtual (KMC) times (LVTs) in a parallel simulation. The degree of asynchronisation is then analogous to the

roughness of a one-dimensional surface, such that each LVT corresponds to the height of a column on the

surface; the columns grow via pseudorandom ‘‘depositions’’ of kinetic waiting times. The roughness of the

VTH can be quantified by the standard deviation of the LVTs, expected to grow like √t (49). In Figure 7, we

plot the progress of this quantity during our Brusselator simulation. While there are large fluctuations, it is not

possible to identify any consistent growth. This is encouraging, since a higher degree of asynchronisation may

worsen simulation efficiency, but it is likely a fortuitous result of the frequent restarts in our simulation. In our

Time-Warp implementation, each time the simulation is paused, all PUs roll back to the most recent KMC

state that satisfies LVT < GVT; thus, only one snapshot is saved in the checkpointing file, thereby reducing

disk space utilisation. Hence the PUs become synchronised after every restart operation, effectively quenching

any roughening of the VTH. We expect that roughening would be observed, however, in a longer,

uninterrupted simulation. Pausing and resuming the simulation may thus be an effective way to mitigate VTH

roughening in Time-Warp simulations, although further investigations are needed to verify this. Other

methods have already been developed to suppress the roughening in synchronous (conservative) schemes for

parallel discrete-event simulation (50), which might also be transferrable to asynchronous (optimistic) schemes

such as Time-Warp.

While we did not observe asynchronisation among the different processors, the simulation efficiency is

hampered by the need to correct the simulated history via the inherent rollbacks of the Time-Warp algorithm.

To quantify the pertinent overhead, we calculate the ratio between the KMC time that was rerun due to

rollbacks versus the GVT advancement, for each interval between successive global communications. Clearly,

this quantity is zero in the ideal case of decoupled domains because of the lack of any rollbacks. For the

Brusselator simulation, this ratio is plotted in Figure S1 in the Supplementary Material for PUs 0, 100 and 624,

for the last simulation chunk (index 24). For all PUs, the overhead is substantial, e.g., for PU 0, the ratio in

discussion ranged between 5.8 and 69.2, and on average about 14.7 KMC time units had to be re-simulated for

13

every KMC time unit of GVT advancement. For the fast-processing PU 624, this ratio was even higher, with a

range between 13.0 and 122.2 and an average of 31.4.

To assess the potential of the distributed KMC algorithm, we executed a short serial run of the Brusselator

system on the 4000×4000 lattice (using the sequential KMC algorithm on just one processor). This simulation

was initialised with a lattice state that corresponded to the well-developed spiral patterns at t = 399.5. To

enable meaningful comparisons among the different runs, we use the normalised simulation wall time,

defined as the real-world time hours needed to simulate one KMC time unit. For the serial run on HPC cluster

Thomas, the normalised simulation wall time was found to be 19.7 hours. In comparison, for the distributed

simulation over 625 PUs only 1.3 hours of wall time are needed on average per KMC time unit. Therefore, the

distributed algorithm achieves an acceleration factor of ~15× and, most importantly, makes possible the

simulation of our benchmark model within a reasonable amount of time. By comparison, the serially executed

KMC simulation would need slightly more than 1.5 years of computation in order to obtain the same results

(i.e., reach a final KMC time of 620 KMC time units) as those obtained by the distributed implementation in

just 38 days.

Lastly, aiming to investigate the scalability and stability of the Time-Warp implementation in large scale

distributed runs, we performed a limited number of runs using the same benchmark setup (Brusselator

system on a 4000×4000 lattice) distributed over 1600 PUs instead of 625 PUs. The computational cluster

Kathleen@UCL was used for these simulations, which is a UCL High Performance Computing Facility,

comprising 192 diskless compute nodes each containing 40 CPU cores (2 × 20-core Intel Xeon Gold 6248

2.5 GHz processors), 192 gigabytes of 2933 MHz DDR4 RAM, and an Intel OmniPath network. For the first

chunk of this large run, the initial condition was that of the fully developed spirals at t = 399.5 (as in the serial

run discussed in the previous paragraph). The simulation was run for 12 hours and was restarted two more

times to reach a final KMC time of 57.2 KMC time units in a total real time of 35 hours. These runs revealed

similar slowdown issues as those observed the runs with 625 PUs, due to slow hardware or background

processes consuming computational resources (Figure S2). Yet, the acceleration factors achieved are

significant. Table 3 summarises both our medium- and large-scale distributed runs by presenting the

computation cost of our simulations and the achieved acceleration factors by the distributed simulations as

compared against the serial runs. As expected, distributing the workload over more PUs, namely over 1600

versus 625, we obtain a better (higher) acceleration factor of about 36×.

It is useful to note that the acceleration factor from the serial run to the distributed with 625 PUs is quite less

than ideal due to the extra time required to save and delete state snapshots, perform rollbacks and re-simulate

KMC history. As the number of PUs is increased further to 1600 and the subdomain area correspondingly

14

decreases, the number of rollbacks (and fraction of time spent re-simulating history) will be even higher.

However, the speed-up relative to 625 PUs is almost ideal (1600/625 = 2.56 ≈ 36/15 = 2.4). This may be

explained by less time being required for saving/deleting snapshots, which are smaller and thus occupy less

memory per PU.

Conclusions

In this study, we demonstrated and benchmarked our coupled implementation of the Time-Warp algorithm

(37) and the Graph-Theoretical KMC framework (7, 8), for exact, distributed KMC simulations of reactive

phenomena. The main idea behind the Time-Warp approach is to decompose the domain (lattice) into smaller

subdomains and assign each one of them to a different processing element. Events are executed ‘‘locally’’ for

the internal sites of each subdomain, and events that involve boundary sites are communicated to the

neighbouring subdomains. Since each subdomain has its own timeline, causality violations may occur when,

for example, one subdomain that is ‘‘lagging behind’’ in KMC time, tries to send a species via diffusion to a

nearby domain that is further ahead in time. The KMC history of the domain that receives the particle is no

longer valid and needs to be corrected. This is achieved by saving snapshots along the KMC simulation and

restoring the most suitable one when such conflicts arise. Corrections to the history are made repeatedly as

necessary, up to the point that histories which are mutually consistent among all subdomains are obtained.

The key feature of this method is that it reproduces exactly the dynamics of the underlying stochastic model,

without introducing numerical approximations (being only subject to the precision errors of the computing

architecture used). This is particularly attractive when simulating complex systems in chemistry and catalysis,

such as those that exhibit spatiotemporal inhomogeneities, with examples encompassing chemical oscillators

in extended media (Belousov-Zhabotinsky reaction (34)) or pattern formation due to surface reconstruction in

catalysis. For such simulations, the absence of artefacts due to numerical approximations is key to confidently

ascertain the relation between the underpinning reaction mechanisms and the observed behaviour.

To demonstrate our approach in this context, we developed a lattice-based variant of the Brusselator system

and performed simulations for sufficiently large lattices and KMC times in which spiral wave patterns were

successfully observed. The distributed runs were found to have overheads, stemming from the saving and

restoring of snapshots, the necessary re-simulations to correct the history, and the communications among the

PUs. Still though, the newly implemented parallelisation in our software Zacros proved to be stable and

performant, being able to simulate the Brusselator dynamics about 15 times faster when using 625 PUs,

compared to the sequential KMC algorithm, and 36 times faster with 1600 PUs. Our approach is thus expected

15

to be invaluable in future research efforts aiming at obtaining a fundamental understanding of intricate

spatiotemporal phenomena on catalytic surfaces. Such phenomena could e.g., arise from surface

reconstruction, which is considered responsible for pattern formation on even simple systems like CO

oxidation on Pd(110) (25). Harnessing the power of HPC architectures with our software could thus make it

possible to capture new physics, and bridge the gap between the molecular scale and the meso- and macro-

scales towards unravelling the complexity of heterogeneous catalysts.

Acknowledgments

This project has received funding from the embedded CSE program of the ARCHER and ARCHER2 UK

National Supercomputing Services (http://www.archer.ac.uk, https://www.archer2.ac.uk/) (project

identifiers: eCSE01-001, eCSE10-08, eCSE01-13), the Leverhulme Trust (project RPG-2017-361) and from the

European Union's Horizon 2020 research and innovation programme under grant agreement No 814416. The

authors acknowledge the use of the UCL Research Software Development Service (RSD@UCL), as well as the

UCL High Performance Computing (HPC) Facility Kathleen@UCL and associated support services in the

completion of this work. The provision of computational resources by the UK Materials and Molecular

Modelling Hub (specifically access to HPC facility Thomas), which is partially funded by EPSRC

(EP/P020194/1 and EP/T022213/1), is also gratefully acknowledged.

References

1. Battaile CC. 2008. The kinetic Monte Carlo method: Foundation, implementation, and application.
Comput Method Appl M. 197, 3386-98. (doi: 10.1016/j.cma.2008.03.010)

2. Ustinov EA, Do DD. 2012. Application of kinetic Monte Carlo method to equilibrium systems: Vapour-
liquid equilibria. J Colloid Interf Sci. 366, 216-23. (doi: 10.1016/j.jcis.2011.09.074)

3. Apostolopoulou M, Santos MS, Hamza M, Bui T, Economou IG, Stamatakis M, Striolo A. 2019.
Quantifying Pore Width Effects on Diffusivity via a Novel 3D Stochastic Approach with Input from
Atomistic Molecular Dynamics Simulations. J. Chem. Theory Comput. 15, 6907-22. (doi:
10.1021/acs.jctc.9b00776)

4. Franco AA, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P, Johansson P. 2019. Boosting
Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? Chem. Rev. 119, 4569-627. (doi:
10.1021/acs.chemrev.8b00239)

5. Ravipati S, Savva GD, Christidi I-A, Guichard R, Nielsen J, Réocreux R, Stamatakis M. 2022. Coupling the
Time-Warp algorithm with the Graph-Theoretical Kinetic Monte Carlo framework for distributed
simulations of heterogeneous catalysts. Comput. Phys. Commun. 270, 108148. (doi:
10.1016/j.cpc.2021.108148)

6. Ravipati S, d’Avezac M, Nielsen J, Hetherington J, Stamatakis M. 2020. A Caching Scheme To Accelerate
Kinetic Monte Carlo Simulations of Catalytic Reactions. J Phys Chem A. 124, 7140-54. (doi:
10.1021/acs.jpca.0c03571)

http://www.archer.ac.uk/
https://www.archer2.ac.uk/

16

7. Nielsen J, d’Avezac M, Hetherington J, Stamatakis M. 2013. Parallel Kinetic Monte Carlo Simulation
Framework Incorporating Accurate Models of Adsorbate Lateral Interactions. J. Chem. Phys. 139, 224706.
(doi: 10.1063/1.4840395)

8. Stamatakis M, Vlachos DG. 2011. A Graph-Theoretical Kinetic Monte Carlo Framework for on-Lattice
Chemical Kinetics. J. Chem. Phys. 134, 214115. (doi: 10.1063/1.3596751)

9. Savva GD, Stamatakis M. 2020. Comparison of Queueing Data-Structures for Kinetic Monte Carlo
Simulations of Heterogeneous Catalysts. J. Phys. Chem. A. 124, 7843-56. (doi: 10.1021/acs.jpca.0c06871)

10. Stamatakis M. Zacros: Advanced Lattice-KMC simulation Made Easy 2013 [Available from:
https://zacros.org.

11. Plimpton S, Battaile C, Chandross M, Holm L, Thompson A, Tikare V, Wagner G, Webb E, Zhou X,
Cardona CG, Slepoy A. Crossing the Mesoscale No-Man’s Land via Parallel Kinetic Monte Carlo.
Albuquerque, NM: Sandia National Laboratories; 2009. Report No.: SAND2009-6226.

12. Plimpton S, Thompson A, Slepoy A. SPPARKS Kinetic Monte Carlo Simulator Sandia National
Laboratories; 2012 [Available from: http://spparks.sandia.gov/.

13. Leetmaa M, Skorodumova NV. 2014. KMCLib: A general framework for lattice kinetic Monte Carlo
(KMC) simulations. Comput. Phys. Commun. 185, 2340-9. (doi: 10.1016/j.cpc.2014.04.017)

14. Hoffmann MJ. kMC on steroids: A vigorous attempt to make lattice kinetic Monte Carlo modeling as fast
as possible. 2014 [Available from: http://mhoffman.github.io/kmos/.

15. Hoffmann MJ, Matera S, Reuter K. 2014. kmos: A lattice kinetic Monte Carlo framework. Comput. Phys.
Commun. 185, 2138-50. (doi:

16. Papanikolaou KG, Stamatakis M. Chapter 7 - Toward the accurate modeling of the kinetics of surface
reactions using the kinetic Monte Carlo method. In: Grammatikopoulos P, editor. Frontiers of
Nanoscience. 17: Elsevier; 2020. p. 95-125.

17. Pineda M, Stamatakis M. 2022. Kinetic Monte Carlo simulations for heterogeneous catalysis:
Fundamentals, current status, and challenges. J. Chem. Phys. 156, 120902. (doi: 10.1063/5.0083251)

18. Chutia A, Thetford A, Stamatakis M, Catlow CRA. 2020. A DFT and KMC based study on the mechanism
of the water gas shift reaction on the Pd(100) surface. Phys. Chem. Chem. Phys. 22, 3620-32. (doi:
10.1039/c9cp05476f)

19. Chatterjee A, Voter AF. 2010. Accurate acceleration of kinetic Monte Carlo simulations through the
modification of rate constants. J. Chem. Phys. 132, 194101. (doi: 10.1063/1.3409606)

20. Danielson T, Sutton JE, Hin C, Savara A. 2017. SQERTSS: Dynamic rank based throttling of transition
probabilities in kinetic Monte Carlo simulations. Comput. Phys. Commun. 219, 149-63. (doi:
10.1016/j.cpc.2017.05.016)

21. Dybeck EC, Plaisance CP, Neurock M. 2017. Generalized Temporal Acceleration Scheme for Kinetic
Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions. J. Chem.
Theory Comput. 13, 1525-38. (doi: 10.1021/acs.jctc.6b00859)

22. Schulze TP. 2002. Kinetic Monte Carlo simulations with minimal searching. Phys. Rev. E. 65, 036704. (doi:
10.1103/Physreve.65.036704)

23. Chatterjee A, Vlachos DG. 2007. An overview of spatial microscopic and accelerated kinetic Monte Carlo
methods. J. Comput.-Aided Mater. Des. 14, 253-308. (doi: 10.1007/s10820-006-9042-9)

24. Hess F. 2019. Efficient Implementation of Cluster Expansion Models in Surface Kinetic Monte Carlo
Simulations with Lateral Interactions: Subtraction Schemes, Supersites, and the Supercluster Contraction.
J Comput Chem. 40, 2664-76. (doi: 10.1002/jcc.26041)

25. Nettesheim S, Vonoertzen A, Rotermund HH, Ertl G. 1993. Reaction-Diffusion Patterns in the Catalytic
CO oxidation on Pt(110) - Front Propagation and Spiral Waves. J. Chem. Phys. 98, 9977-85. (doi:
10.1063/1.464323)

26. Kapička J, Marek M. 1989. Oscillations on Individual Catalytic Pellets in a Packed-Bed - CO Oxidation on
Pt/Al2O3. J. Catal. 119, 508-11. (doi: 10.1016/0021-9517(89)90178-4)

https://zacros.org/
http://spparks.sandia.gov/
http://mhoffman.github.io/kmos/

17

27. Kapička J, Marek M. 1989. Transition to Chaos in the Oscillating CO Oxidation on Pt/Al2O3. Surf. Sci. 222,
L885-L9. (doi: 10.1016/0039-6028(89)90359-2)

28. Marek M, Schejbal M, Kočí P, Nevoral V, Kubicek M, Hadac O, Schreiber I. 2006. Oscillations, period
doublings, and chaos in CO oxidation and catalytic mufflers. Chaos. 16, 037107. (doi: 10.1063/1.2354429)

29. Stotzel J, Frahm R, Kimmerle B, Nachtegaal M, Grunwaldt JD. 2012. Oscillatory Behavior during the
Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the
QEXAFS Technique. J. Phys. Chem. C. 116, 599-609. (doi: 10.1021/jp2052294)

30. Ciambelli P, Di Benedetto A, Garufi E, Pirone R, Russo G. 1998. Spontaneous isothermal oscillations in
N2O decomposition over a Cu-ZSM5 catalyst. J. Catal. 175, 161-9. (doi: 10.1006/jcat.1998.1986)

31. Janssen NMH, Cobden PD, Nieuwenhuys BE, Ikai M, Mukai K, Tanaka K. 1995. Hysteresis and
Oscillations in the Selectivity during the NO-H2 Reaction over Rh(533). Catal. Lett. 35, 155-63. (doi: Doi
10.1007/Bf00807013)

32. Imbihl R. 1993. Oscillatory Reactions on Single-Crystal Surfaces. Prog Surf Sci. 44, 185-343. (doi: Doi
10.1016/0079-6816(93)90086-B)

33. Schüth F, B.E. Henry, Schmidt LD. 1993. Oscillatory Reactions in Heterogeneous Catalysis. Advances in
Catalysis. 39, 51-127. (doi: 10.1016/S0360-0564(08)60577-5)

34. Belousov BP. Periodicheski deistvuyushchaya reaktsia i ee mekhanism [Periodically acting reaction and
its mechanism]. Sbornik referatov po radiotsionnoi meditsine [Collection of Abstracts on Radiation
Medicine]. Moscow: Medgiz1959. p. 145-7.

35. Chatzinikolaou TP, Fyrigos IA, Ntinas V, Kitsios S, Tsompanas MA, Bousoulas P, Tsoukalas D,
Adamatzky A, Sirakoulis GC. 2022. Chemical Wave Computing from Labware to Electrical Systems.
Electronics-Switz. 11, 1683. (doi: 10.3390/electronics11111683)

36. Mikhailov AS, Showalter K. 2006. Control of waves, patterns and turbulence in chemical systems. Phys
Rep. 425, 79-194. (doi: 10.1016/j.physrep.2005.11.003)

37. Jefferson DR. 1985. Virtual Time. ACM Transactions on Programming Languages and Systems. 7, 404-25.
(doi: 10.1145/3916.3988)

38. Lubachevsky BD. 1988. Efficient Parallel Simulations of Dynamic Ising Spin Systems. J. Comput. Phys. 75,
103-22. (doi: 10.1016/0021-9991(88)90101-5)

39. Shim Y, Amar JG. 2005. Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo
simulations of thin film growth. Phys. Rev. B. 71, 125432. (doi: 10.1103/PhysRevB.71.125432)

40. Merrick M, Fichthorn KA. 2007. Synchronous relaxation algorithm for parallel kinetic Monte Carlo
simulations of thin film growth. Phys. Rev. E. 75, 011606. (doi: 10.1103/Physreve.75.011606)

41. Martínez E, Marian J, Kalos MH, Perlado JM. 2008. Synchronous parallel kinetic Monte Carlo for
continuum diffusion-reaction systems. J. Comput. Phys. 227, 3804-23. (doi: 10.1016/j.jcp.2007.11.045)

42. Arampatzis G, Katsoulakis MA, Plechac P, Taufer M, Xu LF. 2012. Hierarchical fractional-step
approximations and parallel kinetic Monte Carlo algorithms. J. Comput. Phys. 231, 7795-814. (doi:
10.1016/j.jcp.2012.07.017)

43. Oppelstrup T, Jefferson DR, Bulatov VV, Zepeda-Ruiz LA, editors. SPOCK: Exact parallel kinetic Monte-
Carlo on 1.5 million tasks. SIGSIM-PADS '16: Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation; 2016.

44. Piccinin S, Stamatakis M. 2017. Steady-State CO Oxidation on Pd(111): First-Principles Kinetic Monte
Carlo Simulations and Microkinetic Analysis. Top. Catal. 60, 141-51. (doi: 10.1007/s11244-016-0725-5)

45. Glansdorff P, Prigogine I. Thermodynamics of Structure, Stability and Fluctuations. New York: Wiley-
Interscience; 1971.

46. Prigogine I, Lefever R. 1968. Symmetry Breaking Instabilities in Dissipative Systems. II. J. Chem. Phys. 48,
1695-700. (doi: 10.1063/1.1668896)

47. Nicolis G, Prigogine I. Self-organization in nonequilibrium systems: from dissipative structures to order
through fluctuations. New York: Wiley; 1977.

48. Wellner M, Berenfeld O. Chapter 35 - Theory of Reentry. In: Zipes DP, Jalife J, editors. Cardiac
Electrophysiology (Fourth Edition): W.B. Saunders; 2004. p. 317-26.

18

49. Kolakowska A, Novotny MA. Desynchronization and Speedup in an Asynchronous Conservative
Parallel Update Protocol. In: Shannon S, editor. Artificial Inteligence and Computer Science. New York:
Nova Science Publishers, Inc.; 2005. p. 151-76.

50. Korniss G, Novotny MA, Guclu H, Toroczkai Z, Rikvold PA. 2003. Suppressing roughness of virtual
times in parallel discrete-event simulations. Science. 299, 677-9. (doi: 10.1126/science.1079382)

51. Shchur LN, Shchur LV. 2015. Relation of Parallel Discrete Event Simulation algorithms with physical
models. J Phys Conf Ser. 640, 012065. (doi: 10.1088/1742-6596/640/1/012065)

52. Shchur LN, Novotny MA. 2004. Evolution of time horizons in parallel and grid simulations. Phys. Rev. E.
70, 026703. (doi: 10.1103/PhysRevE.70.026703)

19

Tables

Event
label

‘‘Original’’
Brusselator

Lattice-based
Brusselator

(a, d) A X→ , →X E ()gasX X∗+ ∗↔

(b) 2X Y 3X+ → 2X Y 3X∗ ∗ ∗+ →

(c) B X Y D+ → + () ()gas gasB X Y D∗ ∗+ ↔ +

Table 1: Elementary events (not including diffusions) of the lattice-based Brusselator adaptation, vis-à-vis

those of the original system. The labelling of the events corresponds to that in Ref. (36).

20

Event
Number Event/Reaction Afwd Afwd / Arev kfwd krev

(i) 0.7 bar--- 1 s --- 1 0.91 bar--- 1 0.28 s--- 1 0.769 s--- 1

(ii) 3.8 s--- 1 --- 3.8 s--- 1 ---

(iii) 9 bar--- 1 s --- 1 15 3.6 s--- 1 0.12 s--- 1

(iv) 400 s--- 1 --- 400 s--- 1 ---

(v) 4 s--- 1 --- 4 s--- 1 ---

(vi) 400 s--- 1 --- 400 s--- 1 ---

Table 2: Schematics and values of the pre-exponentials of the elementary events of the lattice-based
Brusselator. The rate constants are also shown for each event at the conditions of the simulations; these rate
constants give the expected rate of occurrence of each event per instance of the pertinent coverage pattern on
the lattice.

∗ X(gas) + X∗ ↔

X∗ → Y∗

X∗

X∗ X∗

X∗

X∗ B(gas) + Y∗ ↔ D(gas) +

∗ → X∗ X∗ ∗

∗ → Y∗ Y∗ ∗

Y∗ → X∗ X∗ Y∗

21

HPC
cluster Simulation type

Normalised
simulation wall time
(hours / KMC time)

Acceleration factor

Thomas
Serial 19.7 -

Distributed 625 PUs 1.3 15×

Kathleen
Serial 15.6 -

Distributed 1600 PUs 0.44 36×

Table 3: Normalised simulation wall time and acceleration factors of the distributed runs.

22

Figure and table captions
Figure 1: Schematic procedure of causality violations and of the way they are resolved. The blue rectangles
represent KMC timelines; black squares represent snapshots saved; circles with inward and outward arrows
represent received and sent messages, respectively; triple arrows represent anti-messages. (a) PU2 receives a
message with timestamp t5, which is at its past. (b) PU2 reverts back to time t2 using a saved snapshot and re-
simulates the history until t5. PU2 sends anti-messages with timestamps t6 and t7 corresponding to the previously
sent messages. (c) PU1 receives the anti-messages and reverts back to t4 using a saved snapshot.

Figure 2: Geometry and coverages used as initial condition. (a) The overall domain of 4000×4000 sites was
separated into four sections using two overlapping rectangles as indicated in the diagram. The centre of the
larger rectangle is positioned exactly at the centre of the domain, and the long sides of both rectangles form an
angle of 45° with the side of the overall domain. (b) Adsorbed molecules of species X∗ and Y∗ were seeded onto
the lattice thereby achieving the coverages denoted in the diagram, for each of the four sections.

Figure 3: Snapshots of the average fractional coverages of X∗ (panels a, b, c, g, h, i) and Y∗ (panels d, e, f, j, k, l)
at various times (in units of s) during the simulation. The coverage of X∗ spans a range of about 0 to 0.5 and that
of Y∗ a range of about 0.3 to 0.7. The initial state (a, d) leads to the formation of two spirals rotating in opposite
directions. At time 413 s, a secondary wavefront emerges close to the tip of the lower spiral, and eventually
pushes the tip closer to the centre of the domain.

Figure 4: (a) Fractional surface coverages of X∗ and Y∗. (b) Frequency of elementary events executed, given in
number of events per unit time for the overall lattice.

Figure 5: Global virtual time (GVT) plotted against wall time for our Brusselator simulation with 625
processors. Red, dashed lines are used to indicate where the simulation was paused and later restarted. The
numbers on the top represent the simulation restart index of each chunk.

Figure 6: Number of snapshots taken plotted against the GVT computation block for (a) restart number 4 and
(b) restart number 6 of the simulation. Each curve represents one PU so there are 625 curves in each of the
panels (a) and (b). In (a) all of the PUs except one save on average the same number of snapshots. In (b), there
are several PUs that save considerably less snapshots for the whole duration of the simulation. The
computational load imbalance is responsible for the single PU that shows a higher execution of KMC steps in
both panels.

Figure 7: Standard deviation of the local virtual times (LVTs) plotted against wall time for our Brusselator
simulation with 625 processors.

Table 1: Elementary events (not including diffusions) of the lattice-based Brusselator adaptation, vis-à-vis those
of the original system. The labelling of the events corresponds to that in Ref. (46).

Table 2: Schematics and values of the pre-exponentials of the elementary events of the lattice-based Brusselator.
For event (ii) both linear and 90°-angle configurations are permitted (even though only the latter is depicted).

23

The rate constants are also shown for each event at the conditions of the simulations; these rate constants give
the expected rate of occurrence of each event per instance of the pertinent coverage pattern on the lattice.

Table 3: Normalised simulation wall time and acceleration factors of the distributed runs.

24

Figures

Figure 1: Schematic procedure of causality violations and of the way they are resolved. The blue rectangles
represent KMC timelines; black squares represent snapshots saved; circles with inward and outward arrows
represent received and sent messages, respectively; triple arrows represent anti-messages. (a) PU2 receives a
message with timestamp t5, which is at its past. (b) PU2 reverts back to time t2 using a saved snapshot and re-
simulates the history until t5. PU2 sends anti-messages with timestamps t6 and t7 corresponding to the
previously sent messages. (c) PU1 receives the anti-messages and reverts back to t4 using a saved snapshot.

25

Figure 2: Geometry and coverages used as initial condition. (a) The overall domain of 4000×4000 sites was
separated into four sections using two overlapping rectangles as indicated in the diagram. The centre of the
larger rectangle is positioned exactly at the centre of the domain, and the long sides of both rectangles form an
angle of 45° with the side of the overall domain. (b) Adsorbed molecules of species X and Y were seeded onto
the lattice thereby achieving the coverages denoted in the diagram, for each of the four sections.

26

Figure 3: Snapshots of the average fractional coverages of X (panels a, b, c, g, h, i) and Y (panels d, e, f, j, k, l)
at various times (in units of s) during the simulation. The coverage of X spans a range of about 0 to 0.5 and
that of Y a range of about 0.3 to 0.7. The initial state (a, d) leads to the formation of two spirals rotating in
opposite directions. At time 413 s, a secondary wavefront emerges close to the tip of the lower spiral, and
eventually pushes the tip closer to the centre of the domain.

27

Figure 4: (a) Fractional surface coverages of X and Y. (b) Frequency of elementary events executed, given in
number of events per unit time for the overall lattice.

28

Figure 5: Global virtual time (GVT) plotted against wall time for our Brusselator simulation with 625
processors. Red, dashed lines are used to indicate where the simulation was paused and later restarted. The
numbers on the top represent the simulation restart index of each chunk.

29

Figure 6: Number of snapshots taken plotted against the GVT computation block for (a) restart number 4 and
(b) restart number 6 of the simulation. Each curve represents one PU so there are 625 curves in each of the
panels (a) and (b). In (a) all of the PUs except one save on average the same number of snapshots. In (b), there
are several PUs that save considerably less snapshots for the whole duration of the simulation. The
computational load imbalance is responsible for the single PU that shows a higher execution of KMC steps in
both panels.

30

Figure 7: Standard deviation of the local virtual times (LVTs) plotted against wall time for our Brusselator
simulation with 625 processors.

31

Supplementary material

Additional Performance-Benchmark Data. Preliminary Investigations towards Determining Parameter Values.
Spatial Reactivity Maps.

*Author for correspondence (m.stamatakis@ucl.ac.uk).
†Present address: Laboratory of theory and simulation of materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland

Exact Distributed Kinetic Monte Carlo Simulations for On-
Lattice Chemical Kinetics: Lessons Learnt from Medium- and

Large-Scale Benchmarks
Giannis D. Savva1,†, Raz L. Benson1, Ilektra-Athanasia Christidi2, Michail Stamatakis*,1

1 Thomas Young Centre and Department of Chemical Engineering, University College London,
Torrington Place, London WC1E 7JE, United Kingdom

2 Research Software Development Group, Advanced Research Computing Centre, University College
London, Gower Street, London WC1E 6BT, United Kingdom

Supplementary Material

Additional Performance-Benchmark Data

Figure S1: Ratio between the KMC time that was rerun due to rollbacks versus the GVT advancement,
for each interval between successive global communications. This ratio is plotted for three
representative processing units (PUs) for the last chunk of the Brusselator run on 624 PUs
(approximate KMC time range: 586.5 to 621.0). The trends of this ratio follow the periodic dynamics
of the simulated system. PUs 0 and 100 show similar trends to all other PUs, except from PU 624. The
latter progresses the simulation slightly faster, since it corresponds to the only processor allocated in
the 27th node, as discussed in the main text. Thus, the efficiency of PU 624 is lower than that of the
other PUs, as indicated by the higher ratio of KMC time rerun versus GVT advancement.

mailto:m.stamatakis@ucl.ac.uk

Page 2 of 8

Figure S2: Global virtual time (GVT) plotted against wall time for the Brusselator simulation distributed
over 1600 PUs on HPC cluster Kathleen@UCL. The vertical red dashed lines indicate where the
simulation was paused and later restarted. The numbers on the top represent the simulation restart
index of each chunk. The chunk with restart index 0 was progressing at a rate of around 2.1 KMC time
units per hour of wall time, for the first 5 hours of the simulation; then the performance deteriorated
dramatically, especially after the 10th hour. For the next simulation chunk indexed as 1 in the figure,
the progression rate was consistently around 1 KMC time unit per hour of wall time. Finally, for the
last chunk with index 2, the progression rate was around 2.2 KMC time units per hour of wall time for
the entire duration of the run. The slowdown effects observed in the first two chunks of our simulation
runs are attributed to hardware, network and/or operating system not functioning optimally. This was
also the case in the distributed runs over 625 PUs as discussed in the main manuscript.

Figure S3: Results of performance benchmarks on the lattice-Brusselator system distributed over 625
processors, using the snapshot at time 399.5 as the starting configuration. The clock time elapsed per
unit of KMC time, τ∗, is plotted against the state saving interval, δsnap (left) and the GVT computation
interval, ∆τGVT (right). The former (δsnap) quantifies how often KMC snapshots are saved in the memory,
to be used in the case of a rollback. The latter (∆τGVT) is the real time elapsed between successive
global communications. Lower τ∗ indicates higher efficiency. The latter depends strongly on the
frequency of snapshot saving, but weakly if at all on the frequency of global communications.
Reproduced from Ref. (1) (CC BY).

Page 3 of 8

Preliminary Investigations towards Determining Parameter Values

The parameter values chosen for the lattice-based Brusselator have to result in sustained oscillations
at the “local” level (in the absence of spatial gradients and diffusion), and enable the formation of
spiral waves at the “extended medium” level (two-dimensional lattice) which should be robust in the
presence of noise.

To identify parameters that lead to oscillations, we first consider a simple model of the deterministic
dynamics of the lattice-based Brusselator. Thus, in the absence of stochasticity or spatial gradients,
the behaviour of the system can be approximated by the following ordinary differential equations
(ODEs), which can be derived following the approaches introduced in (2) and (3):

() ()

()

, (1)

,

x ads des auto extiX gas

y auto exti

dx f x y k P x y k x R R
dt
dy f x y R R
dt

= = ⋅ ⋅ − − − ⋅ + −

= = − +
 (S1)

with

() ()

() ()

1 1

e gas

auto XYrxn coord coord
sites

xti fwdX aY re XY D svB g

R k y x N x N
N

R k P x k P y

= ⋅ ⋅ ⋅ ⋅ − ⋅ −

= ⋅ ⋅ − ⋅ ⋅

 (S2)

where x and y denote the (fractional) coverages of adsorbed species X∗ and Y∗, kads, kdes, kXYrxn, kfwdXY
and krevXY are respectively the rate constants of events (a), (d), (b), (c)-forward and (c)-reverse of Table
1 in the main text, Ncoord is the coordination number of the lattice (equal to 4), Nsites is the number of
sites of the lattice and PS(gas) is the partial pressure of gas species S (which can be X, B or D). The terms

()coordx N⋅ and ()1 1coord
sites

x N
N

− ⋅ −

 give, respectively, the average number of the first and

second possible reactant X∗ in the neighbourhood of a Y∗ adsorbate, allowing us to capture the average
rate of the autocatalytic conversion of Y∗ to X∗ as a product of molecular populations normalised by
the number of sites.

The above expressions contain several parameters, but we can slightly simplify the analysis by making
the approximation that 1/Nsites ≈ 0, since the number of sites is presumed to be large, and introducing
the dimensionless time τ:

()1XYrxn coord coordt k N Nτ = ⋅⋅ ⋅ − (S3)

Then, the ODE system becomes:

()

()

2

2

, (1) ()

,

x

y

dx f x y x y x y x y
d
dy f x y y x x y
d

= = ρ⋅ − − − α +β ⋅ + ⋅ + δ ⋅
τ

= = − ⋅ +β⋅ − δ ⋅
τ

 (S4)

which contains only four dimensionless parameters:

Page 4 of 8

()

()

()

()

1

1

1

1

ads X

XYrxn coord coord

des

XYrxn coord coord

fwdXY B

XYrxn coord coord

revXY D

XYrxn coord coord

k P
k N N

k
k N N

k P
k N N

k P
k N N

⋅
ρ =

⋅ ⋅ −

α =
⋅ ⋅ −

⋅
β =

⋅ ⋅ −

⋅
δ =

⋅ ⋅ −

 (S5)

The steady state values of x and y can be found by solving:

()
()

0 0

0 0

, 0

, 0
x

y

f x y

f x y

=

=
 (S6)

which give rise to a cubic equation for y0:

() () ()2
3 2
0 0 022 1 0y y y

 α +ρ ⋅β α +ρ ⋅δ α +ρ ⋅β
− ⋅ + + + ⋅ − =

 ρ ρ ρ
 (S7)

After solving the above, the steady state value of x can be easily calculated as:

()0
0

1 y
x

− ⋅ρ
=

α +ρ
 (S8)

The stability of the corresponding steady states can be found by calculating the eigenvalues of the
Jacobian at those points:

0 0 0 0

0 0 0 0

, ,

, ,

x x

x y x y

y y

x y x y

f f
x y

f f
x y

 ∂ ∂
 ∂ ∂
 ∂ ∂
 ∂ ∂

 (S9)

It is desirable to have only one unstable steady state (which has eigenvalues with positive real parts).
Thus, in choosing parameter values for the lattice-based Brusselator, we can give arbitrary values to
all but four parameters and then do a parametric study to identify values for the remaining parameters
that enable the system to exhibit oscillations. In our work, we chose to fix the gas species partial
pressures to the following values: PX(gas) = 0.4 bar, PB(gas) = 0.4 bar, PD(gas) = 0.2 bar, and the rate constant
of the autocatalytic reaction: kYXrxn = 3.8 s–1. Moreover, the reverse step of the conversion of X∗ into Y∗
was assumed to have a low rate and thus kfwdXY/krevXY was fixed to 15 (after all this step does not
appear in the original Brusselator, and is only considered in the lattice-based Brusselator to prevent a
terminal/poisoned state of a surface fully covered with Y∗, as discussed in the main text). After these
considerations, parameter sweeps for kads (which is proportional to ρ), kdes (proportional to α) and
kfwdXY (proportional to β) identified the values kads = 0.7 bar–1 s–1, kdes = , kads/0.91 s–1, and kfwdXY = 9 bar–

1 s– 1, as conducive to sustained oscillations.

Page 5 of 8

Moving on to the 2D lattice simulations, identifying regimes in which sustained waves are possible is
important, since noise can destroy such spatiotemporal patterns. In this respect, the role of diffusion
is two-fold: on the one hand it introduces the spatial coupling mechanism necessary for wave
propagation, and on the other hand it suppresses the effect of noise (and therefore makes the
patterns more robust) by homogenising regions of the lattice within a range proportional to the
diffusion length at the timescale of reaction. To choose appropriate values for diffusion kinetic
constants, we first fixed the ratio between these constants for species X∗ versus Y∗, deciding on a value
100:1. The much slower diffusion of Y∗ ensures that this species stays “in place” and gets converted to
X∗ autocatalytically, thereby enabling the effective propagation of the wave. We first experimented
on small lattices (100×100 and 200×200) with a range of diffusion kinetic constants for X∗, and
identified the value of kdiffX = kexchXY = 400 s– 1 as appropriate for the homogenisation of sufficiently
large domains (ensuring robust waves). We then performed progressively larger simulations, while
also adjusting the initial conditions, using lattices of sizes 1000×1000, 1800×1800 and 2000×2000, up
to the point that we were at the position to set up the “full scale” long simulation in the 4000×4000
lattice. The smaller simulations were useful in calculating the wavelength of the spirals, and for the
“full scale” simulation we chose a lattice sufficiently large that a pair of well-developed spirals (each
with about 2 to 3 wavefronts in the domain) could be observed.

Page 6 of 8

Spatial Reactivity Maps

In Figure S4, we plot reactivity maps showing the locations in which each elementary event of Table 2
(adsorption, desorption, reaction and diffusion) occurred during a short simulation. The latter was
conducted as follows: after extracting the adlayer configuration corresponding to time 413 s (see
Figure 3(h, k)), we initiated a new simulation that executed a total of 16 million lattice events.
Information about each of these events, including its location (site numbers involved) was reported in
the general output file. The overall time advancement of this simulation was about 6×10-3 s; thus, the
spiral patterns did not change much during this run, making it feasible to construct accurate spatial
reactivity maps. Event occurrences were classified according to event type and visualised in the form
of scatter plots (the colour indicates density of points in space and was computed via Gaussian Kernel
density estimation).

Page 7 of 8

Figure S4: Spatial reactivity maps showing the occurrence of lattice events within a small time interval
at time 413 s, for all elementary events taken into account in the lattice-based Brusselator system.

We observe that the autocatalytic conversion of Y∗ to X∗ (activation mechanism) is highly localised at
the wavefront, which is expected since its rate exhibits a sharp increase with respect to the coverage
of X∗. The conversion of X∗ back to Y∗ via the Eley-Rideal step is also localised at the wavefront but
appears to be lagging slightly and more active at the rear end of the wave (see also the overlaid plot
in Figure S5). The reverse of the Eley-Rideal step (Y∗ converted to X∗) and the Y∗ diffusion have low
rates and no significant spatial preference, though they seem to be generally suppressed in regions
with low Y∗ coverage. Moreover, the adsorption of X∗ appears favoured in regions where the coverage
of both species is low, as expected, while the desorption of X∗ as well as its diffusion to neighbouring
vacant sites are favoured at the wavefront, where X∗ exists at high coverages. The exchange diffusion
step is favoured in regions where both X∗ and Y∗ exist at high coverages.

Page 8 of 8

Figure S5: Overlaid spatial reactivity maps for the autocatalytic conversion of Y to X (activation
mechanism, red points) and the conversion of X to Y (main inhibition mechanism, blue points).

References

1. Savva GD, Benson RL, Christidi I-A, Stamatakis M. 2023. Large-scale benchmarks of the Time-
Warp/Graph-Theoretical Kinetic Monte Carlo approach for distributed on-lattice simulations of
catalytic kinetics. Phys. Chem. Chem. Phys., Accepted. (doi: 10.1039/D2CP04424B)

2. Pineda M, Stamatakis M. 2018. On the stochastic modelling of surface reactions through reflected
chemical Langevin equations. Comput. Chem. Eng. 117, 145-58. (doi: 10.1016/j.compchemeng.
2018.05.003)

3. Stamatakis M, Vlachos DG. 2011. Equivalence of on-lattice stochastic chemical kinetics with the
well-mixed chemical master equation in the limit of fast diffusion. Comput. Chem. Eng. 35, 2602-
10. (doi: 10.1016/j.compchemeng.2011.05.008)

	PhilTransRoySocA_Invited_TimeWarp_Revised
	Summary
	Main Text
	Introduction
	Methodology
	Overview of the Time-Warp algorithm
	Lattice-based Brusselator Benchmark System

	Results and Discussion
	Conclusions

	Acknowledgments
	References
	Tables
	Figure and table captions
	Figures
	Supplementary material

	PhilTransRoySocA_Invited_TimeWarp_SI_Revised
	Additional Performance-Benchmark Data
	Preliminary Investigations towards Determining Parameter Values
	Spatial Reactivity Maps
	References

