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Abstract—Immersive and interactive experiences offered by
virtual world simulations (VWS) are becoming increasingly
indispensable in today’s digital era, particularly in domains
such as gaming, engineering, and education. Cloud computing
provides a compelling solution for VWS, with its scalability, cost-
effectiveness, and accessibility, combined with efficient processing
capabilities of hardware accelerators such as FPGAs and GPUs.
This paper presents APEIRON, an in-progress distributed library
built on the Ray framework, that aims to facilitate the effective
composition of hardware accelerators on public clouds and
emerging disaggregated platforms. Additionally, this work intro-
duces a novel composability metric, analyzing the intricate rela-
tionship between resource utilization and workload performance.
This study focuses on theoretical composability analyses, laying
groundwork for optimized utilization of hardware resources to
enhance efficiency, thereby potentially reducing operational costs.

Index Terms—computer vision, cloud, accelerators, GPUs,
FPGAs, disaggregated systems, composable systems

I. INTRODUCTION

Advances in computer vision (CV), powered by Artificial
Intelligence (AI) and machine learning techniques, have revo-
lutionized our interaction with the physical environment. The
technology underpinning CV now enables us to process visual
data with an unprecedented efficiency and speed [1]. CV
has become a pillar in numerous sectors including education,
food industry, civil engineering, arts, medicine, agriculture,
and robotics, among others, serving to automate and enhance
human vision.

CV is also pivotal in virtual world simulations (VWS),
primarily developed by the movie and game industry for
complex storytelling. Apart from entertainment, these photore-
alistic virtual environments serve as valuable tools for research
by simulating hard-to-replicate real-world conditions, such as
extreme weather phenomena. They enable stress-testing of
vision algorithms under hazardous conditions or conducting
costly robotics training. Anticipating the surge in virtual world
applications, including digital twins [2], augmented reality [3],
and the yet-to-be-defined ”Metaverse” [4], the demand for effi-
cient processing of CV analytics is set to increase significantly.
A VWS example is illustrated in Fig. 1.

As CV processing traditionally relies on GPUs, the future
demands of VWS applications necessitate innovative solutions
for performance, efficiency, and flexibility. We’re currently
developing APEIRON — a distributed library, employing the
Ray framework [5], that aims to meet these requirements.
APEIRON is designed to provide a unified interface for
VWS, facilitating both task-parallel computations using Ray’s
dynamic execution engine. Our approach with APEIRON is to
utilize hardware accelerators on the public cloud for deploy-
ment, eliminating the need for specialized on-prem hardware.
This library also advocates a disaggregated and composable
approach, dynamically combining resource pools to tailor to
VWS applications. Preliminary tests reveal promising results,
with APEIRON showing potential for better scaling perfor-
mance compared to existing specialized systems. It’s expected
that, with a disaggregated platform, APEIRON might deliver
equivalent performance or energy efficiency using fewer re-
sources. In our ongoing work, we anticipate the following
contributions:
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Fig. 1: Example of a Virtual World Simulation System (AirSim).

• We conduct the first study of Ray-based clusters with CPUs,
GPUs, PCIe-attached Field Programmable Gate Arrays (FP-
GAs), and network-attached FPGAs in publicly available
clouds. Our study covers both the architecture and the pro-
gramming model.

• We introduce a novel metric, composability, to quantify the
suitability of different cloud resources for VWS workloads.

II. BACKGROUND AND MOTIVATION

A. Virtual World Simulation
In a VWS system, as depicted in Fig. 1, experts interact

with a computing environment simulating a virtual world
in distinct states over time. The world is initialized with
a state, and virtual objects are added using actions. The
goal is to provide a sequence of states similar to those in
the real world, given physical rules and an initial state. For
computer vision analytics, experts create a mapping from the
environment’s state to an action that controls the simulation.
Unlike conventional computer simulations, CV analytics for
virtual worlds demands a synergistic approach towards serv-
ing and simulation within a single application, subject to
stringent latency constraints. Current methods often employ
multiple specialized frameworks, leading to restrictive data
flow and limited throughput [6]. Currently, we are developing
a distributed library to address these challenges. Our work-
in-progress aims to enhance both serving and simulation
functionalities within a singular application while ensuring
optimal data flow and high throughput.

B. Cloud Infrastructure Evolution
1) Hyper-converged Infrastructure: Cloud computing, with

its cost advantages, scalability, and usage-based pricing, ap-
peals to traditional Fortune 500 companies. To accommodate
growing workloads, infrastructures are either enhanced (scale-
up) or expanded (scale-out). Many cloud service providers
use hyper-converged servers with accelerators like GPUs and
FPGAs for performance and flexibility [7]. However, the re-
quirements of modern data centers, like the resource allocation
for the pay-as-you-go pricing model, have challenged the
heterogeneity, simplicity, and agility of the hyper-converged
architecture.
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Fig. 2: Positioning of studied systems with respect to the server’s techno-
economic evolution that gives birth to CDIs.

2) Composable Disaggregated Infrastructure: The tradi-
tional IT infrastructure has seen recent evolution with the
rise of composable disaggregated infrastructure (CDI) [8], [9],
as shown in Fig. 2. CDI amalgamates compute, storage, and
networking elements to create a software-defined cloud experi-
ence. This involves disaggregating servers and their resources
- CPUs, GPUs, FPGAs, SSDs - into a vast, connected network
pool. CDI’s promise of flexible, on-demand resource allocation
makes it a coveted goal for data centers [10]. To fully realize
its potential, challenges need to be addressed [11]. Ensuring
servers run optimally without interference calls for treating
all types of devices as first-class citizens. Solutions proposed
include Data Processing Units (DPUs) for workloads typically
handled by CPUs, and utilizing varied interconnection medi-
ums, like PCIe, Ethernet, and InfiniBand. IBM’s‡ cloudFPGA
(cF) research platform [12] serves as a pioneering platform for
studying disaggregated computing.

3) Composability on cloud: Cloud composability refers
to software-managed computing, storage, and networking re-
sources, regardless of physical location. This renders data
center resources as accessible as cloud services, like AWS
instances that can be provisioned through the AWS Console.
Users can select different resources via AWS web interface,
supporting distributed applications with MPI or frameworks
like MapReduce or SPARK.

Yet, software composability faces issues like fixed resources
within an instance, increased latency, and insufficient focus on
hardware accelerators. These issues curb fine-grained system
scalability, as depicted in Fig. 3. This study addresses these
inefficiencies by creating a library for software-composed
cloud resources, focusing on performance, energy efficiency,
cost, and resource utilization. We’ll examine various cloud en-
vironments and hardware accelerators to advance research on
cloud composable systems, focusing on selected deployments
including AWS and cF clusters, as shown in Fig. 2.

III. APEIRON LIBRARY AND COMPOSABILITY

APEIRON, based on Ray [5], is a novel library designed
and implemented to streamline cloud resource usage and
limit overprovisioning. Initially built for distributed machine
learning, Ray has been revamped to address high per-task
overhead and the lack of actor abstraction, making it more
efficient than similar systems like Dask [13].

In its design, APEIRON uses Ray’s resource extensions and
OpenCV for CPU and GPU operations. It brings in workers
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Fig. 3: Composability inefficiency as a study vehicle for efficient use of
resources in software-defined composable systems.

that delegate computations to both PCIe and network-attached
FPGA devices, employing Vitis Vision and cFp Zoo1 for
compatibility with IBM’s cF. This setup, outlined in a YAML
description, allows users to compose systems as needed. On
the implementation front, APEIRON uses a Serving system
based on Ray with custom extensions, a VWS system powered
by the open-source CARLA driving simulator [14], and a
Python API for integrating the two systems.

Composability: The complexity of distributed systems such
as VWS necessitates the evaluation of performance through
diverse metrics. A fundamental part of our analysis involved
understanding how Ray can enhance VWS performance by
effectively distributing workloads across cloud accelerators.
To this end, we utilized Docker containers for isolating the
application and reducing external noise, and then we correlated
the performance of the simulator with system metrics.

An important observation, as illustrated in Fig. 4, reveals
a strong positive correlation between the Function Call Rate
(FCR) and the Frames Per Second (FPS) generated through
computer vision functions. This correlation holds true across
both AWS and cloudFPGA. Specifically, the Cumulative Dis-
tribution Function (CDF) from 100 runs indicates that higher
FCR values, as gauged by Ray’s profiler, correspond to a
greater number of processed frames. This practically translates
to the simulator being able to make the virtual world more
closely mirror real-world dynamics and states.

When correlating FCR with system metrics, AWS instances
showed a high positive correlation with CPU and Cache (L3)
utilization but a neutral correlation with network utilization.
In contrast, cloudFPGA exhibited less dependence on CPU
involvement. These findings are important as they reveal
resource utilization patterns that need to be considered in
complex cloud-based accelerated computing platforms.

Building on these insights, we developed a novel empirical
metric — composability, that offers a measure of the efficacy

1https://github.com/cloudFPGA/cFp Zoo
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Fig. 4: The Function Call Rate (FCR) of the virtual world simulator in relation to the CDF of performance metrics from 100 runs. The AWS metrics were
derived from AWS CPU (c6a.4xlarge), GPU (g4dn.4xlarge), and FPGA (f1.4xlarge) instances.
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Fig. 5: Composability per resource across different instances.

of specific resource selection within an instance for a particular
workload. Composability goes beyond generic metrics, such as
VM performance and energy efficiency, that often overlook the
nuanced dynamics of resource utilization. Mathematically, it’s
expressed as an average of the Spearman correlation between
each resource utilization and the performance of the workload,
as defined in Equation 1:

Ci =
1

n

n∑
k=1

1

m

m∑
j=1

1

s

s∑
l=1

corr(Ri,k,j,l, Pi,k,j,l) (1)

In this equation, Ci represents the composability for an
instance type i, and n, m, and s denote the number of
application scenarios (CV kernels), resources, and image sizes
respectively. Ri,k,j,l and Pi,k,j,l are the resource utilization and
performance of instance i under scenario (CV) k for image size
l. The performance is measured in Frames Per Second (FPS),
while the resource utilization derives from system/OS/Docker
performance counters for every resource type.

Composability, being an average of Spearman correlations,
ranges between -1 to 1, with higher values indicating higher
suitability of an instance for a specific workload. This metric
allows us to expand our analysis to include instance-specific
metrics such as cost and power consumption, which indirectly
correlate with performance. Figure 5 corroborates the widely
anticipated observation that cost and power are inherently
intertwined - typically, more powerful instances are expect-
edly more expensive and power-consuming. This reflects the
absence of negative composability for these particular metrics.
All the other resources have different composability values,
due to their varying degrees of interdependence and potential
for interference in a particular VM setup.

Composability, therefore, holds significant potential as a
metric to inform instance selection and workload scheduling
strategies, as well as shed light on potential over-provisioning
of resources. Its consideration of various factors and intricate
interdependencies within a VM setup can help optimize trade-
offs between performance, cost, and resource utilization.

IV. DISCUSSION & CONCLUSIONS

APEIRON is a composability library extending Ray’s ap-
plication layer to efficiently handle VWS computations on
diverse infrastructure, including disaggregated systems like
IBM’s cloudFPGA. A key focus of ongoing research is the
comprehensive exploration of various accelerator types. Built
on the dynamic computation model of Ray, APEIRON is
well-suited for fine-grained simulation workloads. One notable
innovation of this work-in-progress is the introduction of
composability as an empirical metric. This offers nuanced
insights into the relationships between resource utilization
and application performance, crucial for optimized resource
allocation. However, large-scale analysis and experimentation
with this metric remain ongoing. As part of future work,
we anticipate the application of composability to CDI ar-
chitectures, which could lead to substantial improvements in
performance, along with energy and cost efficiency.
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