

Digialisation for sustainble Nature

- Support Research Infrastructures for biodiversity
- by making a first prototype digital twin
- that drives both science & uses cases
- and connects EU twins & initiatives

Support Research Infrastructures for biodiversity

Scientific community for biology, connecting to scientists at universities

Support Research Infrastructures for biodiversity

- Scientific community for biology, connecting to scientists at universities
- that drives both science & uses cases

The University of Manchester

- by making a first prototype digital twin
- that connects EU twins & initiatives

EUROPEAN OPEN SCIENCE CLOUD

With an interdisciplinary digital twin platform

VSB TECHNICAL
UNIVERSITY
OF OSTRAVA

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

Science! Not engineering!

- ♦ Science is the pursuit and application of knowledge and understanding of the natural and social world following a systematic methodology based on evidence.
- Engineering is the application of science and maths to solve problems. While scientists and inventors come up with innovations, it is engineers who apply these discoveries to the real world.

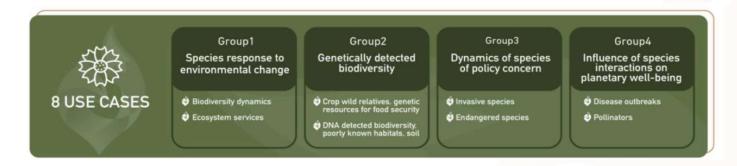
Definition of Twin

A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity

Goal of Science

- Create more knowledge on how our world works. Can we capture this digitally in our virtual representation?
- Like a game engine discovering the rules of physics!
- Can we ensure the right fidelity?

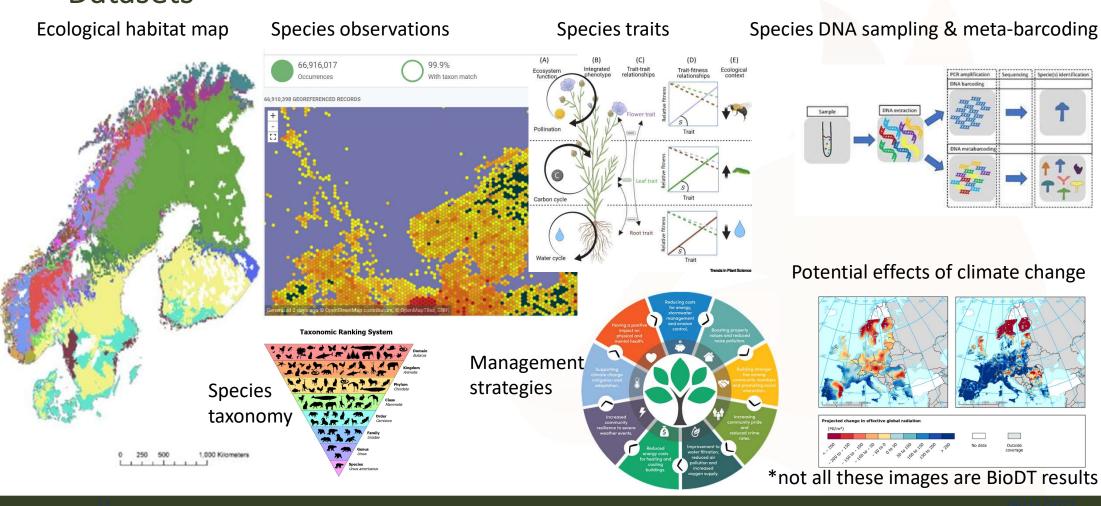
Aim


- Make it easier for scientists to discover new knowledge from (controlled) experiments
- By capturing more and more knowledge in virtual representations that can be used to more easily test hypothesis & compound knowledge

Usage

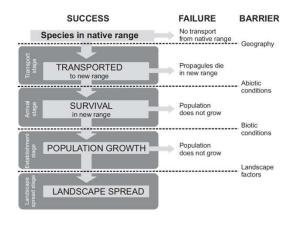
- Replicas that can be applied for...
- Engineering! So we can now apply this to our normal lifecycle in terms of what we humans do that affects biology

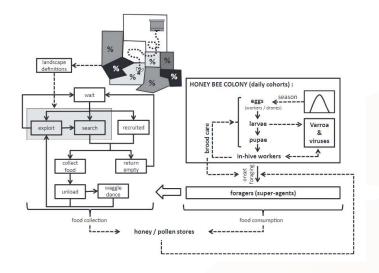
BioDT Use-Cases


- Species response to environmental change
- Genetically detected biodiversity

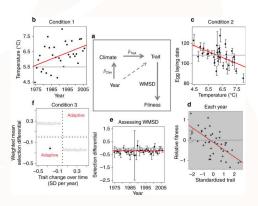
- Invasive & endangered species
- Influence of species interactions on planetary well-being like diseases & pollination

10 06/11/2022


Datasets

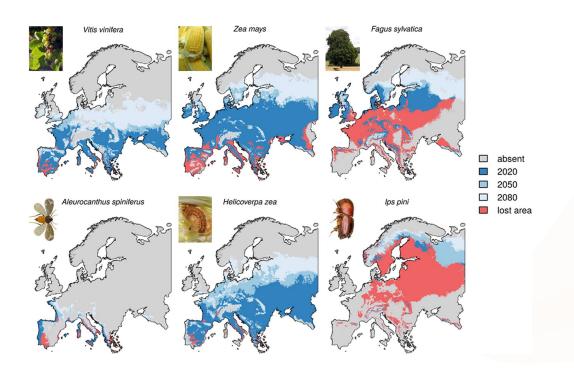


Models

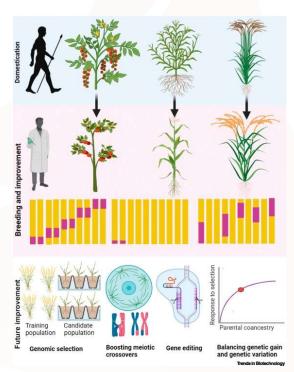

Species spread model

Species behavior model

Species adaptation model



*not all these images are BioDT results



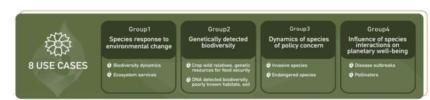
Applications

Impact of invasive species on crop loss due to climate change

Increased crop yield by cross-combination Based on gene traits

*not all these images are BioDT results

- Science questions:
 - Which habitat supports which species?
 - Which species, has which traits?
 - What is the variation within species
 - How do species interact with their habitat & other species?
 - How do species spread?
 - How do management strategies affect habitats, species, interaction


- Engineering questions:
 - Given the EU Biodiversity strategy for 2030
- Which management strategies create sustainable impact nature, our welfare and economy:
 - To conserve nature
 - Make it adaptable for climate change
 - Ensure our food supply (increase yield)
 - Mitigate diseases, risks & invasive species

06/11/2022

Future outlook

- Species response to climate change:
 - Which management strategies will maintain or increase biodiversity best for grasslands & forests?
- Genetically detected biodiversity:
 - Which regions will most likely have wild-relatives that can diversify the crop genepool most? Can we identify genetic traits for cross-breeding?
- Species of policy concern
 - How can we better model the spread of invasive species. Which influence can we have as humans on this spread?
 - Which management strategy best conserves endangered species?
- Species interaction
 - Which land-use strategy best supports pollinators (honeybees) to ensure our food supply?
 - When will animal transmitted disease become common due to climate change and species interactions?

