
Interaction-based Offline Runtime Verification of
Distributed Systems

Erwan Mahe1 , Boutheina Bannour1 , Christophe Gaston1 ,
Arnault Lapitre1 , and Pascale Le Gall2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Université Paris-Saclay, CentraleSupélec, F-91192, Gif-sur-Yvette, France

Abstract. Interactions are formal models describing asynchronous com-
munications within a distributed system. They can be drawn in the fash-
ion of sequence diagrams and associated with an operational semantics
in the style of process algebras. In this paper, we propose an algorithm
for offline runtime verification against interactions. Our algorithm deals
with observability issues e.g. that some subsystems may not be observed
or that some events may not be observed when the end of monitoring on
different subsystems cannot be synchronized. We prove the algorithm’s
correctness and assess the performance of an implementation.

Keywords: distributed systems · offline runtime verification · interac-
tion · multitrace semantics · partial observability

1 Introduction

Context. Distributed Systems (DS) have been identified in the recent survey [26]
as one of the most challenging application domains for Runtime Verification
(RV). An important bottleneck is that the formal references against which sys-
tem executions are analyzed are specified using formalisms or logics usually
equipped with trace semantics. Indeed, because DS are composed of subsys-
tems deployed on different computers and communicating via message passing,
their executions are more naturally represented as collections of traces observed
at the level of the different subsystems’ interfaces rather than as single global
traces [7,24]. Those collections can be gathered using a distributed observation
architecture involving several local observation devices, each one dedicated to
a subsystem, and deployed on the same computer as the subsystem it is dedi-
cated to. An approach to confront such collections of local execution traces to
formal references with a trace semantics might consist in identifying the global
traces that result from all possible temporal orderings of the events occurring in
the local traces. If none of those global traces conforms to the formal reference,
then we might conclude that an error is observed [24]. However, the absence of
a global clock implies that, in all generality, it is not possible to synchronize the
endings of the different local observation processes. Therefore, in the process of
reconstructing global traces, some events might be missing in local traces. Such

http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0002-4943-7807
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-2185-4051
http://orcid.org/0000-0002-8955-6835

2 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

problems occur whenever, for technical or legal reasons, it is not possible to
observe some subsystems or else the observation has been interrupted too early.

Contributions. In this paper, we propose a Runtime Verification approach
dedicated to DS with an emphasis on overcoming issues of partial observability,
whether due to the absence of a global clock, or to the impossibility of observing
some subsystem executions. Our approach belongs to the family of offline RV
techniques in which traces are logged prior to their analysis. As for formal refer-
ences, we inherit the framework of interaction models from earlier works [20,18].
Interactions describe actor-oriented scenarios and can be represented graphically
in the fashion of UML Sequence Diagrams (UML-SD) [25] or Message Sequence
Charts (MSC) [14]. We designed in [18] an algorithm to decide whether or not a
collection of local traces is accepted by an interaction. However, this algorithm
cannot cope with partial observability. The core contribution of this paper is then
to define an algorithm to tackle those limitations, i.e. to deal with collections of
local traces with missing or incomplete ones. Theorem 1 will enable us to relate
collections of local traces reflecting partially observed executions to those of the
original reference interaction. The key operator in our algorithm is a removal
operator (Definition 5) discarding parts of the interaction relative to unobserved
subsystems. We prove the correctness of our algorithm and argue how the use
of the removal operations allows us to solve partial observability (Theorem 2).
All proofs are available in [19]. Finally, we present some experiments using an
implementation of our algorithm, given as an extension of the HIBOU tool [17].

Related work. Solutions to the oracle problem (offline RV) for DS using local
logs often rely on a preliminary reordering of events using either timestamps
[24] or some happened-before relations (of Lamport [15]) [16,23,7]. In [11,9,12]
such solutions rely on a set of discrete and local behavioral models. DS be-
haviors are modeled by Input/Output Transition Systems (IOTS) [11,12] or by
Communicating Sequential Processes (CSP) [9] and local observations are inter-
twined to associate them with global traces that can be analyzed w.r.t. models.
Those approaches however require to synchronize local observations, based on
the states in which each of the logging processes terminates (e.g., based on quies-
cence states in [11], termination/deadlocks in [9] or pre-specified synchronization
points in [12]). The works [10,24,8,13] focus on verifying distributed executions
against models of interaction (while [10,13] concern MSC, [24] considers chore-
ographic languages, [8] session types, and [4] trace expressions). [10,24] propose
offline RV that relies on synchronization hypotheses and on reconstructing a
global trace by ordering events occurring at the distributed interfaces (by ex-
ploiting the observational power of testers [10] or timestamp information as-
suming clock synchronization [24]). Our RV approach for multitraces does not
require synchronization prerequisites on DS logging. Thus, unlike previous works
on offline RV, we can analyze DS executions without needing a synchronization
hypothesis on the ending of local observations. For online RV, the work [13]
depends on a global component (network sniffer) while the work [8] proposes
local RV against projections of interactions satisfying conditions that enforce
intended global behaviors. In contrast to these works, we process collections of

Interaction-based Offline RV of Distributed Systems 3

local logs against interactions. The work [4] focuses on how distributed monitors
can be adapted for partial observation. Yet, our notion of partial observation is
distinct from that of [4] where messages are exchanged via channels which are as-
sociated to an observability likelihood. [4] proposes specification transformations
by removing or making optional several identified unobservable events. We in-
stead deal with partial observability from the perspective of analyzing truncated
multitraces due to synchronization issues.

Paper outline. Section 2 discusses the nature of DS, their modelling with in-
teractions and the challenge of applying RV to DS. Section 3 defines multitraces,
interactions and associated removal operations. Section 4 defines and proves the
correctness of our RV algorithm. Section 5 reports experimental results.

2 Preliminaries

Notations Given a set A, A∗ is the set of words on A, with ε the empty word
and the "." concatenation law. For any word w ∈ A∗, |w| is the length of w and
any word w′ is a prefix of w if there exists a word w′′, possibly empty, such that
w = w′.w′′. Let us note w the set of prefixes of a word w ∈ A∗ and W the set of
prefixes of all words of a set W ⊆ A∗. Given a set A, |A| designates its cardinal
and P(A) is the set of all subsets of A.

Distributed Systems From a black box perspective, the atomic concept to de-
scribe the executions of DS is that of communication actions occurring on a
subsystem’s interface. Here a subsystem refers to a software system deployed on
a single machine. Anticipating the use of interactions as models in Section 3.2,
a subsystem interface is called a lifeline and corresponds to an interaction point
on which the subsystem can receive or send some messages. Lifelines are ele-
ments of a set L denoting the universe of lifelines. An action occurring on a
lifeline is defined by its kind (emission or reception, identified resp. by the sym-
bols ! and ?) and by the message which it carries. We introduce the universe
M of messages. Executions observed on a lifeline l can be modelled as execu-
tion traces i.e. sequences of actions. For l ∈ L, the set Al of actions over l is
{l∆m | ∆ ∈ {!, ?}, m ∈ M} and the set Tl of traces over l is A∗

l . For any a ∈ Al

of the form l?m or l!m, θ(a) refers to l.
Fig.1 sketches out an example of DS composed of three remote subsystems,

assimilated to their interface bro, pub and sub. This DS implements a sim-
plified publish/subscribe scheme of communications (an alternative to client-
server architecture). The publisher pub may publish messages on the broker
bro which may then forward them to the subscriber sub if it is already sub-
scribed. Fig.1c depicts an interaction defined between the three lifelines. Each
lifeline is depicted by a vertical line labelled by its name at the top. By default,
the top to bottom direction represents time passing. A communication action
depicted above another one on the same lifeline occurs beforehand. Communi-
cation actions are represented by horizontal arrows labelled with the action’s
message. Whenever an arrow exits (resp. enters) a lifeline, there is a correspond-
ing emission (resp. reception) action at that point on the line. For example,

4 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

pub
bro sub

reordering
sub!subscribe
pub!publish
bro?subscribe
bro?publish
bro!publish
sub?publish

(a) Global observation

pub bro sub

pub!publish bro?subscribe
bro?publish
bro!publish

sub!subscribe
sub?publish

(b) Complete local observation

(c) Interaction model

pub bro sub

pub!publish bro?subscribe
bro?subscribe
bro?publish
bro!publish

(d) Partial local observation

Fig. 1: A simple publish/subscribe example: architectures & interaction model

the horizontal arrow from the lifeline sub to the lifeline bro indicates that the
subsystem sub sends the message subscribe, denoted as sub!subscribe, which
is then received by the lifeline bro, denoted as bro?subscribe. More complex
behaviors can be introduced through operators (similar to combined fragments
in UML-SD) drawn in the shape of boxes that frame sub-behaviors of interest.
For instance, in Fig.1c, loopS corresponds to a sequential loop. From the per-
spective of the bro lifeline, this implies that it can observe words of the form
(bro?publish)∗bro?subscribe(bro?publish.bro!publish)∗ i.e. it can receive
an arbitrary number of instances of the publish message then one instance of
subscribe and then it can receive and transmit an arbitrary number of publish.
A representative global trace specified by the interaction in Fig.1c is (see Fig.1a):
sub!subscribe.pub!publish.bro?subscribe.bro?publish.bro!publish.sub?publish

This trace illustrates that the pub and sub lifelines can send their respective
messages publish and subscribe in any order since there are no constraints on
their ordering. In contrast, the reception of a message necessarily takes place af-
ter its emission. Since the reception of the message subscribe takes place before
that of the publish message, this last message necessarily corresponds to the
one occurring in the bottom loop. The global trace in Fig.1a is a typical example
of a trace accepted by the interaction in Fig.1c. Indeed, this trace realizes one of
the behaviors specified by the interaction which corresponds to: unfolding zero
times the first loop; realizing the passing of the message subscribe between
lifelines sub and bro; unfolding one time the second loop. None of the prefixes
of this accepted trace is an accepted trace.

Accepted multitraces Following the terminology of [7,18], we call multitrace a
collection of local traces, one per remote subsystem. Fig.1b depicts a multitrace
involving 3 local traces: bro?subscribe.bro?publish.bro!publish for subsys-

Interaction-based Offline RV of Distributed Systems 5

tem bro, pub!publish for pub, and sub!subscribe.sub?publish for sub. It is
possible to interleave these local traces to obtain the global trace in Fig.1a, i.e.
the multitrace in Fig.1b corresponds to the tuple of projections of the global
trace in Fig.1a onto each of the sub-systems. The tuple of projections of a global
trace is unique. However, conversely, one might compute several global traces
associated to the same tuple of local traces. This is because, in all generality,
there is no ordering between actions occurring on different lifelines. For example,
from the multitrace of Fig.1b, one could reconstruct the global trace:
pub!publish.sub!subscribe.bro?subscribe.bro?publish.bro!publish.sub?publish

The tuple of projections of this global trace is also the multitrace in Fig.1b. With
the algorithm from [18] one can recognize exactly accepted multitraces (e.g. the
one from Fig.1b), which correspond to projections of accepted global traces (e.g.
Fig.1a).

Logging and Partial observability Offline RV requires to collect execution traces
prior to their analyses. In this process, it might be so that some subsystems
cannot be equipped with observation devices. Moreover, due to the absence of
synchronization between the local observations, the different logging processes
might cease at uncorrelated moments. For example, let us consider the multitrace
in Fig.1d as an observed execution of the system considered in Fig.1, where, by
hypothesis, the subsystem sub is not observed. Remark that this multitrace cor-
responds to a partial observation of the multitrace in Fig.1b. Indeed, each trace
corresponding to a given subsystem in Fig.1d is a prefix of the trace correspond-
ing to the same sub-system in Fig.1b. Thus, if sub executions were also observed
and with longer observation times for each local observation processes, it may
well be that one would have observed the multitrace in Fig.1b rather than the
one in Fig.1d. when analyzing the multitrace in Fig.1d against the interaction
in Fig.1c, we need the RV process not to conclude on the occurrence of an error.
Hence, we want to be able to recognize multitraces in which each of the local
traces can be extended to reconstruct a multitrace accepted by the interaction.
Concretely, this means recognizing multi-prefixes of accepted multitraces. Let
us remark that a projection of a prefix of an accepted global trace is a multi-
prefix of an accepted multitrace. However the reverse is not true. For example,
there exists no prefix of a global trace accepted by the interaction in Fig.1c that
projects on the multitrace in Fig.1d. This is because the emission of subscribe
by sub would precede its reception by bro in any accepted global trace. However,
this emission is not observed in the multitrace in Fig.1d. Therefore, dealing with
partial observability does not boil down to a simple adaptation of the algorithm
in [18]. In this paper, the aforementioned two types of partial observation (unob-
served subsystems and early interruption of observation) will be approached in
the same manner, noting in particular that an empty local trace can be seen both
as missing and incomplete. The key mathematical operator used for that pur-
pose consists in the removal of a lifeline from both interactions and multitraces.
This operator allows us to define an algorithm for recognizing multi-prefixes of
accepted multitraces while avoiding the complex search for a matching global
execution, taking into account potential missing actions.

6 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

3 Multitraces, interactions, and removal operations

3.1 Multitraces

As outlined in Section 2, a DS is a collection of communicating subsystems, each
having a lifeline as local interface. A DS is characterized by a finite set of lifelines
L ⊆ L, called a signature. For L ⊆ L, A(L) denotes the set ∪l∈LAl. Executions
of a DS are associated to multitraces, i.e. collections of traces, one per lifeline:

Definition 1. Given L ⊆ L, the set M(L) of multitraces over L is3
∏

l∈L Tl.
For µ = (tl)l∈L in M(L), we denote by µ|l the trace component tl ∈ Tl and by
µ = {µ′ | µ′ ∈ M(L),∀l ∈ L, µ′

|l ∈ µ|l} the set of its multi-prefixes.

Multi-prefixes are extended to sets: M is the set of all multi-prefixes of all
multitraces in M ⊆ M(L). We denote by εL the empty multitrace in M(L)
defined by ∀l ∈ L, εL|l = ε. Additionally, for any µ ∈ M(L), we use the notations
µ[t]l to designate the multitrace µ in which the component on l has been replaced
by t ∈ Tl and |µ| to designate the cumulative length |µ| =

∑
l∈L |µ|l| of µ.

As discussed in Section 2, two communication actions occurring on different
traces of a multitrace cannot be temporally ordered. Likewise, when several
subsystems are observed concurrently, there is no way to synchronize the endings
of their observations. So, any multitrace µ′ ∈ µ can be understood as a partial
observation of the execution characterized by µ. An edge case of this partial
observation occurs when some of the subsystems are not observed at all, i.e. when
some lifelines are missing. The rmvh function of Definition 2 simply removes the
trace concerning the lifeline h from a multitrace.

Definition 2. For L ⊆ L, the function rmvh : M(L) → M(L \ {h}) is s.t.:
∀µ ∈ M(L), rmvh(µ) = (µ|l)l∈L\{h}

The function rmvh is canonically extended to sets. We introduce operations
to add an action to the left (resp. right) of a multitrace. For the sake of simplicity,
we use the same symbol ^ for these left- and right-concatenation operations:

∀a ∈ A(L),∀µ ∈ M(L), aˆµ = µ[a.µ|θ(a)]θ(a) and µˆa = µ[µ|θ(a).a]θ(a)

Note that for any µ and a, we have |µˆa| = |aˆµ| = |µ|+1. We extend ^ to sets
of multitraces as follows: aˆT = {aˆµ | µ ∈ T} and Tˆa = {µˆa | µ ∈ T}.

For two multitraces µ1 and µ2 in M(L):

– µ1 ∪ µ2 denotes the alternative defined as follows: µ1 ∪ µ2 = {µ1, µ2};
– µ1;µ2 denotes their sequencing defined as follows: if µ2 = εL then µ1;µ2 = µ1

else, µ2 can be written as aˆµ′
2 and µ1;µ2 = (µ1ˆa);µ

′
2;

– µ1||µ2 denotes their interleaving and is defined as the set of multitraces
describing parallel compositions of µ1 and µ2:

εL||µ2 = {µ2} µ1||εL = {µ1}
(a1ˆµ1) || (a2ˆµ2) = (a1ˆ(µ1 || (a2ˆµ2))) ∪ (a2ˆ((a1ˆµ1) || µ2)))

3 Given a family (Ai)i∈I of sets indexed by a finite set I,
∏

i∈I Ai is the set of tuples
(a1, . . . , ai, . . .) with ∀i ∈ I, ai ∈ Ai.

Interaction-based Offline RV of Distributed Systems 7

Let us remark that µ′ is a prefix of a multitrace µ (i.e. µ′ ∈ µ) iff there exists µ′′

verifying µ′;µ′′ = µ. Operations ∪, ; and || are extended to sets of multitraces as
⋄ : P(M(L))2 → P(M(L)) for ⋄ ∈ {∪, ; , ||}. Operators ; and || being associative,
this allows for the definition of repetition operators in the same manner as the
Kleene star is defined over the classical concatenation. Given ⋄ ∈ {; , ||}, the
Kleene closure ⋄∗ is s.t. for any set of multitraces T ⊆ M(L) we have:

T ⋄∗ =
⋃
j∈N

T ⋄j with T ⋄0 = {εL} and T ⋄j = T ⋄ T ⋄(j−1) for j > 0

M(L) fitted with the set of algebraic operators F = {∪, ; , ||, ;∗, ||∗} is an
F-algebra. The operation rmvh preserves the algebraic structures between the
F-algebras of signatures L and L \ {h}.

Property 1 (Elimination preserves operators). For any µ1 and µ2 in M(L), for
any ⋄ ∈ {∪, ; , ||}, rmvh(µ1 ⋄ µ2) = rmvh(µ1) ⋄ rmvh(µ2).

Property 1 is obtained directly for the union and by induction for the other
cases. Those results can be extended to sets of multitraces and imply that rep-
etitions of those scheduling algebraic operators (with their Kleene closures) are
also preserved by the elimination operator rmvh.

3.2 Interactions
({(pub!publish, ϵ, ϵ)}; {(ϵ, bro?publish, ϵ)});

∗

; ({(ϵ, ϵ, sub!subscribe)}; {(ϵ, bro?subscribe, ϵ)})

;

(
({(pub!publish, ϵ, ϵ)}; {(ϵ, bro?publish, ϵ)})
; ({(ϵ, bro!publish, ϵ)}; {(ϵ, ϵ, sub?publish)})

);∗

=

(
ε , bro?subscribe , sub!subscribe

)(
pub!publish , bro?publish

bro?subscribe , sub!subscribe
)

 pub!publish ,
bro?subscribe
bro?publish
bro!publish

,
sub!subscribe
sub?publish

· · ·

Fig. 2: Semantics of example from Fig.1c

Interaction models, such as the
one in Fig.1c, can be formalized
as terms of an inductive language.
[20,18] consider an expressive lan-
guage with two sequencing oper-
ators, weak and strict, for order-
ing actions globally. Here, as only
collections of remote local traces
are considered, weak and strict se-
quencing can no longer be distin-
guished. This explains why we only consider a unique sequencing operator seq.
Following the syntax from Definition 3, the interaction term of Fig.1c is:
seq(loopS(seq(pub!publish, bro?publish)), seq(seq(sub!subscribe, bro?subscribe),
loopS(seq(seq(pub!publish, bro?publish), seq(bro!publish, sub?publish))))).

Definition 3. Given signature L, the set I(L) of interactions over L is the set
of ground terms built over the following symbols provided with arities in N:
− the empty interaction ∅ and any action a in A(L) of arity 0;
− the two loop operators loopS and loopP of arity 1;
− and the three operators seq, par and alt of arity 2.

The semantics of interactions can be defined as a set of multitraces in a de-
notational style by associating each syntactic operator with an algebraic coun-
terpart. This is sketched out in Fig.2 in which the semantics of the interaction

8 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

given in Fig.1c is given. The denotational formulation, which is compositional,
is defined in Definition 4 and illustrated in Fig.1c.

Definition 4 (M-semantics). Given L ⊆ L, the multitrace semantics σ|L :
I(L) → P(M(L)) is defined inductively using the following interpretations:
− {εL} for ∅ and {aˆεL} for a in AL;
− ;∗ (resp. ||∗) for loop operator loopS (resp. loopP);
− ; (resp. || and ∪) for binary operator seq (resp. par and alt).

Interactions can also be associated with operational semantics in the style of
Plotkin [21]. Its definition relies on two predicates denoted by ↓ and →: for an
interaction i, i ↓ states that εL ∈ σ|L(i) and i

a−→ i′ states that all multitraces
of the form aˆµ′ with µ′ ∈ σ|L(i

′) are multitraces of σ|L(i). This operational
semantics is equivalent to the denotational formulation.

Property 2 (Operational semantics). There exist a predicate ↓⊆ I(L) and a
relation →⊆ I(L)× A(L)× I(L) such that, for any i ∈ I(L) and µ ∈ M(L), the
statement µ ∈ σ|L(i) holds iff it can be proven using the following two rules:

i ↓
εL ∈ σ|L(i)

µ ∈ σ|L(i
′) i

a−→ i′

aˆµ ∈ σ|L(i)

Fig. 3: Removing lifeline sub

The proof is a transposition for
multitrace semantics of the proof
in [21] given for global traces. The al-
gebraic characterisation of Definition
4 underpins results involving the use
of the rmvh function while the oper-
ational characterisation of Property 2
is required in the definition and proof
of the RV algorithm. In this paper, we
do not need the inductive definitions
of ↓ and →. It suffices to consider their existence (Property 2). In addition, we
will use the notation i

a−→ (resp. i ̸ a−→) when there exists (resp. does not exist) an
interaction i′ s.t. i a−→ i′.

The removal of lifelines for multitraces (cf. Definition 2) has a counterpart for
interactions. On the left of Fig.3 we draw our previous example while highlighting
lifeline sub which we remove to obtain the interaction on the right. Whenever we
remove a lifeline l, the resulting interaction does not contain any action occurring
on l. Removal, as defined in4 Definition 5 in a functional style, preserves the term
structure, replacing actions on the removed lifeline with the empty interaction.

Definition 5. For a signature L ⊆ L and a lifeline h ∈ L we define rmvh :
I(L) → I(L \ {h}) s.t. for any interaction i ∈ I(L):

4 We overload the notation rmvh which applies to both multitraces and interactions.

Interaction-based Offline RV of Distributed Systems 9

rmvh(i) = match i with
| ∅ → ∅
| a ∈ A(L) → if θ(a) = h then ∅ else a
| f(i1, i2) → f(rmvh(i1), rmvh(i2)) for f ∈ {seq, alt, par}
| loopk(i1) → loopk(rmvh(i1)) for k ∈ {S, P}

Theorem 1 relates the removal operations on multitraces and interactions
with one another. The semantics of an interaction i in which we remove lifeline
h can be obtained by removing lifeline h from all the multitraces of the semantics
of i. This result is obtained reasoning by induction on interaction terms.

Theorem 1. For any signature L, any i ∈ I(L) and any h ∈ L:

σ|L\{h}(rmvh(i)) = rmvh(σ|L(i))

4 Offline RV for multitraces

We aim to define a process to analyze a multitrace µ against a reference in-
teraction i, both defined on a common signature L. To check whether or not a
multitrace µ is accepted by i, i.e. µ ∈ σ|L(i), the key principle given in [18] was
to find a globally ordered behavior specified by i (via the → execution relation)
that matches µ, i.e. an accepted global trace that can be projected into µ. To
do so, it relies on a general rule (i, aˆµ′) ⇝ (i′, µ′) s.t. i a−→ i′, i.e. it explores
all the actions a directly executable from i and that match the head of a local
trace. The analysis is then pursued recursively from (i′, µ′), i.e. the multitrace
where a has been removed and the follow-up interaction i′, until the multitrace
is emptied of actions.

For illustrative purposes, let us consider Fig.4 where each square annotated
with a circled number corresponds to such a tuple (i, µ), with interaction i drawn
on the left and multitrace µ represented on the right. Starting from the tuple
indexed by 3○, with interaction i3 and multitrace µ3 = (ε, bro?subscribe),
one can see that we can reach 4○ by both consuming bro?subscribe from
µ3 and executing it in i3, leading to the tuple (i4, µ4) in 4○. This transition
(i3, bro?subscribeˆ(ε, ε)) ⇝ (i4, (ε, ε)) is based on having i3

bro?subscribe−−−−−−−−−→ i4.
Thus, Fig.4 sketches the construction of a graph whose nodes are pairs of inter-
actions and multitraces and whose arcs are built using the ⇝ relation.

While in [18], we were interested in solving the membership problem "µ ∈
σ|L(i)", we are now interested in defining an offline RV algorithm. In line with
the discussion of Section 2 about partial observability, µ reveals an error if µ is
neither in σ|L(i) nor can be extended into an element of σ|L(i) i.e. µ diverges
from i iff µ ̸∈ σ|L(i). We introduce a rule involving the removal operation to
accommodate the need to identify multi-prefixes of multitraces. Indeed, as the
execution relation → only allows executing actions in the global order in which
they are intended to occur, we may reach cases in which the next action which
may be consumed in the multitrace cannot be executed due to having a preceding
action missing in the multitrace.

10 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

rmvsub

pub!publish pub!publish

bro?subscribe

Nok

Ok

0 1

2
3

4

Fig. 4: An exploration s.t. ωL(i, µ) = Pass

Let us illustrate this with node 0○ of Fig.4. bro?subscribe is the first action
that occurs on lifeline bro in the multitrace. However, it cannot be executed
because it must be preceded by sub!subscribe. Yet, either because the behavior
on lifeline sub is not observed or because the logging process ceased too early
on sub, it might well be that sub!subscribe occurred in the actual execution
although it was not logged. With our new algorithm, because the condition that
µ|sub = ε is satisfied, from node 0○, we apply a rule yielding the transformation
(i, µ)⇝ (rmvsub(i), rmvsub(µ)), removing lifeline sub, which allows us to pursue
the analysis from node 1○. To summarize, Fig.4 illustrates (part of) the graph
that can be constructed from a pair (i0, µ0) using the relation ⇝. We have 5
nodes numbered from 0 (the initial node of the analysis) to 4. Arcs correspond
to the consumption of an action, the application of the rmv operator, or the
emission of a verdict. The empty multitrace in node 4○ allows us to conclude
µ0 ∈ σ|L(i0).

4.1 The algorithm

As the rmv operator has the effect of changing the signature, we introduce the
set IL (resp. ML) to denote the set of all interactions (resp. multitraces) defined
on a signature of L. Let us define a directed search graph with vertices either of
the form (i, µ) ∈ IL ×ML or one of two specific verdicts Ok and Nok.

Interaction-based Offline RV of Distributed Systems 11

We denote by V the set of all vertices:

V = {Ok,Nok} ∪ (
⋃
L⊆L

I(L)×M(L))

The arcs of G are defined by 4 rules: Ro, Rn leading to respectively the sink
vertices Ok and Nok, Re (for "execute") for consuming actions of the multitrace
according to the → predicate of the operational formulation (cf. Property 2), and
Rr (for "removal"), for removing a lifeline from the interaction and multitrace.

Definition 6 (Search graph). G = (V,⇝) is the graph s.t. for all v, v′ in V,
v ⇝ v′ iff there exists a rule Rx with x ∈ {o, n, e, r} s.t. (Rx)

v
v′ where rules Rx

are defined as follows, with L ⊆ L, h ∈ L, i, i′ ∈ I(L), and µ, µ′ ∈ M(L):

i εL(Ro)
Ok

i µ
(Rr)

{
(µ ̸= εL)∧
(µ|h = ε)rmvh(i) rmvh(µ)

i µ
(Re)

{
∃a ∈ A(L),
µ = aˆµ′ ∧ i

a−→ i′i′ µ′
i µ

(Rn)

(∀l ∈ L, µ|l ̸= ε) ∧(
∀a ∈ A(L),∀µ′ ∈ M(L),

µ = aˆµ′ ⇒ i ̸ a−→

)
Nok

Rules Re and Rr specify edges of the form (i, µ) ⇝ (i′, µ′) with i′ and µ′

defined on the same signature: the application of Re corresponds to the simul-
taneous consumption of an action at the head of a component of µ and the
execution of a matching action in i while the application of Rr corresponds to
the removal of a lifeline h s.t. µ|h = ε. Moreover, vertices of the form (i, µ) are
not sinks of G. Indeed, if µ = εL then Ro can apply, otherwise µ ̸= εL and: (1)
if at least a component µ|h of µ is empty, then rule Rr can apply. (2) if there
is a match between an action that can be executed from i and the head of a
component of the multitrace then rule Re can apply. (3) if both conditions 1
and 2 do not hold then rule Rn applies.

Proving µ ∈ σ|L(i), amounts to exhibiting a path in G starting from (i, µ)
and leading to the verdict Ok. Fig.4 depicts such a path for the multitrace µ0 =
(pub!publish, bro?subscribe, ε) w.r.t. the interaction i0 of node 0○. A first
step (application of Rr) removes lifeline sub leading to node 1○. This is possible
because µ|sub = ε. From there, by applying rule Re, the execution of pub?publish
allows to reach either node 2○ or node 3○ depending on the loop used. From
node 3○, the previous removal of lifeline sub has unlocked the execution of
bro?subscribe (application of Re). What remains is εL, and hence we can
apply rule Ro. From the existence of this path leading to Ok we conclude that
µ0 is a multi-prefix of a multitrace of the interaction depicted in Fig.1c.

Property 3 (Finite search space). Let L ⊆ L, µ ∈ M(L) and i ∈ I(L). The
sub-graph of G of all vertices reachable from (i, µ) is finite.

We establish this property by using a measure |v| defined on the vertices v in
V by |v| = 0 if v ∈ {Ok,Nok} and |v| = |µ|+ |L|+1 if s = (i, µ) ∈ I(L)×M(L).

12 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

Definition 7 (Multitrace analysis). For any L ⊂ L, we define ωL : I(L) ×
M(L) → {Pass, Fail} s.t. for any i ∈ I(L) and µ ∈ M(L):
− ωL(i, µ) = Pass iff there exists a path in G from (i, µ) to Ok
− ωL(i, µ) = Fail otherwise

Given Property 3, Definition 7 is well founded insofar as the sub-graph of G
issued from any pair (i, µ) of V is finite and all paths from (i, µ) can be extended
until reaching a verdict (Ok or Nok). Then, we need to prove that the existence
of a path from (i, µ) to Ok guarantees that µ is a prefix of a multitrace of i, and
that the non-existence of such a path guarantees that µ is not such a prefix. By
reasoning by induction on the measure of the vertices of G, we can establish:

Theorem 2. For any i ∈ I(L) and any µ ∈ M(L):(
µ ∈ σ|L(i)

)
⇔

(
ωL(i, µ) = Pass

)
4.2 Considerations on implementation

Using a reduction of the 3 SAT problem inspired by [3,18], we can state that the
problem of recognizing correct multi-prefixes w.r.t. interactions is NP-hard:

Property 4. The problem of determining whether or not µ ∈ σ|L(i) is NP-hard.

Given the NP-hardness of the underlying problem, the implementation of
our algorithm, which relies on the exploration of a graph G, uses additional
techniques to reduce the average complexity. Such techniques may include means
to cut parts of the graph, the use of pertinent search strategies and priorities for
the application of the rules. For instance, if Rr is applicable from a node (i, µ),
we can apply rmv on all lifelines which can be removed simultaneously. Also, if
both Rr and Re are applicable from that same node, we can choose not to apply
Re. Those two points are respectively justified by a property of commutativity
for rmv (i.e. rmvh ◦ rmvh′ = rmvh′ ◦ rmvh) and a confluence property for ⇝ (i.e.
if (i, µ) ∗

⇝ Ok and (i, µ)⇝ (rmvh(i), rmvh(µ)) then (rmvh(i), rmvh(µ))
∗
⇝ Ok).

5 Experimental assessment

5.1 3 SAT benchmarks

We have implemented our approach as an extension of the tool HIBOU [17]. In
light of Property 4, we have compared the results HIBOU obtained on trans-
lated three SAT problems against those of an SAT solver (Varisat [2]). We have
used three sets of problems: two custom benchmarks with randomly generated
problems and the UF20 benchmark [1]. Fig.5 provides details on 2 benchmarks
with, on the top left, information about the input problems (numbers of vari-
ables, clauses, instances), on the bottom left statistical information about the
time required for the analysis using each tool, and, on the right a correspond-
ing scatter plot. In the plot, each point corresponds to a given 3-SAT problem,
with its position corresponding to the time required to solve it. Points in red are
unsatisfiable problems while those in blue are satisfiable.

Interaction-based Offline RV of Distributed Systems 13

variables 3-10
clauses 4-50
instances 663
SAT 376
UNSAT 287

varisat hibou
min 0.01699 0.0002379
q1 0.01792 0.0012984

Mdn 0.01806 0.0027920
M 0.01833 0.0043448
q3 0.01848 0.0053158

max 0.02892 0.0267174
σ 0.001017846 0.004637261

(a) Input problems and output results for ’small’ custom benchmark

variables 20
clauses 91
instances 1000
SAT 1000
UNSAT 0

varisat hibou
min 0.01559 0.007638
q1 0.01667 0.091421

Mdn 0.01833 0.229745
M 0.01847 0.313901
q3 0.01929 0.462385

max 0.03989 1.666777
σ 0.00255181 0.2865485

(b) Input problems and output results for UF-20 benchmark

Fig. 5: Experiments on 3SAT benchmarks (times in seconds)

5.2 Use cases experiments

To consider concrete and varied interactions, we experiment with four examples:
a protocol for purchasing books [4], a system for querying complex sensor data
[5], the Alternating Bit Protocol [22] and a network for uploading data to a server
[6]. Fig.6 partially reports on those experiments. For each example, we generated
randomly accepted multitraces (ACPT) up to some depth, for which we then
randomly selected prefixes (PREF). For each such prefix, we then performed
mutations of three kinds: swapping actions (SACT), swapping trace components
(SCMP) and inserting noise (NOIS). We report for each category of multitraces
times to compute verdicts in Fig.6. As expected, running the algorithm on those
multitraces recognizes prefixes and mutants which go out of specification.

14 E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

(a) Network [6]
(b) ABP [22]

Fig. 6: Experimental data on a selection of use cases (times in seconds)

6 Conclusion

We have proposed an algorithm for offline RV from multitraces (sets of local exe-
cution logs collected on the DS) against interaction models (formal specifications
akin to UML-SD/MSC). These multitraces can be partial views of DS executions
because some components may either not be observed at all or their observa-
tion may have ceased too early. We have proved the correctness of our algorithm
which boils down to a graph search. This search is based on two principles, either
we match actions of the interaction against those of the input multitrace, or we
apply a removal operation on multitraces and interactions. Removal steps allow
dealing with observability via disregarding components which are no longer ob-
served parts of the interaction. Future works include other uses of the removal
operator (e.g. for performance improvements on RV).

Acknowledgements The research leading to these results has received funding
from the European Union’s Horizon Europe programme under grant agreement
No 101069748 – SELFY project.

References

1. SATLIB - Benchmark. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
2. Varisat CDCL solver. https://docs.rs/varisat/latest/varisat/
3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC

graphs. In: Automata, Languages and Programming, 28th Int. Colloquium, ICALP
2001. LNCS, vol. 2076, pp. 797–808. Springer (2001)

4. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent
interaction protocols when monitoring partially observable multiagent systems. In:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex-
ity: The PAAMS Collection. pp. 59–71. Springer (2018)

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://docs.rs/varisat/latest/varisat/

Interaction-based Offline RV of Distributed Systems 15

5. Bakillah, M., Liang, S., Zipf, A., Mostafavi, M.A.: A dynamic and context-aware
semantic mediation service for discovering and fusion of heterogeneous sensor data.
Journal of Spatial Information Science 6, 155–185 (06 2013)

6. Bejleri, A., Domnori, E., Viering, M., Eugster, P., Mezini, M.: Comprehensive
multiparty session types. The Art, Science, and Engineering of Programming 3
(02 2019)

7. Benharrat, N., Gaston, C., Hierons, R.M., Lapitre, A., Le Gall, P.: Constraint-
based oracles for timed distributed systems. In: Testing Software and Systems. pp.
276–292. Springer (2017)

8. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

9. Cavalcanti, A., Gaudel, M., Hierons, R.M.: Conformance relations for distributed
testing based on CSP. In: IFIP ICTSS. LNCS, vol. 7019, pp. 48–63. Springer (2011)

10. Dan, H., Hierons, R.M.: The oracle problem when testing from MSCs. Comput. J.
57(7), 987–1001 (2014)

11. Hierons, R.M., Merayo, M.G., Núñez, M.: Controllable test cases for the distributed
test architecture. In: ATVA. LNCS, vol. 5311, pp. 201–215. Springer (2008)

12. Hierons, R.M., Merayo, M.G., Núñez, M.: Scenarios-based testing of systems with
distributed ports. Softw. Pract. Exp. 41(10), 999–1026 (2011)

13. Inçki, K., Ari, I.: A novel runtime verification solution for IoT Systems. IEEE
Access 6, 13501–13512 (2018)

14. ITU: Message Sequence Chart (MSC), http//www.itu.int/rec/T-REC-Z.120
15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:

Concurrency: the Works of Leslie Lamport, pp. 179–196. ACM (2019)
16. Mace, J., Roelke, R., Fonseca, R.: Pivot tracing: dynamic causal monitoring for

distributed systems. In: SOSP. pp. 378–393. ACM (2015)
17. Mahé, E.: Hibou tool. github.com/erwanM974/hibou_label (2022)
18. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: A small-step approach

to multi-trace checking against interactions. p. 1815–1822. SAC ’21, ACM (2021)
19. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: Dealing with ob-

servability in interaction-based offline runtime verification of distributed systems.
CoRR (2022), https://arxiv.org/abs/2212.09324

20. Mahé, E., Gaston, C., Le Gall, P.: Revisiting semantics of interactions for trace
validity analysis. In: FASE. LNCS, vol. 12076, pp. 482–501. Springer (2020)

21. Mahé, E., Gaston, C., Le Gall, P.: Equivalence of denotational and operational
semantics for interaction languages. In: TASE. pp. 113–130. Springer (2022)

22. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum. pp.
291–306. Elsevier (1997)

23. Neves, F., Machado, N., Pereira, J.: Falcon: A practical log-based analysis tool for
distributed systems. In: DSN. pp. 534–541. IEEE Computer Society (2018)

24. Nguyen, H.N., Poizat, P., Zaïdi, F.: Passive conformance testing of service chore-
ographies. In: ACM SAC 2012. pp. 1528–1535 (2012)

25. OMG: Unified Modeling Language, http://www.uml.org
26. Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D., Colombo,

C., Falcone, Y., Francalanza, A., Krstic, S., Lourenço, J.M., Nickovic, D., Pace,
G.J., Rufino, J., Signoles, J., Traytel, D., Weiss, A.: A survey of challenges for
runtime verification from advanced application domains (beyond software). Formal
Methods Syst. Des. 54(3), 279–335 (2019)

http//www.itu.int/rec/T-REC-Z.120
github.com/erwanM974/hibou_label
https://arxiv.org/abs/2212.09324
http://www.uml.org

	Interaction-based Offline Runtime Verification of Distributed Systems

