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Summary12

SImulation COde for POLythermal Ice Sheets (SICOPOLIS) is an open-source, 3D dynamic/ther-13

modynamic model that simulates the evolution of large ice sheets and ice caps. SICOPOLIS14

has been developed continuously and applied to problems of past, present, and future glaciation15

of Greenland, Antarctica, and others. It uses the finite differences discretization on a staggered16

Arakawa C grid and employs the shallow ice and shallow shelf approximations, making it suitable17

for paleoclimatic simulations. We present a new framework for generating derivative code,18

i.e., tangent linear, adjoint, or Hessian models, of SICOPOLIS. These derivative operators are19

powerful computational engines to efficiently compute comprehensive gradients or sensitivities20

of scalar-valued model output, including least-squares model-data misfits or important quanti-21

ties of interest, to high-dimensional model inputs (such as model initial conditions, parameter22

fields, or boundary conditions). The new version 2 (SICOPOLIS-AD v2) framework is based on23

the source-to-source automatic differentiation (AD) tool Tapenade which has recently been24

open-sourced. The switch from a previous AD tool (OpenAD) used in SICOPOLIS-AD version25

1 to Tapenade overcomes several limitations outlined here. The framework is integrated with26

the SICOPOLIS model’s main trunk and is freely available.27

Statement of need28

The two contemporary ice sheets, Greenland and Antarctica, are dynamic entities whose29

evolution is governed by a set of nonlinear partial differential equations (PDEs) that describe30

the conservation of mass, momentum, and energy, as well as constitutive laws for the material31

properties of ice. In general, these equations cannot be solved analytically but must be solved32

numerically. Ice sheet models are a computer representation of these PDEs. They require33

as input parameters (i) initial conditions of the state of the ice sheet, (ii) surface boundary34

conditions, such as precipitation, (iii) basal boundary conditions, such as geothermal flux, and35

(iv) model parameters, such as flow law parameters. Despite advances in numerical modeling of36

ice sheets, the effects of ad-hoc initialization and the uncertainties in these independent input37

parameters propagate to quantities of interest (QoI), such as future projections of sea-level38

rise, which is of economic and societal importance (Schinko et al., 2020). It is thus desirable39

to evaluate the sensitivities of our QoI to these independent input variables.40

In the context of ice sheet modeling, sensitivities of model-data misfits or other QoI are a key41
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ingredient for performing model calibration, state estimation, or uncertainty quantification (UQ),42

which guide the improvement of model simulations through PDE-constrained gradient-based43

optimization.44

SICOPOLIS-AD v2 leverages the recently open-sourced AD tool Tapenade (Hascoet & Pascual,45

2013) to generate code for the adjoint model of the open-source ice sheet model, SICOPOLIS46

(Greve, 1997; Greve et al., 2011; Greve & Blatter, 2009). Sensitivities can be calculated using47

a single forward and adjoint model evaluation, instead of the O(N) forward model evaluations.48

Empirically, one adjoint model evaluation is about 5-10 times as expensive as a forward model49

run. The adjoint computation is highly efficient for calculating sensitivities when N is large50

(typically, N ∼ 104 − 106).51

The functionality to generate a tangent linear version of the forward model is also included,52

which was not available in SICOPOLIS-AD v1. This is valuable for UQ of the inferred parameters,53

as well as uncertainty propagation to QoIs. It can also be used to verify the results of the54

adjoint model.55

Target Audience56

This package is intended as a resource that enables sensitivity analysis, model calibration, and57

uncertainty quantification of a continent-scale ice sheet model. Our package is also intended58

to serve as a guide for future work in the application of open-source AD tools for physics-based59

simulation codes written in Fortran.60

State of the field61

SICOPOLIS is among the early thermo-mechanical models to simulate contemporary and62

paleo continental-scale ice sheets (Greve, 1997). Like similar models developed at the time,63

including Glimmer and its successor, the Community Ice Sheet Model (CISM) (Rutt et al.,64

2009), GRISLI (Ritz et al., 1996), the model by Huybrechts (1990), or by Pollard & DeConto65

(2009), SICOPOLIS has been based (until recently) on the so-called shallow ice approximation66

to simplify the Cauchy stress tensor in the momentum conservation equation, implemented on67

a regular, finite-difference mesh. See Hindmarsh (2004) for other approximations commonly68

employed in ice sheet models. This approximation enabled the efficient computation of ice69

sheet evolution over long, glacial/deglacial cycles.70

The last decade has seen substantial advances in continental-scale ice sheet modeling, with the71

development of several new ice sheet models (some of which are on unstructured grids using72

finite element methods), notably the Ice Sheet System Model ISSM (Larour et al., 2012), the73

Parallel Ice Sheet Model PISM (Bueler et al., 2007), Elmer/Ice (Gagliardini et al., 2013), or the74

MPAS-Albany Land Ice MALI (Hoffman et al., 2018). While designed to capture the evolution75

of short-term, fast-flowing, or fast-changing outlet glaciers via horizontal stress contributions,76

these models have so far found little application in paleo-ice sheet simulations due to their77

extensive computational costs. A compilation of the suite of ice sheet models used for the78

latest Ice Sheet Model Intercomparison Project, Phase 6 (ISMIP6) in support of the IPCC’s79

Sixth Assessment Report is available in Payne et al. (2021) and Nowicki et al. (2016).80

Relevant to this paper, of all the time-evolving models listed, apart from SICOPOLIS-AD81

(Heimbach & Bugnion, 2009; Logan et al., 2020), only the ISSM model and variants thereof82

possess adjoint model codes which have been generated, in part, using automatic differentiation83

(Hascoët & Morlighem, 2018; Larour et al., 2014). Multi-centennial and longer integrations84

with the adjoint model have so far been conducted only with SICOPOLIS-AD.85
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Features86

AD tools such as the commercial TAF (Giering & Kaminski, 1999) and the open-source87

OpenAD (Utke et al., 2008) have been used previously with SICOPOLIS (Heimbach & Bugnion,88

2009; Logan et al., 2020). OpenAD is no longer actively developed because it is based on89

the Open64 compiler which ceased development in 2011. The differentiation of SICOPOLIS,90

therefore, must be performed using a different tool. Compared to OpenAD, the Tapenade91

enabled implementation has the following advantages:92

• It is up-to-date with the latest SICOPOLIS code.93

• The AD tool Tapenade is open-source and actively maintained.94

• A new tangent linear code generation capability is introduced.95

• The AD-generated codes can accept NetCDF inputs.96

• The external library LIS, its tangent linear code, and adjoint code are correctly incorpo-97

rated which can improve the simulation of Antarctic ice shelves and Greenland outlet98

glaciers.99

• Gitlab-CI, a Docker, and the pytest framework are leveraged for Continuous Integration100

(CI) to track changes in the trunk that “break” the AD-based code generation.101

• The entire code is parsed by Tapenade, preventing cumbersome manual maintenance of102

subroutines to initialize the adjoint runs.103

• Python scripts are provided for quick setup of the compilation, I/O, and execution104

processes based on user-provided metadata.105

• The setup is well-documented, along with tutorials.106

Software requirements and external usage107

SICOPOLIS-AD v2 is built on top of the ice sheet model SICOPOLIS and uses Tapenade to108

differentiate this model. All the prerequisites of using SICOPOLIS and Tapenade need to be109

satisfied. A Python installation is needed to use the automation tools.110

Example111

We illustrate the use of our tool with the example of a steady-state simulation of the Greenland112

ice sheet under modern climate conditions. The corresponding SICOPOLIS configuration header113

file, v5_grl16_bm5_ss25ka, is provided as a reference template in the standard SICOPOLIS114

distribution. We shorten the total integration time to 100 simulated years to keep the115

computational cost of the tangent linear and finite differences reasonable. Our QoI (i.e.,116

dependent variable) is the total volume of the ice sheet at the end of the run (fc). The117

sensitivity is evaluated with respect to the geothermal heat flux, q_geo (independent variable),118

a 19,186-dimensional field. The results are shown in Figure 1.119
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DRAFTFigure 1: Validation exercise for adjoint (ADM) and tangent linear (TLM) models using the finite
differences (FD) results for the sensitivity of fc with respect to q_geo. The upper row shows the
sensitivities computed using the adjoint model (reverse-mode AD), tangent linear (forward-mode AD),
and finite differences, respectively. The bottom run illustrates the relative error between (ADM, FD),
(TLM, FD), and (ADM, TLM) respectively. For the bottom row, note that the values of relative
error are only shown for points where the value of the gradient is “significant”, i.e. within 4 orders of
magnitude of the maximum absolute value of the gradient.

The results show good agreement between all three modes used to evaluate this sensitivity.120

The error is less than 6% between AD-generated (adjoint/tangent linear codes) and finite121

differences at all but one point with “significant” gradient values, i.e. within 4 orders of122

magnitude of the maximum absolute value of the finite differences gradient. The relative123

error between the AD-generated adjoint and tangent linear models is less than 0.002% at124

all points with values within 4 orders of magnitude of the maximum absolute value of the125

finite differences gradient. However, the adjoint model is much faster than the other two, as126

shown in Table 1, because the number of evaluations of the latter two scales linearly with the127

parameter dimension (~O(N)). The discrepancy will be even larger if a finer mesh is used.128

Table 1: Comparison of the time taken by various methods to evaluate the gradient for a scalar
objective function with respect to a 19,186-dimensional 2D field (16 km mesh) in a typical SICOPOLIS
run. The runs are performed on Intel Xeon CPU E5-2695 v3 nodes (2.30 GHz clock rate, 35.84 MB
L3 cache, 63.3 GB memory).

Gradient calculation method Time (in seconds) for 16 km mesh
Finite Differences 1.640× 105

Tangent Linear Model 9.793× 104

Adjoint Model 2.214× 101
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