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NDAC/LO/021
1983 April 27

WP6100: PRS Solution (Definition)

by L Lindegren

1. Principles

The Primary Reference Stars Solution (Step 2) shall determine

the zero point corrections (more generally: the orientation.

parameters) of the different sets. Adjusting the abscissae
resulting from a set solution according to these parameters
puts them on a common celestial coordinate system with all
other, similarly adjustéd, abscissae.

It is possible to solve, at the same time, for any global
parameters expressing some (possibly time-varying) distortion
of the celestial coordinates, e.g. due to thermal instrumental
effects or general relativity. Up to a few hundred global
parameters can probably be handled; their number is limited
by the possible weakening of the solution rather than compu-
tational considerations.

The set orientations and global parameters are calculated
by imposing a certain reduction model on the abscissae of
selected Primary Reference Stars (PRS), whereby each of the
latter is completely characterized by five astrometric param-
eters. At least 1000 PRS are needed in order to have a suffi-
cient number in every set (on the average 20 PRS/set) for a
good determination of its orientation. The main criterion

for selecting PRS from the programme stars is precisely the
validity of that reduction model; this generally excludes all
resolved and many unresolved multiple stars. No (or very few)
slit errors are allowed among the abscissae used for the PRS
solution, which further limits the choice. Other criteria
such as the distribution of PRS with respect to position, mag-
nitude and colour need to be discussed. Several different PRS
selections can be tried, and should ideally give the same set
orientations and global parameters.
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The PRS Solution is formally a least-squares problem with
the (relative) abscissae from the Set Solutions as 'observa-
tions' (for the right-hand sides) and the following unknowns:

(1) the astrometric parameters of the PRS: NASPAR = 5
parameters per star (NASPAR*NPRS unknowns);

(1ii) the set orientation parameters (one of which is the
zero point correction): NSETOR = 1 or 3 parameters
per set (NSETOR*NSET unknowns) ;

(iii) an arbitrary number of global parameters (NGLOB > 0
unknowns) .

At present it is not clear whether a single orientation param-
eter (the zero point correction) is sufficient in the final
solution (NSETOR = 1); possibly the coordinates of the RGC
pole (ar, Gr) need to be included among the unknowns (NSETOR

= 3). For a number of preliminary solutions, NSETOR = 1 is
certainly adequate, so the software should be flexible in this
respect.

In order to reduce the size of the normal equations sys-
tem, either the astrometric or orientation parameters can be
successively eliminated while forming the normals for the re-
maining unknowns. The two alternatives are discussed in
NDAC/LO/020. Presently we assume that the astrometric param-
eters are eliminated, which appears the most natural course.

The rank deficiency due to the undefined system orienta-
tion and rotation is removed with the pseudosolution approach
(NDAC/LO/018), which is preferable to the methods discussed
in Annex A, pp. 53-55. The pseudosolution effectively adjusts
the system of positions and proper motions to that used for the
IC data of PRS (e.g. the FK5), without taking over any of its
distortion or local errors ('soft postulation'). We also
believe that this method is numerically very stable, easily

adapted to the Cholesky method, and therefore also computa-
tionally efficient.
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2. Summary of I/0 Data

This does not include the information needed to set up PRS
selection criteria and the functional influence of the global
parameters on the abscissae.

The relevant Data Interface Descriptions (DID's) are:

DID# SOURCE DATA INPUT TO PRS SOLUTION
33 Abscissa « mean abscissae etc from set solutions
Catalogue
34 Ephemerides + barycentric positions of the observer
and the sun
35 Star Catalogue -« astrometric parameters, multiplicity,
etc
DID# DESTINATION DATA OUTPUT FROM PRS SOLUTION
36 Zero Point + set orientations (zero point correc-
Catalogue tions etc)

3. Method and Basic Equations

3.1. Observation Model

For each set (j = ISET) and each PRS star (i = ID) included in
it, the following observation model must be satisfied:

, vV r.) - c, +

rRi’ B0’ X5 j

icn

+ Av E.. . . . =

Bugltygr Bygr T30 g | @) * vy Vs 5 (1)
Here v is the satellitocentric coordinate abscissa calculated
for the mean time of observation (Eij = TOBS), astrometric

parameters a; = (aoi’ 601, M, 4 COS Goi' uGi' Hi)' and radial

velocity Vpi* for satellitocentric barycentre g and RGC pole
Ej' cj is the set zero point correction and Aug the global
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=
distortion function depending on time (tij)' star direction
(ﬁij), the RGC pole (gj) and satellitocentric position of the

Sun (pg): it is parametrized by the NGLOB-vector g. ﬁij is

the 'observed' mean abscissa from the set solution, with
is observation noise

estimated standard error o Y

vij”’ ij
ideally belonging to N(O, ouij)'
The PRS Solution will find a pseudosolution {a,, Cyr Ly» gl

s 2
minimizing Zij(vij/ouij) .

Dropping the subscripts i, j, the complete formulae for

G(t, ar Vpr Rgr gj) are as follows [cf. (A.2.1) - (A.2.6),
(A.11.1), (016.2), (016.3)1]:

cos §_ cosa
o o

u, = | cosé sina (2)
51n60
-sin ao -sin 60 cos ozo
) . uaCOSGo
4, = cos o, -sin 60 sin oy (3)
Hs
0 cosG0 i
T = TOBS - TEPOCH (4)
- - 2 -1 ° 2
U= u,+ Ty -1 [R vea  + 4la | 90] (5)
*g
us=| yp | =u+ i~ ufa'pm “ (6)
’g
Xp —sinar cos a.. 0 xE
YR = | -sin Gr cos o . -sin Gr sin a. cos Gr Yp (7)
Zp cos ‘Sr cos o, cos Gr sin a. sin cSr ZE
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(o3 ]]
n

ATAN2(yE, X))

E
(8)
= 2 2%
S = ATAN2(zE, [xE+yE] )
v = ATANZ(yR, xR)
(9)
= 2 2.4
p = ATANZ(ZR, [xR-+yR] )

11

In (5), R=1.49597870 10 m is the astronomical unit.

We cannot specify here the analytical form of the global
distortion function Aug. Typically it would contain terms
similar to spherical harmonics oriented with respect to the
sun and the ecliptical or heliographic pole. A large number
of such general terms could be prepared for in advance, so
that they are easily switched on and off in various solutions,
but the program structure must also permit incorporating arbit-
rary terms at a later stage.

3.2. Observation Equation

To obtain a linearized observation equation we need the partial
derivatives of the left member of (1) with respect to all the
unknowns (parameters). We gladly neglect the variation of Avu
with the astrometric parameters (through §) and the RGC pole;
also the second-order terms in (5) and a few more approxima-
tions can be permitted. After division by o, we have for ob-
servation ij, i.e. of star i in set j,

AO)[Aa cos § ] + AKQ[AG ] + A(”[A cos ¢ + AOO A +
ij[ %1 oi i3l %1 ij[*VYad oi ij “¥si

affon] o]+ ooy o ] 3]

(M[ ] -1 -1 =
+ X, G_. V. = . .- -
g Gij Ag2 +ouijvlJ cuij(uijtcJ Uij Augij) (10)

(where the unknowns are in brackets) with coefficients
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OUAij

(2)
oy8i3

(3)
v i)

(%)
vij

(s)
ouAij

(1)

v oij

(2)

voij

(3)
voij

(2)
voij

[cf.

94v

og

(A.12.6)].

for NSETOR = 1.

1]

- o as
vTig
B (2)
= OUAijT
= sec”p (gl\ﬁ)'go
_ 2= o3
= -sec"pcos §

Of course the terms B

{

(2)

ij

2= = = _
sec”p cos Grsin(u ar)

and B

-seczz sin ;=) cos & sin(a - 'ar)

(3)
ij

6(20)

[tan Grcos § - sin 6cos (a - ar)]

are omitted

seczg[sin Grcos 3 - cos Grsin Ecos (o - ar)] (11a)

(11b)

(11c)

(11d)

(11e)

(12a)

(12b)

(12¢)

(13)
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Writing the unknowns in (10) as vectors 4a,, ij, Ag of
length NASPAR, NSETOR, and NGLOB, and the coefficients as row-

matrices

_ (1) (NASPAR) \
z_xij = (Aij cen Aij )
_ (1) (NSETOR) .
Byy = (Bjy «+. By3 ) : (14)
() (NGLOB)
gij = (Gij s e 0 Gij ) )

we can write the observation equations

Vij: éij ba, + §ij ij + §ij Ag + (noise) = hij (15)

Here and in the following ij should be interpreted as a single
subscript pointing at the unique observation of star i in set
j. If such an observation does not exist, i.e. if gtar i is
not included in set j, the corresponding terms are to be
disregarded.

3.3. Normal Equations

From (15) we obtain directly the complete system of normals,

: . ’ ] 1an ] [ ' ] =( ’ ]
vi: [’?’—"ij‘-‘ij_“—ai * ’?[éijEij_A-bj YT 214C819]49 = |2 244hy4

J J -3J J -
Vj: ZI|B!.A.. |Aa, +[ZBT.B . [ab., +|XB!.G..|Ag =|ZB!.h,.

) i["iJ".lJ_ =i |y -i3-13)-3 L 13713 2 L4 71313
Z[Zg!.é . Qg.-PZ[ZGf.B.. Ab . +[ZZG!.G..]Ag = EZG'.h..- (16c)
il ij=ijj-1i i {37131 °3 1413711~ Lij—ij 1]}

Under regular conditions both Zjéijéij [an (NASPAR,NASPAR)-
matrix] and Zigijgij [an (NSETOR, NSETOR)-matrix] are positive

definite and either can serve as pivot element for eliminating
da, or ij. If the observations are accessed one star at a
time [e.g. ij = i1, i2, ..., iNSET, i"1, i"2, ..., i°NSET, ...]

(16a)

(16b)
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Qpi can be eliminated as soon as P, = ZJALJAiJ has been com-
pleted; in this way (16a) and the first bracket in (16b) and

in (16c) are not saved. Elimination of Aa is effected by

substituting

- '
Aa. = P.1[ *A..h, -3 A..B..Ab, - I AL, g] (17)
R B S 13-13 j r =i3= $j

from (16a) in (16b) and (16c); the result is

. -1 :
Vi: b3 (B' A, )Aa. + [(X )Ab - AP A' B..Ab.] +.
J is4 ij=i3/ =1 i iJ i] 3 —13 -13j=7 P “1J=1tJ =4
+ (z B'.G.. - B'.A..P. 0% At.G..)Ag =
i -ij=ij -tj=1j-7 i =1J=1j) =
= ' - ’ -1 [
i gijhij BriRz3B: § Attha (18a)
z (Z G! )Aa + ZZ(Z G!.B,. - [Z G..A ] 1 \ . )Ab. +
1%V i] ij i 5\ ij=ij P =1Jd=tJl=t =ij-13/ =3
1
+ ] - [ ] ] =
(Z eis8; = esnis ]2 R385 )A9
1] J
1
= X G!.h.. - |Z G '
ij -1ij 1j [j G¢J 7rZI]P z AtjhiJ (18b)

Repeating the elimination process for every PRS we get the
normals in the form

Vi: , Ab. + E, Ag = e, (19a)

z

J

T E! ab, + F Ag = f (19b)
; R
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in which the matrices of dimensions
Dj (NSETOR, NSETOR) gj (NSETOR, NGLOB) (_ej (NSETOR, 1)
F (NGLOB,NGLOB) f (NGLOB,1)

are (6jj is Kronecker's delta)

-1
., = - B'.A,..P, A! B, ] (20a)
I-)-3.7 [633 =ij- 13 =ij=ij=i =ij-igj
- ' - “Tsarq ] 20b
Ej - i[gijgij -13A13P1 2:Ai =i ( )
- -l - ] 1 ] ] 0
ey = i_gijhij BijRi3B T A h, (20c)
F =s|rc.c.. - (z G'. )pT’ IA'.G.., (20d)
- it 5713733 j ~13° i3 5 ~13743]
- T
£ = z[z:G'.h.. - (z G!.A..)P.1 ¥ A'.h (20e)
= il 5 =-ij7ij 3 -ij-ij/-1i 5 -ij i3]

A possible algorithm for accumulating these matrices (and also
the scalar r = Zij lJ) is given below. It is noted that the
same algorithm can be used for the Set Solution, with the frame
orientations (or attitude polynomials, in the case of DS) re-

placing Aa,, abscissae instead of qu, and instrument parameters
instead of Ag.
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TABLE 1. Accumulation of normals with successive elimination

of astrometric parameters.

1. zero all D.., E., e., and F, £, r
ot 1Y A R - =
2. loop through the stars i:
2.1. zero (P Q R s) of dimension (NASPAR, NASPAR+NSETOR+NGLOB+1)
2.2, loop through the sets j:

2.2.1. input/compute (A,., B.. G.. h..)
-ij =-ij =ij ij

2.2.2. H, := A!.B,,
=l ~1j-1]
. . . P ’ = + !0 . 0 ) G-- o o
2.2.3. @QRS) 1= (RQR S + AL (A, B G by
2.3. next j
2.4. if P is positive definite, factorize and reduce,
@Qrs =2 t@QR S
otherwise, go to 3.
2.5. loop through the sets j:
2.5.1. H, := p' 1y,
-] - =]

2.5.2. accumulation of normals (except off-diagomnal Ejj)’

D.. E. e. D.. E. e.
=13 ") =] =33 -3 =]

. E £ [:=]| . E £ [+

. . T . r

', H!
~1] ~J

+ G!. ( B.. G.. h.,. ) - R' ( H' R s )
-1} -1} -1 1] = =] - -
]

hij s

2.5.3. loop through the previous sets j < j:
2,5.3.1. D,, :=D,, - H'H.
=J1 =J3  =J-3
2.5.4. next J
2.6. next j

3. next i

4, end
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More concisely, Eqns (15) - (20) can be written in matrix
form as shown below, which however effectively conceals the
advantageous structure of the equations. Let M be the total
number of observations and A, B, G, v, h, Aa, 4b, Ag matrices

of dimensions

A(M, NPRS*NASPAR)  Aa(NPRS*NASPAR,1)  V(M,1)
B(M, NSET*NSETOR)  Ab(NSET*NSETOR,1)  h(M,1)
G (M, NGLOB) Ag (NGLOB, 1)

‘The observation equations are

(A B G)| Ab |+ v =nh (157)

Ag

and the normals,

A'A A'B A'G ) ( a A'h
B'A B'B B'G || ab | =| B'h (167)
¢'a ¢'B ¢'c/\ ag G'h

Both A'A and B'B are block-diagonal and positive definite;
using A'A as pivot to eliminate Aa yields

e 2 (5)-(3

(197)

10
~—

with

D= B'B-B'AR'A) 'a'B (20a7)
E=B'G-B'AR'A a'g (20b7)
e =B'h-B'ARA A (20¢”)
F=G'¢-g'amaag (20d7)

1H
1]
o]
=
1
Q)
1>
>
5
"
=

(20e”)
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3.4. Elimination_of Rank Deficiency

e G G G —— —— —— A ST S S G G g

The PRS normals (16°) or (19°) should have a rank defect of
NULLSP = 6 for the undefined coordinate system orientation and
rotation. In order to apply the psedosolution method described
in NDAC/L0O/018 we need to specify

(i) exactly NULLSP fictitious 'observations' suitable to

fix the coordinate orientation and rotation;

(1i) exactly NULLSP linearly independent vectors from the

null space of the normal equations matrix.

Fictitious observations. If we disregard at first the system

rotation, it is clear that the system of celestial coordinates
resulting from a PRS solution would be completely fixed by only
specifying the abscissa origins (zero points) on three mutually
orthogonal RGC's. That advantageous configuration is almost
achievable with a revolving angle close to 45° (Fig. 1). If
three sets j1, j2, j3 are thus selected early in the mission,
and a similar triplet j4, j5, j6 a few years later, we remove
the indeterminacy by postulating

c- =co = o & @ =

C. =0 (21)
31 32 INULLSP

As observation equations, these conditions can be given arbit-
rarily large or even infinite weight (equivalent to deleting
the corresponding six unknowns from the normals); in practice
a large positive number is simply added to the relevant NULLSP
diagonal elements. The normal equations are then solved as
usual.

Null space vectors. Let €o be the misorientation (at mid-epoch
TEPOCH, 1=0) and w the uniform rotation of the PRS celestial
coordinates with respect to some preferred frame. Null vectors
can be generated as derivatives of the unknowns with respect to
the components of £ and w:

( 3ADb 3Ab 3ab
aeox Seoy sz
W= (22)
dAg 0Ag 3Ag
\ de aeoy dw, /
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FIGURE 1. Example showing how three sets (j;, j,, j3) in
a relatively short time interval can be chosen for almost
orthogonal RGC's. Scanning parameters: § = 43°, K = 6.4.
The time from j1 to j3 is about 40 days.
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For NSETOR = 3 and NULLSP = 6, the resulting (NSET*NSETOR+NGLOB,

NULLSP) -matrix is outlined on the preceding page, Egn (23).
unknowns are indicated in brackets to the right; Tj is the

average mean observation time for set j.

For orthonormalizing W = (w, w ), the

¥2 -+ ¥yuLnse
Modified Gram-Schmidt algorithm is recommended:

The

1. for m = 1 to NULLSP

.= '
1.1, d = Won

1.2. for n = m+1 to NULLSP
.= 1
1.2.1. s := wlw /d
1.2.2. W) T W, - ws
1.3. next n

1.4. w

m ym/di

2. nextm

3. end

4. Process Description

Before entering the PRS Solution proper, the Abscissa Catalogue

must be re-ordered according to object identification number

(ID), e.g. as follows:

ID, NOBS - object identifier,

ISET, TOBS, ABSC, ORD, SDABSC, GOF NOBS entries

Y e D i e e e S e e e i e e i £ Ut e it et S oy " — e — > % = D = D S e = - S T — — —

ID, NOBS - next object

number of abscissae
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As NOBS will vary from 0 to ~60 (average ~40) for different
objects, it is probably useful to accumulate NOBS(ID) in the
Star Catalogue (or a separate file) during the progress of
Set Solutions; in this way the re-ordered Abscissa Catalogue
can be set up compactly by running through the set results
tapes once only.

The re-ordered Abscissa Catalogue is input also for the
Backsubstitution (Step 3) and Double Stars. In all cases only

sequential access is required.

A. 1Initiate the PRS Solution by defiﬁing PRS and set selection
criteria, global parameters (number and form), and options
such as NASPAR = 2 or 5, NSETOR = 1 or 3. Surveying a
set catalogue allows to determine NSET and then set up the

normal equations structure.

B. Accumulate normals as indicated in Table 1. While looping
through the stars, the PRS selection criteria are applied.
These must in particular reject suspected double stars and
stars with unresolved slit errors. Note that a Step 3
analysis of prospective PRS can be made after point 2.4 in
Table 1: neglecting Ab and Ag, we have x? = s's, current

_ p—3% ‘ - _
491 = P ‘s, and abscissa residuals (hij éijééi)duij'

C. Pseudosolution of normals
Ca. Select NULLSP (3 or 6) and fix sets (j1

Cb. Calculate orthonormal W

-+« InurLsp’

Cc. Modify diagonal elements for fix sets

Cd. Conventional solution of Ab, Ag

Ce. Modify solution according to (018.22)

Cf. 1If elements of the inverse (pseudocovariances) are

required, proceed according to (018.36)

D. Output results to Abscissa Zero Points



OUTPUT FROM :

ABSCISSA CATALOGUE

PAGE :

l1oF1l

DID 33 INPUT T0  : PRS SOLUTION pate : 83.05.02
DESIGNATION ANNEX A | EXPLANATION UNIT MIN RﬁﬁgE DEE ABSN”M ACCREL 2;&;
1. For each star:
ID i (p35) |object identification number - 0 108 0 1 - 8
1.1. For_each_set containing the
object
ISET j (p35) set identification number - 1 9.105 - 1 - 6
TOBS t0+T (p4)| mean time of observation = ?ij s 0 2.108 - 10-6 - 15
ABSC v;; (p35)|mean abscissa = 5 ; (NDAC/LO/016) rad - m - 0 ' - 12
ORD pji (p35)| mean ordinate = ﬁij (NDAC/L0/016) rad =37 i - 10-11 - 12
SDABSC 9 (p37)| standard deviation of ABSC = Oy rad -107> 197> - T - 7
GOF - goodness of fit - ~10%8 108 - 1076 6

o i

(oz) L1




OUTPUT FROM : EPHEMERIDES

DID 34 INPUT TO  : PRS SOLUTION : 83,05.02
RANGE DIG-
DE NATION NEX EXPLANATION UNIT
SIGNAT ANNEX A MAX e
1. For each star:
1.1. For each set containing
the object
TOBS £ *T (p4)| mean time of observation s 108 15
ROBS(K), K=1,3 2y (p5) | barycentric coord. of observer m —2.1011 2.1011 11
RSUN(K), K=1,3 - barycentric coord. of the Sun m .10 5

e e ey e Vg L Tt e 4 nm T

(0z)gl



DID 35 OUTPUT FROM : STAR CATALOGUE PAGE : 1 OF 1
INPUT TO PRS SOLUTION DATE : 83,05.,02
DESIGNATION ANNEX A | EXPLANATION UNIT WIN RAMI:;E ber | SNUM ACCREL DIIT%'
1. For each PRS candidate:
ID - object identification number - 0 9.108 0 1 - 8
RAQ o (p&) Right Ascension at TEPOCH rad -7 ﬂ - 10_11 - 12
DEC@ 8, (p4) | Declination at TEPOCH rad i 4 - 10_11 - 12
PMRA ua?32)6° Proper Motion in R.A. at TEPOCH rad/s --10_11 10'_11 0 10—19 - 9
PMDEC Mg (p4)| Proper Motion in Dec at TEPOCH rad/s -10~ M1 10_11 0 ‘IO_19 - 9
PX W (p4) | trigonometric parallax rad —5.10—6 5.10_6 0 10”1 - 6
VR Ve (p4) | Radial Velocity m/s —106 106 0 1 - 6
BMAG - blue (B) magnitude mag -2 15 99 10—2 - 4
BMV, SDBMV - colour index (B-V) and s.d. mag -1 3 99 10“2 - 4
MULT - multiplicity information (TBD) - 0 9999 0 1 - 4

(02) 61
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DID 36 OUTPUT FROM : PRS soLUTION PAGE :
INPUT TO : ZERO POINT CATALOGUE DATE : 83.05.02
RANGE NUM ACC DIG-
DESIGNATI E EXPLANATION
GNATION ANNEX A UNIT MIN MAX DEF ABS REL ITS
1. For each set:
ISET j (p35)| set identification number - 1 9.105 - 1 - 6
CSET cj (p34)| abscissa zero point correction rad -T T 0 10_11 - 12
RASET a (p31)| Right Ascension of RGC pole rad il i - 10_11 - 12
DECSET Grj (p31)| Declination of RGC pole rad -3 X - 10-11 - 12

(0z)oz




