HIPPARCOS

Star Distribution Models (2)

L Lindegren (1983 March 16) Lund Observatory Box 1107 S-22104 LUND, Sweden

Summary

An analytical expression is given for the smoothed star density as function of blue magnitude and galactic coordinates (b, l).

The formula

A previous note, "Star Distribution Models" (1982-11-14) gave the star density as function of blue magnitude (B) and galactic latitude (b). The present note extends the formula with a term depending on galactic longitude (ℓ).

Let N(B, b, l) be the (smoothed) number of stars per square degree at galactic coordinates (b, l) brighter than B. For all B < 16 and all positions we have approximately

$$lg[N(B,b,l)] = lg[N(B,b)] - e^{0.39(B-22)}cos^2b$$

$$-0.1\left[1+\ln\left(1+e^{0.65(B-12.7)}\right)\right] 1g\left[1-\frac{1.56-0.60\cos b}{1+e^{-0.78(B-9)}}\cos b\cos b\right]$$
 (1)

in which

$$lg[N(B, b)] = -3.65 + 0.489B - 0.002B^{2} - (0.86 - 0.084B + 0.007B^{2})(1.4|sinb| - 0.4 sin^{2}b)$$
 (2)

gives the density averaged with respect to 1:

$$N(B, b) = (2\pi)^{-1} \int_{-\pi}^{\pi} N(B, b, \ell) d\ell$$
 (3)

Averaging also with respect to b (i.e. over the full sky), we have

$$N(B) = 2^{-1} \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} N(B, b) \cos b \, db$$
 (4)

which for B < 16 is approximated by

$$1g N(B) = -4.08 + 0.528B - 0.005B^{2}$$
 (5)

The densities given by (2) and (5) are about 0.02 dex smaller than in the previous note, and the coefficient for B in (5) is also slightly changed to give better consistency with (2).

The general form of dependence on B and b was adopted from Allen (1973), but with a zero point shift in lg(N) such that the total number of stars to B = 8.5 agrees with counts in the CSI (Turon Lacarrieu, 1980). The variations with longitude were taken from the Galaxy model by Bahcall and Soneira (1980).

Tables 1 to 3 give some comparisons with these sources.

Table 1. Comparison of (2) with Allen (1973). The table gives $lg(N_{LL}/N_{Allen})$.

В	b = 0°	5 ⁰	10°	20°	30°	40°	50 ⁰	60°	90°	all sky
0		(.25)	(.13)			(03)			(.17)	
2	(.06)			(.09)			(04)			(.14)
4	.02	.03	.01	.01	.05	.06	.04	.01	.04	.06
6	.03	.04	.04	.05	.07	.06	.04	.03	.02	.05
8	.08	01	.08	.08	.07	.07	.05	.03	.04	.07
10	.07	.07	.07	.07	.07	.05	.04	.03	.05	.08
12	.05	.06	.08	.06	.04	.04	.02	.03	.04	.08
14	.08	.07	.08	.07	.05	.05	.04	.05	.04	.07
16	.18	.10	.12	.10	.11	.09	.09	.09	.11	.11

Table 2. Comparison of (1) with Bahcall and Soneira (1980): $lg(N_{LL}/N_{BS})$.

				50° 0°	50° 90°	50 ⁰ 180 ⁰	90° -
21 .22					.16	.16	.17
31 .31	.31	.31	.31	.20	.19	.19	.19
36 .36					.18	.18	.16
37 .38	.31	.33	.33	.18	.19	.19	.17
	31 .31 36 .36	31 .31 .31 36 .36 .32	31 .31 .31 .31 36 .36 .32 .32	31 .31 .31 .31 .31 36 .36 .32 .32 .32	31 .31 .31 .31 .20 36 .36 .32 .32 .32 .18	31 .31 .31 .31 .20 .19 36 .36 .32 .32 .32 .18 .18	31 .31 .31 .31 .20 .19 .19 36 .36 .32 .32 .32 .18 .18 .18

Table 3. Comparison of (2) and (5) with the CSI (Turon, 1980): $lg(N_{LL}/N_{CSI})$.

В	b =	0 - 5°	5 - 10 ⁰	10 - 20°	20 - 40°	40 - 60°	60 - 90 ⁰	all sky
8.0 8.5 8.8 9.0 9.5		038	022	.004	.019	007	023	.013 .001 .001 .004

Galactic coordinates

For convenience I give here the complete and accurate transformation between ecliptical coordinates (λ, β) , referred to the standard epoch J2000.0, and galactic coordinates (b, ℓ) :

$$\begin{pmatrix} \cos b \cos k \\ \cos b \sin k \\ \sin b \end{pmatrix} = \begin{pmatrix} -.0548777621 & -.9938212536 & -.0964766664 \\ .4941083214 & -.1109918634 & .8622863637 \\ -.8676666398 & -.0003495777 & .4971463365 \end{pmatrix} \begin{pmatrix} \cos \beta \cos \lambda \\ \cos \beta \sin \lambda \\ \sin \beta \end{pmatrix}$$
(6)

References

Allen, C.W.: 1973, Astrophysical Quantities, 3rd ed., The Athlone Press, London (p. 243)

Bahcall, J.N. and Soneira, R.M.: 1980, Astrophys. J. Suppl. 44, 73 (Table 6)
Turon Lacarrieu, C.: 1980, Preliminary remarks on the definition of a survey,
Hipparcos working paper 1980 Oct 8 (Table 1 and 2)