6th International Dietary Fibre Conference DF15

1-3 June 2015 Paris, France

BOOK OF ABSTRACTS

We would like to thank all participants at the Conference for helping making this event such a big success!

Committees

Scientific Committee

Monique Axelos, INRA, France (Chair) Joel Abecassis, INRA, France Charles Brennan, Lincoln University, New Zealand Fred Brouns, Maastricht University, Netherlands Marina Carcea, INRAN, Italy Martine Champ, INRA, France George Fahey, University of Illinois, USA Kati Katina, University of Helsinki, Finland Yolanda Sanz, IATA, Spain Julie Miller Jones, College of St. Catherine, USA Kaisa Poutanen, VTT, Finland Luc Saulnier, INRA, France Henk Schols, Wageningen University, Netherlands Joanne Slavin, University of Minnesota, USA Louis-Georges Soler, INRA, France Jan Delcour, Katholieke Universiteit Leuven, Belgium Talitha Best, CQ University, Australia Marta Izydorczyk, Canadian Grain Commission, Canada Carolin Mellinger Silva, Embrapa, Brazil Angela Zuleta, University of Buenos Aires, Argentina Hamit Köksel, Hacettepe University, Turkey Meinolf Lindhauer, MRI, Germany Naushad Emmambux, University of Pretoria, South Africa Xueling Zheng, Henan University of Technology, China Furio Brighenti, University of Parma, Italy

Organising Committee

Michaela Pichler, ICC, Austria (Chair) Joel Abecassis, INRA, France Laurence Prevosto, INRA, France Sabine Gratzer, ICC, Austria Line Friis Lindner, ICC, Austria

Policy Advisory Board

Jan Willem van der Kamp, TNO, Netherlands (Chair) Michel Chauliac, Ministry of Health, France Gwenaelle Bizet, Ministry of Agriculture, France Hans Verhagen, RIVM, the Netherlands

Industry Advisory Board

Jan Willem van der Kamp, TNO, Netherlands (Chair) Toine Hulshof, Kellogg's Europe Ruedi Duss, DSM, Switzerland Stephan Theis, Beneo Group, Germany Michel Infantes, Mondelēz, France

Table of posters

Poster N°	Title	Last Name	First Name
Session 1 Consumer & Regulatory Aspects			
1.1	Energy density- dietary fibers a possibility to decrease the energy density of foodstuffs	Fischer	Anne
1.2	NUTRIOSE®, a soluble fiber with outstanding tolerance and very low glycemic response	Lefranc-Millot	Catherine
1.3	Physical and Sensory parameters of muffins enriched with tiger nut fiber.	Navarro Rodríguez De Vera	Casilda
1.4	Texture and sensory properties of crackers with pea dietary fibers	Nikolić	Ivana
1.5	Consumer Study and Sensory Profile (CATA) of Low-Fat Fermented Sausages Containing Prebiotic Fibers.	Pollonio	Marise Aparecida
1.6	Prebiotic fiber inulin as enhancer of calcium bioavailability in wheat breads. Quality improvement through desirability function	Zuleta	Angela
	Session 2 Consumer health		
	Session 2.a Colonic microbiota and funct	ions	
2a.1	Utilization of pumpkin flour in gluten-free cake formulation	Aktas	Kubra
2a.2	Fibre mixes can substantially reduce the post-prandial blood glucose response to South-East Asian flat breads: <i>in vitro</i> and clinical data	Boers	Hanny
2a.3	Novel heteropolysaccharides: dietary fibers with prebiotic potential	Čavarkapa	Andrea
2a.4	Effect of dietary fibre on bowel function and digestive symptoms during different phases of the menstrual cycle	Dye	Louise
2a.5	All Sources of Dietary Fiber Serve as Prebiotics for the Microbiome	Gordon	Dennis
2a.6	Encapsulation mechanism of almond cell walls and its impact on lipid digestion	Grundy	Myriam
2a.7	The role of insoluble dietary fibres in prevention and improvement of pregnancy related bowel problems	Jefferson	Angie
2a.8	Soluble Corn Fiber is fermented in the distal colon, leading to positive modulation of the microbiota and the gut wall	Karnik	Kavita
2a.9	Dietary resistant maltodextrin alters intestinal environment and enhances intestinal immune response	Miyazato	Shoko
2a.10	Microbial fermentation of dietary fiber powder obtained from date pits (<i>Phoenix dactylifera</i> L) co-products subject to <i>In Vitro</i> gastrointestinal digestion	Pérez-Alvarez	José
2a.11	Cost-effective, non-pharmacological solutions needed to combat digestive health problems: the role of the dietician	Priestley	Emma
2a.12	Decrease of plasma GLP-1 concentration and DPP-4 activity in rats fed partially hydrolyzed guar gum by cecectomy	Shimada	Ryoko

2a.13	Adding pectin to rat's diet affects fermentation of individual fibres	Tian	Lingmin	
2a.14	Dietary supplementation with a type 3 resistant starch induces butyrate producing bacteria within the gut microbiota of human volunteers	Vermeiren	Joan	
2a.15	Effects of dietary fibres from grains on bowel function: a systematic review of intervention trials	Vries	Jan	
2a.16	Latest Advancement in Dietary Fiber for Piglet Feeds	Wang	Weiguo	
2a.17	High molecular weight barley β -glucan promotes a favorable human gut microbiota associated with reduction of cardiovascular diseases (CVD) risk factors	Wang	Yanan	
2a.18	Wheat bread fortified with inulin: "in vivo" studies	Zuleta	Angela	
	Session 2.b Metabolic Health			
2b.1	Cholesterol lowering efficacy of β -glucan ; a mechanistic and nutrigenomics approach	Ames	Nancy	
2b.2	Long-term ingestion of a diet rich in protein and fiber does not decrease food intake, body weight or adiposity, regardless of the fat content of the diet	Chaumontet	Catherine	
2b.3	Differences in glycemic response to whole-grain oat foods resulting from processing	Chu	Yifang	
2b.4	Psyllium stimulates lipid transport and fatty acid oxidation in the muscle of high-fat diet-fed mice	Egashira	Yukari	
2b.5	Resistant starch but not slowly digestible starch prevents the development of diabetes in Zucker Diabetic Fatty rats	Hedemann	Mette	
2b.6	Supplementation of resistant maltodextrin and fructooligosaccharides promotes GLP-1 production, attenuates lipid accumulation and glucose intolerance in high fat and high sucrose diet-induced obese rats	Hira	Tohru	
2b.7	Lifespan of a metabolic syndrome model rat, SHR-cp and its extension by fiber-rich diet	Kobayashi	Yuta	
2b.8	Effect of the administration of an oats β -glucan-enriched breakfast on hunger/satiety sensation and plasma hormones, and orocecal transit time in healthy volunteers	Lopez	Ximena	
2b.9	The interaction of dietary fibres with the immune system as measured <i>in vitro</i> : the example of inulin.	Meyer	Diederick	
2b.10	Impact of wheat fractions differing by their dietary fibre content and incorporated in several cereal foods on their glycaemic and insulinaemic responses	Meynier	Alexandra	
2b.11	Research Through the Ages: Wheat Bran Fibre and Its Effect on Stool Bulk	Moss	Joseph	
2b.12	Effect of processed marine brown alga, Sargassum horneri, on plasma lipids in rats fed a high-cholesterol diet	Murakami	Kaori	
2b.13	Resistant Starch and Diabetes Prevention - Beyond Glycemic Index to Glycemic Health	Pelkman	Christine	
2b.14	Glycemic and Satiety Responses of Wholegrain and Fiber-Rich Breads	Ragaee	Sanaa	
2b.15	The metabolic fate & immune activity of β glucan and other dietary fibres in the human large intestine	Rösch	Christiane	

<u>2b.16</u>	Immunomodulating activites of fungal beta-glucans seem superior to those of cereal beta-glucans <i>in vitro</i>	Samuelsen	Anne Berit
2b.17	Glycemic response and fermentation of crystalline short linear α -glucans from debranched waxy maize starch	Shi	Yong-Chen
2b.18	Metabolism of cereal plant lignans – a model experiment with catheterized pigs	Sørensen	Anne Katrine
2b.19	Sorghum flaked breakfast biscuits increase postprandial GLP-1 levels and extend subjective satiety levels in healthy subjects	Stefoska- Needham	Anita
2b.20	Preventive effect of young barley leaf powder in a restraint stress- induced irritable bowel syndrome model	Sugawa- Katayama	Yohko

Session 3 Dietary fibre in food and new ingredients

Session 3.a Dietary fibre in food			
3a.1	The Effect of Adding Rice Bran Fibre on Wheat Dough Performance and Bread Quality	Bagheri	Roya
3a.2	Making High Amylose Wheat Flour to get High Resistant Starch Content Bread	Berbezy	Pierre
3a.3	DIETARY FIBRE CONTENT AND PROFILE IN PEAS (<i>Pisum sativum</i> L.) PRODUCED UNDER SUSTAINABLE CROPPING SYSTEM	Boros	Danuta
3a.4	Changes in the level and molecular weight distribution of water- extractable arabinoxylans in five bread model systems produced from rye cultivars with high and low grain extract viscosity	Cyran	Malgorzata
3a.5	Rheological properties of wheat flour dough and French bread enriched with wheat bran	Della Valle	Guy
3a.6	Potential use of oat grain in couscous production in Tunisia	Dorra	Sfayhi
3a.7	Effects of dietary fibers on dough rheological behavior and final products	Dubat	Arnaud
3a.8	In situ starch modification for slow digestible/resistant starch during porridge making	Emmambux	Naushad
3a.9	Intrinsic properties of wheat bran pearling fractions affect their impact on bread making	Hemdane	Sami
3a.10	Texture controlling of brown rice by ultrasound treatment	Jang	Eun-Hee
3 a.11	Fibre content in modified extruded maize flour with addition of brewers' spent grain	Jozinović	Antun
3a.12	Physico-chemical characterization ultrasound-assisted extracted β -glucan from hulless barley cultivar Lut	Koocheki	Arash
3a.13	Effect of extruded wheat bran on dough rheology and Barbary bread quality	Koocheki	Arash
<u>3a.14</u>	Changes of biologically active dietary fibre compounds during barley bran, pea fiber and lupine seeds fermentation	Krungleviciute	Vita
3a.15	Comparsion the effects of different fiber source on nutritional and physical properties of wheat bread	Kurek	Marcin
3a.16	Improve the quality of fiber-enriched flat bread (Sangak) by extruded wheat bran supplementation	Milani	Elnaz

<u>3a.17</u>	Resistant starch formation by microwave irradiation treatment in normal and high amylose corn starches	Mutlu	Selime	
3a.18	Development of muffins with optimal concentration of fiber from orange juice industry co-products.	Navarro Rodríguez De Vera	Casilda	
3a.19	Industrial progressive pearling for the production of fibre-rich ingredients from common wheat	Papillo	Valentina	
3a.20	Application of progressive pearling process to pigmented wheat cultivars to obtain functional ingredients rich in fibre and antioxidant compounds	Papillo	Valentina	
3a.21	Potential of adding isolated pentosans from rye-bran to improve gluten-free bread properties	Schoenlechner	Regine	
3a.22	Characterization of two trisaccharides produced in the presence of lactose by Weissella confusa dextransucrase	Shi	Qiao	
3a.23	<i>In vitro</i> digestion of biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system: viscosity measurement, protein and starch hydrolyses.	Villemejane	Cindy	
3a.24	Characterization of new milling fractions and use of biocomponents-enriched fractions in pasta production	Zanoletti	Miriam	
	Session 3.b New dietary fibre sources and dietary fibre properties			
3b.1	Tarhana enriched with wheat milling by-products	Aktas	Kubra	
3b.2	Effect of hydrolytic enzymes on the solubility of wheat bran proteins and cell wall structure	Arte	Elisa	
3b.3	Hydroxyl radical oxidation of cereal feruloylated arabinoxylan	Bagdi	Attila	
3b.4	Apple pomace dietary fibre extraction and valuation	Bastos	Rita	
3b.5	Characterization of dietary fiber in stone cells and parenchyma cells in pear	Brahem	Marwa	
3b.6	Whole grain wheat flour as a fiber source in pasta: technological, nutritional and sensorial characteristics	Chang	Yoon	
3b.7	Defatted chia flour as a fiber source in snacks: composition and technological characteristics	Chang	Yoon	
3b.8	Carbohydrate quality of barley products with focus on dietary fibre	Djurle	Susanne	
3b.9	Characterization of rich-fibre extracts from citrus processes coproducts	Fernández- López	Juana	
3b.10	Bioactive and baking value of triticale bread enriched with high fibre oat concentrate	Fra	Ana	
3b.11	The effect of temperature and ph on the resistant starch content of cross-linked wheat starches	Kahraman	Kevser	
3b.12	Soluble dextrin fibre from potato starch for beverage industry	Kapusniak	Janusz	
3b.13	Impact of wheat and rye bran properties on dextran production with Weissella confusa	Mäkelä	Jari	
3b.14	Defining quality of sugar beet fiber for production of bakery products	Maravic	Nikola	
3b.15	Physicochemical and microbiolgical characteristics of sugar beet fibers	Maravić	Nikola	

3b.16	Dietary fiber recovery from Brazilian Pinot noir grape pomace: a response surface methodology approach	Mellinger Silva	Carolin	
3b.17	Physical or enzymatic tailoring of cereal fractions improves its health effects	Micard	Valerie	
3b.18	Isolation and characterization of dietary fibre in the fruiting bodies of Cantharellus cibarius.	Nyman	Armika	
3b.19	Effect of prebiotic fibers on proteolysis, and physicochemical and microbiological properties of low-fat dry-fermented sausages	Pollonio	Marise Aparecida	
3b.20	Carbohydrates a potential source of fat replacers	Promeyrat	Aurélie	
3b.21	Birch pulp xylan as dietary fibre ingredient and hydrocolloid for dairy applications	Rosa-Sibkov	Natalia	
3b.22	Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs.	Sahlstrøm	Stefan	
3b.23	Starch spherulite: a unique form of resistant starch	Shi	Yong-Chen	
3b.24	Dietary fiber content of tropical fruits and alternative starch sources with potential for value-added product development	Stewart	Maria	
3b.25	Wheat Aleurone-rich Flour – Beneficial Dietary Fiber for Food Application	Tömösközi	Sándor	
3b.26	Dietary fibre in beans, lentils, peas and chickpeas: structural and functional characteristics	Tosh	Susan	
Session 4 Classification and analysis				
4.1	Inter-laboratory evaluation of SEC-post-column calcofluor for determination of the weight-average molar mass of cereal β -glucan	Ballance	Simon	
4.2	Arabinoxylan content and grain tissue distribution in wheat products are good predictors for the amount and quality of dietary fiber.	Barron	Cécile	
4.3	Determination of Adulteration in Breads' Dietary Fiber by Using Laser Induced Breakdown Spectroscopy	Boyacı	İsmail	
4.4	Hydrodynamic Characterisation of Soluble Dietary Fibre: Gellan	Erten	Tayyibe	
4.5	Selected oat products and their potential use in functional food	Gołębiewska	Kinga	
4.6	Comparison of dietary fiber results by traditional assays and Codex Alimentarius definition AACCI 32-45.01/AOAC 2009.01	Jin	Yulai	
4.7	Fast estimation of dietary fibres content in fruit	Le Gall	Sophie	
4.8	Characterisation of oxidatively degraded barley $(1\rightarrow 3)(1\rightarrow 4)$ - β -D-glucans using HPSEC and AsFIFFF	Maina	Ndegwa	
4.9	Modeling various grain food consumption patterns in the US diet: An analysis to determine the impact on energy and nutrient availability in comparison to the USDA ideal and USDA typical food patterns	Papanikolaou	Yanni	
4.10	Improvements to the Codex-Definition Dietary Fiber Methods	Plank	David	
4.11	New dietary fibre content results for cereal samples: a comparison between Nordic countries	Rainakari	Aliki	
4.12	Effect of Aegilops chromosome additions on the dietary fiber content and composition of wheat wholemeal	Rakszegi	Marianna	

4.13	Determination of DFRC monomers from dietary fiber lignin by stable-isotope dilution GC-MS analysis	Schäfer	Judith
4.14	Comparative analysis of the composition of amaranth, quinoa, and buckwheat dietary fiber	Schäfer	Judith
4.15	Development of a quantitative screening method for comparison of feruloylated arabinoxylan side chain profiles in cereal grains	Schendel	Rachel
4.16	What's new on prebiotic fibres – some snapshots	Theis	Stephan
Session 5 Increasing fibre intake: challenges and benefits			
5.1	Essentiality of Dietary Fiber	Gordon	Dennis

3b.15

Physicochemical and microbiolgical characteristics of sugar beet fibres

Zita Šereš¹, Dragana Šoronja-Simović¹, <u>Nikola Maravić¹</u>, Cecilia Hodur², Ljubica Dokić¹, Ivana Nikolić¹, Miljana Đorđević¹

¹Faculty of Technology, University of Novi Sad. RS ²Faculty of Engineering, University of Szeged. HU Email: maravic@tf.uns.ac.rs

Due to the balanced ratio of soluble and insoluble fiber, small amount of lipids and sugar, and the low energy value, sugar beet fibers provide excellent physiological benefits to human body and their physicochemical characteristics allow a better compounding whit the other ingredients of the product. Sugar beet fibers are derived from sugar beet pulp, which is obtained in the course of the technological processing of sugar beet following the process of extraction of sucrose from the sweet pulp. The aim of this investigation was the characterization of the sugar beet fiber for bread and toast production, as well as the definition of exact drying temperature of sugar beet fiber to reach the best physicochemical properties for implementation in bread. In all samples the chemical composition: soluble and insoluble fibers, ash and protein content are determined. During experimental work the physicochemical (water holding capacity, aw value, colour parameters), and microbiological characteristics (total number of bacteria, aerobe and anaerobe bacteria, yeast and mold) of sugar beet pulp dried on different temperatures: at 55, 65 and 75 °C in the chamber drier aredefined. The content of the total fiber content is about 75%, regardless of drying temperature. In sugar beet fibers dominate nonsoluble fiber. Samples dried in the chamber dryer have highwater holding capacity (from 488% to 524%) depend on temperature. By drying the samples in chamber dryer at 55° °C, the highest lightness of the dried sugar beet pulp were reached (L* =71). The presence of the sporogenaous aerobic and anaerobic bacteria and beet pulp were reached (L* =71).

The authors would like to thank to Provincial Secretariat for Science and Technological Development of Vojvodina. This study was part of national project of Ministry of Science and Technological Development of the Republic of Serbia (Project Number: TP31014).

Keywords: Dried sugar beet fiber, Physico-chemical characteristic of dietary fiber, Convective drying, Microbiology of sugar beet pulp, Color.

References

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S.,Blecker, C., Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124, 411–421.

Hein, W., Bauer, H., Emerstorfer, F. (2012). Processing of long-stored sugar beet. Sugar Industry/Zuckerindustrie, 137 (1), 25-32.Mudgil, D., Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules 61, 1-6.