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Descriptive statistics for parametric models currently rely heavily
on the accuracy of distributional assumptions. Here, leveraging the
structures of parametric distributions and their central moment kernel
distributions, a class of estimators, consistent simultanously for both
a semiparametric distribution and a distinct parametric distribution, is
proposed. These efficient estimators are robust to both gross errors
and departures from parametric assumptions, making them ideal
for estimating the mean and central moments of common unimodal
distributions. This article also illuminates the understanding of the
common nature of probability distributions and the measures of them.
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The potential biases of robust location estimators in esti-1

mating the population mean have been noticed for more2

than two centuries (1), with numerous significant attempts3

made to address them. In calculating a robust estimator, the4

procedure of identifying and downweighting extreme values5

inherently necessitates the formulation of distributional as-6

sumptions. Previously, it was demonstrated that, due to the7

presence of infinite-dimensional nuisance shape parameters,8

the semiparametric approach struggles to consistently address9

distributions with shapes more intricate than γ-symmetry.10

Newcomb (1886) provided the first modern approach to ro-11

bust parametric estimation by developing a class of estimators12

that gives "less weight to the more discordant observations"13

(2). In 1964, Huber (3) used the minimax procedure to ob-14

tain M -estimator for the contaminated normal distribution,15

which has played a pre-eminent role in the later development16

of robust statistics. However, as previously demonstrated,17

under growing asymmetric departures from normality, the18

bias of the Huber M -estimator increases rapidly. This is a19

common issue in parametric robust statistics. For example,20

He and Fung (1999) constructed (4) a robust M -estimator21

for the two-parameter Weibull distribution, from which the22

mean and central moments can be calculated. Nonetheless,23

it is inadequate for other parametric distributions, e.g., the24

gamma, Perato, lognormal, and the generalized Gaussian dis-25

tributions (SI Dataset S1). Another interesting approach is26

based on L-estimators, such as percentile estimators. For27

examples of percentile estimators for the Weibull distribu-28

tion, the reader is referred to the works of Menon (1963) (5),29

Dubey (1967) (6), Marks (2005) (7), and Boudt, Caliskan,30

and Croux (2011) (8). At the outset of the study of percentile31

estimators, it was known that they arithmetically utilize the32

invariant structures of parametric distributions (5, 6). An esti-33

mator is classified as an I-statistic if it asymptotically satisfies34

I (LE1, . . . ,LEl) = (θ1, . . . , θq) for the distribution it is consis-35

tent, where LEs are calculated with the use of LU -statistics36

(defined in Subsection B), I is defined using arithmetic opera-37

tions and constants but may also incorporate transcendental38

functions and quantile functions, and θs are the population39

parameters it estimates. In this article, two subclasses of I-40

statistics are introduced, recombined I-statistics and quantile 41

I-statistics. Based on LU -statistics, I-statistics are naturally 42

robust. Compared to probability density functions (pdfs) and 43

cumulative distribution functions (cdfs), the quantile functions 44

of many parametric distributions are more elegant. Since the 45

expectation of an L-estimator can be expressed as an integral 46

of the quantile function, I-statistics are often analytically ob- 47

tainable. However, it is observed that even when the sample 48

follows a gamma distribution, which belongs to the same larger 49

family as the Weibull model, the generalized gamma distri- 50

bution, a misassumption can still lead to substantial biases 51

in Marks percentile estimator for the Weibull distribution (7) 52

(SI Dataset S1). 53

On the other hand, while robust estimation of scale has also 54

been intensively studied with established methods (9, 10), the 55

development of robust measures of asymmetry and kurtosis 56

lags behind, despite the availability of several approaches (11– 57

15). The purpose of this paper is to demonstrate that, in 58

light of previous works, the estimation of central moments can 59

be transformed into a location estimation problem by using 60

U -statistics, the central moment kernel distributions possess 61

desirable properties, and by utilizing the invariant structures 62

of unimodal distributions, a suite of robust estimators can 63

be constructed whose biases are typically smaller than the 64

variances (as seen in Table 1 for n = 4096). 65

A. Robust Estimations of the Central Moments. In 1976, Bickel
and Lehmann (9), in their third paper of the landmark series
Descriptive Statistics for Nonparametric Models, generalized
nearly all robust scale estimators of that time as measures of
the dispersion of a symmetric distribution around its center
of symmetry. In 1979, the same series, they (10) proposed a
class of estimators referred to as measures of spread, which
consider the pairwise differences of a random variable, irrespec-
tive of its symmetry, throughout its distribution, rather than
focusing on dispersion relative to a fixed point. While they
had already considered one version of the trimmed standard
deviation, which is essentially a trimmed second raw moment,
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in the third paper of that series (9); in the final section of
the fourth paper (10), they explored another two versions of
the trimmed standard deviation based on symmetric differ-
ences and pairwise differences, the latter is modified here for
comparison,

[(
n

2

)
(1− ϵ0 − γϵ0)

]− 1
2

(n2)(1−ϵ0)∑
i=(n2)γϵ0

(
X −X ′)

i

2


1
2

,

where (X −X ′)1 ≤ . . . ≤ (X −X ′)(n2) are the order statistics66

of the pairwise differences, Xi − Xj, i < j, provided that67 (
n
2

)
γϵ0 ∈ N and

(
n
2

)
(1− ϵ0) ∈ N. They showed that, when68

ϵ0 = 0, the result obtained using [??] is equal to
√

2 times the69

sample standard deviation. The paper ended with, “We do70

not know a fortiori which of the measures is preferable and71

leave these interesting questions open.”72

Two examples of the impacts of that series are as follows.73

Oja (1981, 1983) (16, 17) provided a more comprehensive74

and generalized examination of these concepts, and integrated75

the measures of location, dispersion, and spread as proposed76

by Bickel and Lehmann (9, 10, 18), along with van Zwet’s77

convex transformation order of skewness and kurtosis (1964)78

(19) for univariate and multivariate distributions, resulting79

a greater degree of generality and a broader perspective on80

these statistical constructs. Rousseeuw and Croux proposed a81

popular efficient scale estimator based on separate medians of82

pairwise differences taken over i and j (20) in 1993. However83

the importance of tackling the symmetry assumption has been84

greatly underestimated, as will be discussed later.85

To address their open question (10), the nomenclature used86

in this paper is introduced as follows:87

Nomenclature. Given a robust estimator, θ̂, which has an88

adjustable breakdown point, ϵ, that can approach zero asymp-89

totically, the name of θ̂ comprises two parts: the first part90

denotes the type of estimator, and the second part represents91

the population parameter θ, such that θ̂ → θ as ϵ→ 0. The92

abbreviation of the estimator combines the initial letters of93

the first part and the second part. If the estimator is symmet-94

ric, the upper asymptotic breakdown point, ϵ, is indicated in95

the subscript of the abbreviation of the estimator, with the96

exception of the median. For an asymmetric estimator based97

on quantile average, the associated γ follows ϵ.98

In RESM I, it was shown that the bias of a robust estimator99

with an adjustable breakdown point is often monotonic with100

respect to the breakdown point in a semiparametric distri-101

bution. Naturally, the estimator’s name should reflect the102

population parameter that it approaches as ϵ→ 0. If multi-103

plying all pseudo-samples by a factor of 1√
2 , then [??] is the104

trimmed standard deviation adhering to this nomenclature,105

since ψ2 (x1, x2) = 1
2 (x1 − x2)2 is the kernel function of the106

unbiased estimation of the second central moment by using107

U -statistic (21). This definition should be preferable, not only108

because it is the square root of a trimmed U -statistic, which109

is closely related to the minimum-variance unbiased estimator110

(MVUE), but also because the second γ-orderliness of the111

second central moment kernel distribution is ensured by the112

next exciting theorem.113

Theorem A.1. The second central moment kernel distribution114

generated from any unimodal distribution is second γ-ordered,115

provided that γ ≥ 0.116

Proof. In 1954, Hodges and Lehmann established that if X 117

and Y are independently drawn from the same unimodal dis- 118

tribution, X − Y will be a symmetric unimodal distribution 119

peaking at zero (22). Given the constraint in the pairwise dif- 120

ferences that Xi < Xj, i < j, it directly follows from Theorem 1 121

in (22) that the pairwise difference distribution (Ξ∆) generated 122

from any unimodal distribution is always monotonic increasing 123

with a mode at zero. Since X −X ′ is a negative variable that 124

is monotonically increasing, applying the squaring transfor- 125

mation, the relationship between the original variable X −X ′
126

and its squared counterpart (X −X ′)2 can be represented as 127

follows: X −X ′ < Y − Y ′ =⇒ (X −X ′)2 > (Y − Y ′)2. In 128

other words, as the negative values of X −X ′ become larger 129

in magnitude (more negative), their squared values (X −X ′)2
130

become larger as well, but in a monotonically decreasing man- 131

ner with a mode at zero. Further multiplication by 1
2 also 132

does not change the monotonicity and mode, since the mode is 133

zero. Therefore, the transformed pdf becomes monotonically 134

decreasing with a mode at zero. In RESM I, it was proven that 135

a right-skewed distribution with a monotonic decreasing pdf 136

is always second γ-ordered, which gives the desired result. 137

In RESM I, it was shown that any γ-symmetric distribution 138

is νth γ-U -ordered, suggesting that νth γ-U -orderliness does 139

not require unimodality, e.g., a symmetric bimodal distribution 140

is also νth U -ordered. In the SI Text of RESM I, an analysis 141

of the Weibull distribution showed that unimodality does 142

not assure orderliness. Theorem A.1 uncovers a profound 143

relationship between unimodality, monotonicity, and second 144

γ-orderliness, which is sufficient for γ-trimming inequality and 145

γ-orderliness. 146

In 1928, Fisher constructed k-statistics as unbiased estima-
tors of cumulants (23). Halmos (1946) proved that a functional
θ admits an unbiased estimator if and only if it is a regular
statistical functional of degree k and showed a relation of sym-
metry, unbiasness and minimum variance (24). Hoeffding, in
1948, generalized U -statistics (25) which enable the derivation
of a minimum-variance unbiased estimator from each unbiased
estimator of an estimable parameter. In 1984, Serfling pointed
out the speciality of Hodges-Lehmann estimator, which is nei-
ther a simple L-statistic nor a U -statistic, and considered the
generalized L-statistics and trimmed U -statistics (26). Given a
kernel function hk which is a symmetric function of k variables,
the LU -statistic is defined as:

LUhk,k,k,ϵ,γ,n := LLk,ϵ0,γ,n

(
sort

(
(hk (XN1 , . . . , XNk ))(

n
k)
N=1

))
,

where ϵ = 1 − (1− ϵ0)
1
k (proven in Subsection F), 147

XN1 , . . . , XNk are the n choose k elements from the sam- 148

ple, LLk,ϵ0,γ,n(Y ) denotes the LL-statistic with the sorted 149

sequence sort
(

(hk (XN1 , . . . , XNk ))(
n
k)
N=1

)
serving as an input. 150

In the context of Serfling’s work, the term ‘trimmed U -statistic’ 151

is used when LLk,ϵ0,γ,n is TMϵ0,γ,n (26). 152

In 1997, Heffernan (21) obtained an unbiased estimator
of the kth central moment by using U -statistics and demon-
strated that it is the minimum variance unbiased estimator for
distributions with the finite first k moments. The weighted
Hodges-Lehmann kth central moment (2 ≤ k ≤ n) is thus
defined as,

WHLkmk,ϵ,γ,n := LUhk=ψk,k,k,ϵ,γ,n,
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where WHLMk,ϵ0,γ,n is used as the LLk,ϵ0,γ,n in LU ,153

ψk (x1, . . . , xk) =
∑k−2

j=0 (−1)j
(

1
k−j

)∑(
xk−j
i1

xi2 . . . xij+1

)
+154

(−1)k−1 (k− 1)x1 . . . xk, the second summation is over155

i1, . . . , ij+1 = 1 to k with i1 ̸= i2 ̸= . . . ̸= ij+1 and156

i2 < i3 < . . . < ij+1 (21). Despite the complexity, the follow-157

ing theorem offers an approach to infer the general structure158

of such kernel distributions.159

Theorem A.2. Define a set T comprising all pairs160

(ψk(v), fX,...,X(v)) such that ψk(v) = ψk (Q(p1), . . . , Q(pk))161

with Q(p1) < . . . < Q(pk) and fX,...,X(v) =162

k!f(Q(p1)) . . . f(Q(pk)) is the probability density of the k-163

tuple, v = (Q(p1), . . . , Q(pk)) (a formula drawn after a mod-164

ification of the Jacobian density theorem). T∆ is a subset165

of T , consisting all those pairs for which the correspond-166

ing k-tuples satisfy that Q(p1) − Q(pk) = ∆. The com-167

ponent quasi-distribution, denoted by ξ∆, has a quasi-pdf168

fξ∆ (∆̄) =
∑

(ψk(v),fX,...,X (v))∈T∆
∆̄=ψk(v)

fX,...,X(v), i.e., sum over169

all fX,...,X(v) such that the pair (ψk(v), fX,...,X(v)) is in the170

set T∆ and the first element of the pair, ψk(v), is equal to171

∆̄. The kth, where k > 2, central moment kernel distribution,172

labeled Ξk, can be seen as a quasi-mixture distribution com-173

prising an infinite number of component quasi-distributions,174

ξ∆s, each corresponding to a different value of ∆, which ranges175

from Q(0)−Q(1) to 0. Each component quasi-distribution has176

a support of
(
−
( k

3+(−1)k
2

)−1
(−∆)k, 1

k (−∆)k
)

.177

Proof. The support of ξ∆ is the extrema of the func-178

tion ψk (Q(p1), ··· , Q(pk)) subjected to the constraints,179

Q(p1) < ··· < Q(pk) and ∆ = Q(p1) − Q(pk). Us-180

ing the Lagrange multiplier, the only critical point can181

be determined at Q(p1) = ··· = Q(pk) = 0, where182

ψk = 0. Other candidates are within the bound-183

aries, i.e., ψk (x1 = Q(p1), x2 = Q(pk), ··· , xk = Q(pk)), ···,184

ψk (x1 = Q(p1), ··· , xi = Q(p1), xi+1 = Q(pk), ··· , xk = Q(pk)),185

···, ψk (x1 = Q(p1), ··· , xk−1 = Q(p1), xk = Q(pk)).186

ψk (x1 = Q(p1), ··· , xi = Q(p1), xi+1 = Q(pk), ··· , xk = Q(pk))187

can be divided into k groups. The gth group has the common188

factor (−1)g+1 1
k−g+1 , if 1 ≤ g ≤ k − 1 and the final189

kth group is the term (−1)k−1 (k− 1)Q(p1)iQ(pk)k−i.190

If k+1−i
2 ≤ j ≤ k−1

2 and j + 1 ≤ g ≤ k − j, the191

gth group has i
(
i−1

g−j−1

)(k−i
j

)
terms having the form192

(−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If k+1−i

2 ≤ j ≤ k−1
2193

and k − j + 1 ≤ g ≤ i + j, the gth group has194

i
(
i−1

g−j−1

)(k−i
j

)
+ (k− i)

( k−i−1
j−k+g−1

)(
i

k−j

)
terms having the195

form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If 0 ≤ j < k+1−i

2 and196

j+1 ≤ g ≤ i+j, the gth group has i
(
i−1

g−j−1

)(k−i
j

)
terms having197

the form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If k

2 ≤ j ≤ k and198

k− j + 1 ≤ g ≤ j, the gth group has (k− i)
( k−i−1
j−k+g−1

)(
i

k−j

)
199

terms having the form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If200

k
2 ≤ j ≤ k and j + 1 ≤ g ≤ j + i < k, the gth group has201

i
(
i−1

g−j−1

)(k−i
j

)
+(k− i)

( k−i−1
j−k+g−1

)(
i

k−j

)
terms having the form202

(−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . So, if i + j = k, k

2 ≤ j ≤ k,203

0 ≤ i ≤ k
2 , the summed coefficient of Q(p1)iQ(pk)k−i is204

(−1)k−1 (k− 1) +
∑k−1

g=i+1 (−1)g+1 1
k−g+1 (k− i)

(k−i−1
g−i−1

)
+205 ∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
= (−1)k−1 (k− 1) +206

(−1)k+1 + (k− i) (−1)k + (−1)k (i− 1) =207

(−1)k+1. The summation identities are 208∑k−1
g=i+1 (−1)g+1 1

k−g+1 (k− i)
(k−i−1
g−i−1

)
= 209

(k− i)
∫ 1

0

∑k−1
g=i+1 (−1)g+1 (k−i−1

g−i−1

)
tk−gdt = 210

(k− i)
∫ 1

0

(
(−1)i (t− 1)k−i−1 − (−1)k+1) dt = 211

(k− i)
(

(−1)k

i−k + (−1)k
)

= (−1)k+1 + (k− i) (−1)k
212

and
∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
= 213∫ 1

0

∑k−1
g=k−i+1 (−1)g+1 i

(
i−1

g−k+i−1

)
tk−gdt = 214∫ 1

0

(
i (−1)k−i (t− 1)i−1 − i (−1)k+1) dt = (−1)k (i− 1). 215

If 0 ≤ j < k+1−i
2 and i = k, ψk = 0. If k+1−i

2 ≤ j ≤ k−1
2 and 216

k+1
2 ≤ i ≤ k − 1, the summed coefficient of Q(p1)iQ(pk)k−i

217

is (−1)k−1 (k− 1) +
∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
+ 218∑k−1

g=i+1 (−1)g+1 1
k−g+1 (k− i)

(k−i−1
g−i−1

)
, the same as 219

above. If i + j < k, since
(

i
k−j

)
= 0, the related 220

terms can be ignored, so, using the binomial the- 221

orem and beta function, the summed coefficient of 222

Q(p1)k−jQ(pk)j is
∑i+j

g=j+1 (−1)g+1 1
k−g+1 i

(
i−1

g−j−1

)(k−i
j

)
= 223

i
(k−i
j

) ∫ 1
0

∑i+j
g=j+1 (−1)g+1 ( i−1

g−j−1

)
tk−gdt = 224(k−i

j

)
i
∫ 1

0

(
(−1)j tk−j−1 ( t

t−1

)1−i
)
dt = 225(k−i

j

)
i (−1)j+i+1Γ(i)Γ(k−j−i+1)

Γ(k−j+1) = (−1)j+i+1i!(k−j−i)!(k−i)!
(k−j)!j!(k−j−i)! = 226

(−1)j+i+1 i!(k−i)!
k!

k!
(k−j)!j! =

(k
i

)−1 (−1)1+i (k
j

)
(−1)j . 227

According to the binomial theorem, the coefficient 228

of Q(p1)iQ(pk)k−i in
(k
i

)−1 (−1)1+i (Q(p1)−Q(pk))k is 229(k
i

)−1 (−1)1+i (k
i

)
(−1)k−i = (−1)k+1, same as the above 230

summed coefficient of Q(p1)iQ(pk)k−i, if i + j = k. 231

If i + j < k, the coefficient of Q(p1)k−jQ(pk)j is 232(k
i

)−1 (−1)1+i (k
j

)
(−1)j , same as the corresponding 233

summed coefficient of Q(p1)k−jQ(pk)j . Therefore, 234

ψk (x1 = Q(p1), . . . , xi = Q(p1), xi+1 = Q(pk), . . . , xk = Q(pk)) =235(k
i

)−1 (−1)1+i (Q(p1)−Q(pk))k, the maximum and minimum 236

of ψk follow directly from the properties of the binomial 237

coefficient. 238

239

The component quasi-distribution, ξ∆, is closely related 240

to Ξ∆, which is the pairwise difference distribution, since 241∑ 1
k (−∆)k

∆̄=−( k
3+(−1)k

2
)

−1
(−∆)k

fξ∆ (∆̄) = fΞ∆ (∆). Recall that The- 242

orem A.1 established that fΞ∆ (∆) is monotonic increasing 243

with a mode at zero if the original distribution is unimodal, 244

fΞ−∆ (−∆) is thus monotonic decreasing with a mode at zero. 245

In general, if assuming the shape of ξ∆ is uniform, Ξk is 246

monotonic left and right around zero. The median of Ξk 247

also exhibits a strong tendency to be close to zero, as it can 248

be cast as a weighted mean of the medians of ξ∆. When 249

−∆ is small, all values of ξ∆ are close to zero, resulting in 250

the median of ξ∆ being close to zero as well. When −∆ is 251

large, the median of ξ∆ depends on its skewness, but the 252

corresponding weight is much smaller, so even if ξ∆ is highly 253

skewed, the median of Ξk will only be slightly shifted from 254

zero. Denote the median of Ξk as mkm, for the five para- 255

metric distributions here, |mkm|s are all ≤ 0.1σ for Ξ3 and 256

Ξ4, where σ is the standard deviation of Ξk (SI Dataset S1). 257

Assuming mkm = 0, for the even ordinal central moment 258

kernel distribution, the average probability density on the 259

left side of zero is greater than that on the right side, since 260
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1
2

(k
2)−1(Q(0)−Q(1))k

>
1
2

1
k (Q(0)−Q(1))k . This means that, on aver-261

age, the inequality f(Q(ϵ)) ≥ f(Q(1− ϵ)) holds. For the odd262

ordinal distribution, the discussion is more challenging since263

it is generally symmetric. Just consider Ξ3, let x1 = Q(pi)264

and x3 = Q(pj), changing the value of x2 from Q(pi) to265

Q(pj) will monotonically change the value of ψ3(x1, x2, x3),266

since ∂ψ3(x1,x2,x3)
∂x2

= −x
2
1

2 − x1x2 + 2x1x3 + x2
2 − x2x3 − x2

3
2 ,267

− 3
4 (x1 − x3)2 ≤ ∂ψ3(x1,x2,x3)

∂x2
≤ − 1

2 (x1 − x3)2 ≤ 0. If the268

original distribution is right-skewed, ξ∆ will be left-skewed,269

so, for Ξ3, the average probability density of the right side of270

zero will be greater than that of the left side, which means,271

on average, the inequality f(Q(ϵ)) ≤ f(Q(1− ϵ)) holds. In all,272

the monotonic decreasing of the negative pairwise difference273

distribution guides the general shape of the kth central mo-274

ment kernel distribution, k > 2, forcing it to be unimodal-like275

with the mode and median close to zero, then, the inequal-276

ity f(Q(ϵ)) ≤ f(Q(1 − ϵ)) or f(Q(ϵ)) ≥ f(Q(1 − ϵ)) holds277

in general. If a distribution is νth γ-ordered and all of its278

central moment kernel distributions are also νth γ-ordered, it279

is called completely νth γ-ordered. Although strict complete280

νth γ-orderliness is difficult to prove, even if the inequality281

may be violated in a small range, as discussed in Subsection282

??, the mean-SWAϵ-median inequality remains valid, in most283

cases, for the central moment kernel distribution.284

To avoid confusion, it should be noted that the robust285

location estimations of the kernel distributions discussed in286

this paper differ from the approach taken by Joly and Lugosi287

(2016) (27), which is computing the median of all U -statistics288

from different disjoint blocks. Compared to bootstrap median289

U -statistics, this approach can produce two additional kinds290

of finite sample bias, one arises from the limited numbers of291

blocks, another is due to the size of the U -statistics (consider292

the mean of all U -statistics from different disjoint blocks, it293

is definitely not identical to the original U -statistic, except294

when the kernel is the Hodges-Lehmann kernel). Laforgue,295

Clemencon, and Bertail (2019)’s median of randomized U -296

statistics (28) is more sophisticated and can overcome the297

limitation of the number of blocks, but the second kind of bias298

remains unsolved.299

B. Invariant Moments. All popular robust location estimators,
such as the symmetric trimmed mean, symmetric Winsorized
mean, Hodges-Lehmann estimator, Huber M -estimator, and
median of means, are symmetric. As shown in RESM I, a
γ-weighted Hodges-Lehmann mean (WHLMk,ϵ,γ) can achieve
consistency for the population mean in any γ-symmetric dis-
tribution with a finite mean. However, it falls considerably
short of consistently handling other parametric distributions
that are not γ-symmetric. Shifting from semiparametrics to
parametrics, consider a robust estimator with a non-sample-
dependent breakdown point (defined in Subsection F) which
is consistent simultaneously for both a semiparametric distri-
bution and a parametric distribution that does not belong to
that semiparametric distribution, it is named with the prefix
‘invariant’ followed by the name of the population parameter it
is consistent with. Here, the recombined I-statistic is defined

as

RId,hk,k1,k2,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,LU1,LU2 :=

lim
c→∞

((
LU1hk,k1,k1,ϵ1,γ1,n + c

)d+1(
LU2hk,k2,k2,ϵ2,γ2,n + c

)d − c
)

,

where d is the key factor for bias correction, LUhk,k,k,ϵ,γ,n is 300

the LU -statistic, k is the degree of the U -statistic, k is the 301

degree of the LL-statistic, ϵ is the upper asymptotic breakdown 302

point of the LU -statistic. It is assumed in this series that in 303

the subscript of an estimator, if k, k and γ are omitted, k = 1, 304

k = 1, γ = 1 are assumed, if just one k is indicated, k1 = k2, 305

if just one γ is indicated, γ1 = γ2, if n is omitted, only the 306

asymptotic behavior is considered, in the absence of subscripts, 307

no assumptions are made. The subsequent theorem shows the 308

significance of a recombined I-statistic. 309

Theorem B.1. Define the recombined mean 310

as rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,WL1,WL2 := 311

RId,hk=x,k1=1,k2=1,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,LU1=WL1,LU2=WL2 . 312

Assuming finite means, 313

rm
d=

µ−WL1k1,ϵ1,γ1
WL1k1,ϵ1,γ1 −WL2k2,ϵ2,γ2

,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2
314

is a consistent mean estimator for a location-scale distribution, 315

where µ, WL1k1,ϵ1,γ1 , and WL2k2,ϵ2,γ2 are different location 316

parameters from that location-scale distribution. If γ1 = γ2, 317

WL = WHLM, rm is also consistent for any γ-symmetric 318

distributions. 319

Proof. Finding d that make 320

rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 a consistent 321

mean estimator is equivalent to finding the so- 322

lution of rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 = 323

µ. First consider the location-scale distribu- 324

tion. Since rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 = 325

limc→∞

(
(WL1k1,ϵ1,γ1 +c)d+1

(WL2k2,ϵ2,γ2 +c)d − c
)

= (d+ 1) WL1k1,ϵ1,γ − 326

dWL2k2,ϵ2,γ = µ. So, d = µ−WL1k1,ϵ1,γ1
WL1k1,ϵ1,γ1 −WL2k2,ϵ2,γ2

. In 327

RESM I, it was established that any WL(k, ϵ, γ) can be 328

expressed as λWL0(k, ϵ, γ)+µ for a location-scale distribution 329

parameterized by a location parameter µ and a scale 330

parameter λ, where WL0(k, ϵ, γ) is a function of Q0(p), 331

the quantile function of a standard distribution without 332

any shifts or scaling, according to the definition of the 333

weighted L-statistic. The simultaneous cancellation of 334

µ and λ in (λµ0+µ)−(λWL10(k1,ϵ1,γ1)+µ)
(λWL10(k1,ϵ1,γ1)+µ)−(λWL20(k2,ϵ2,γ2)+µ) assures 335

that the d in rm is always a constant for a location-scale 336

distribution. The proof of the second assertion follows 337

directly from the coincidence property. According to 338

RESM I, for any γ-symmetric distribution with a fi- 339

nite mean, WHLM1k1,ϵ1,γ = WHLM2k2,ϵ2,γ = µ. Then 340

rmd,k1,k2,ϵ1,ϵ2,γ,WHLM1,WHLM2 = limc→∞

(
(µ+c)d+1

(µ+c)d − c
)

= 341

µ. This completes the demonstration. 342

For example, the Pareto distribution has a quantile function 343

QPar (p) = xm(1− p)− 1
α , where xm is the minimum possible 344

value that a random variable following the Pareto distribution 345

can take, serving a scale parameter, α is a shape parameter. 346

The mean of the Pareto distribution is given by αxm
α−1 . As 347

WL(k, ϵ, γ) can be expressed as a function of Q(p), one can 348

set the two WLk,ϵ,γs in the d value of rm as two arbitrary 349
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quantiles QPar(p1) and QPar(p2). For the Pareto distribution,350

dPer,rm = µPer−QPar(p1)
QPar(p1)−QPar(p2) =

αxm
α−1 −xm(1−p1)− 1

α

xm(1−p1)− 1
α −xm(1−p2)− 1

α
.351

xm can be canceled out. Intriguingly, the quantile func-352

tion of exponential distribution is Qexp(p) = ln
(

1
1−p

)
λ,353

λ ≥ 0. µexp = λ. Then, dexp,rm = µexp−Qexp(p1)
Qexp(p1)−Qexp(p2) =354

λ−ln
(

1
1−p1

)
λ

ln
(

1
1−p1

)
λ−ln

(
1

1−p2

)
λ

= − ln(1−p1)+1
ln(1−p1)−ln(1−p2) . Since355

limα→∞
α
α−1 −(1−p1)−1/α

(1−p1)−1/α−(1−p2)−1/α = − ln(1−p1)+1
ln(1−p1)−ln(1−p2) ,356

dPer,rm approaches dexp,rm, as α → ∞, regard-357

less of the type of weighted L-statistic used. That358

means, for the Weibull, gamma, Pareto, log-359

normal and generalized Gaussian distribution,360

rm
d=

µ−WHLM1k1,ϵ1,γ
WHLM1k1,ϵ1,γ−WHLM2k2,ϵ2,γ

,k1,k2,ϵ=min (ϵ1,ϵ2),γ,WHLM1,WHLM2
361

is consistent for at least one particular case, where362

µ, WHLM1k1,ϵ1,γ , and WHLM2k2,ϵ2,γ are differ-363

ent location parameters from an exponential dis-364

tribution. Let WHLM1k1,ϵ1,γ = BMν=3,ϵ= 1
24

,365

WHLM2k2,ϵ2,γ = m, then µ = λ, m = Q
(

1
2

)
= ln 2λ,366

BMν=3,ϵ= 1
24

= λ
(

1 + ln
(

26068394603446272 6
√

7
247

3√11
3915/6101898752449325

√
5

))
,367

the detailed formula is given in the SI Text. So, d =368

µ−BM
ν=3,ϵ= 1

24
BM

ν=3,ϵ= 1
24

−m =
λ−λ
(

1+ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

))
λ

(
1+ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

))
−ln 2λ

=369

−
ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

)
1−ln(2)+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

) ≈ 0.103. The biases370

of rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m for distributions with skewness371

between those of the exponential and symmetric distributions372

are tiny (SI Dataset S1). rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m exhibits373

excellent performance for all these common unimodal374

distributions (SI Dataset S1).375

The recombined mean is an recombined I-statistic.376

Consider an I-statistic whose LEs are percentiles of a377

distribution obtained by plugging LU -statistics into a378

cumulative distribution function, I is defined with arithmetic379

operations, constants and quantile functions, such an380

estimator is classified as a quantile I-statistic. One version of381

the quantile I-statistic can be defined as QId,hk,k,k,ϵ,γ,,n,LU :=382 {
Q̂n,hk

((
F̂n,hk (LU)− γ

1+γ

)
d+ F̂n,hk (LU)

)
F̂n,hk (LU) ≥ γ

1+γ

Q̂n,hk

(
F̂n,hk (LU)−

(
γ

1+γ − F̂n,hk (LU)
)
d
)

F̂n,hk (LU) < γ
1+γ ,

383

where LU is LUk,k,ϵ,γ,n, F̂n,hk (x) is the empirical cumulative384

distribution function of the hk kernel distribution, Q̂n,hk is385

the quantile function of the hk kernel distribution.386

Similarly, the quantile mean can be defined as387

qmd,k,ϵ,γ,n,WL := QId,hk=x,k=1,k,ϵ,γ,n,LU=WL. Moreover, in388

extreme right-skewed heavy-tailed distributions, if the calcu-389

lated percentile exceeds 1 − ϵ, it will be adjusted to 1 − ϵ.390

In a left-skewed distribution, if the obtained percentile is391

smaller than γϵ, it will also be adjusted to γϵ. Without loss392

of generality, in the following discussion, only the case where393

F̂n (WLk,ϵ,γ,n) ≥ γ
1+γ is considered. A widely used method394

for calculating the sample quantile function involves employ-395

ing linear interpolation of modes corresponding to the order396

statistics of the uniform distribution on the interval [0, 1], i.e.,397

Q̂n (p) = X⌊h⌋ + (h− ⌊h⌋)
(
X⌈h⌉ −X⌊h⌋

)
, h = (n− 1) p + 1.398

To minimize the finite sample bias, here, the inverse function 399

of Q̂n is deduced as F̂n (x) := 1
n−1

(
cf − 1 + x−Xcf

Xcf+1−Xcf

)
, 400

where cf =
∑n

i=1 1Xi≤x, 1A is the indicator of event A. The 401

quantile mean uses the location-scale invariant in a different 402

way, as shown in the subsequent proof. 403

Theorem B.2. qm
d=

F (µ)−F (WLk,ϵ,γ )

F (WLk,ϵ,γ )− γ
1+γ

,k,ϵ,γ,WL
is a consistent 404

mean estimator for a location-scale distribution provided that 405

the means are finite and F (µ), F (WLk,ϵ,γ) and γ
1+γ are all 406

within the range of [γϵ, 1 − ϵ], where µ and WLk,ϵ,γ are lo- 407

cation parameters from that location-scale distribution. If 408

WL = WHLM, qm is also consistent for any γ-symmetric 409

distributions. 410

Proof. When F (WLk,ϵ,γ) ≥ γ
1+γ , the solution of 411(

F (WLk,ϵ,γ)− γ
1+γ

)
d + F (WLk,ϵ,γ) = F (µ) is 412

d = F (µ)−F (WLk,ϵ,γ)
F (WLk,ϵ,γ)− γ

1+γ
. The d value for the case where 413

F (WLk,ϵ,γ,n) < γ
1+γ is the same. The definitions of the 414

location and scale parameters are such that they must 415

satisfy F (x;λ, µ) = F (x−µ
λ

; 1, 0), then F (WL(k, ϵ, γ);λ, µ) = 416

F (λWL0(k,ϵ,γ)+µ−µ
λ

; 1, 0) = F (WL0(k, ϵ, γ); 1, 0). It follows 417

that the percentile of any weighted L-statistic is free of 418

λ and µ for a location-scale distribution. Therefore d in 419

qm is also invariably a constant. For the γ-symmetric 420

case, F (WHLMk,ϵ,γ) = F (µ) = F (Q( γ
1+γ )) = γ

1+γ 421

is valid for any γ-symmetric distribution with a 422

finite second moment, as the same values corre- 423

spond to same percentiles. Then, qmd,k,ϵ,γ,WHLM = 424

F−1 ((F (WHLMk,ϵ,γ)− γ
1+γ

)
d+ F (µ)

)
= 425

F−1 (0 + F (µ)) = µ. To avoid inconsistency due to 426

post-adjustment, F (µ), F (WLk,ϵ,γ) and γ
1+γ must reside 427

within the range of [γϵ, 1− ϵ]. All results are now proven. 428

The cdf of the Pareto distribution is FPar(x) = 429

1 −
(
xm
x

)α. So, set the d value in qm with 430

two arbitrary percentiles p1 and p2, dPar,qm = 431

1−
(

xm
αxm
α−1

)α
−

(
1−

(
xm

xm(1−p1)− 1
α

)α)
(

1−

(
xm

xm(1−p1)− 1
α

)α)
−

(
1−

(
xm

xm(1−p2)− 1
α

)α) = 432

1−(α−1
α )α−p1
p1−p2

. The d value in qm for the exponential 433

distribution is always identical to dPar,qm as α → ∞, 434

since limα→∞
(
α−1
α

)α = 1
e

and the cdf of the exponential 435

distribution is Fexp (x) = 1 − e−λ−1x, then dexp,qm = 436

(1−e−1)−

(
1−e

− ln
(

1
1−p1

) )
(

1−e
− ln
(

1
1−p1

) )
−

(
1−e

− ln
(

1
1−p2

) ) = 1− 1
e

−p1
p1−p2

. So, for the 437

Weibull, gamma, Pareto, lognormal and generalized Gaus- 438

sian distribution, qm
d=

Fexp(µ)−Fexp(WHLMk,ϵ,γ )

Fexp(WHLMk,ϵ,γ )− γ
1+γ

,k,ϵ,γ,WHLM
439

is also consistent for at least one particular case, pro- 440

vided that µ and WHLMk,ϵ,γ are different location 441

parameters from an exponential distribution and F (µ), 442

F (WHLMk,ϵ,γ) and γ
1+γ are all within the range 443

of [γϵ, 1 − ϵ]. Also let WHLMk,ϵ,γ = BMν=3,ϵ= 1
24

444

and µ = λ, then d =
Fexp(µ)−Fexp(BM

ν=3,ϵ= 1
24

)

Fexp(BM
ν=3,ϵ= 1

24
)− 1

2
= 445
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−e−1+e
−

(
1+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

))
1
2 −e

−

(
1+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

)) =446

101898752449325
√

5 6
√

247
7 3915/6

26068394603446272 3√11e
− 1
e

1
2 −

101898752449325
√

5 6
√

247
7 3915/6

26068394603446272 3√11e

≈ 0.088. Fexp(µ),447

Fexp(BMν=3,ϵ= 1
24

) and 1
2 are all within the range of448

[ 1
24 ,

23
24 ]. qmd≈0.088,ν=3,ϵ= 1

24 ,BM works better in the fat-tail449

scenarios (SI Dataset S1). Theorem B.1 and B.2 show450

that rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m and qmd≈0.088,ν=3,ϵ= 1

24 ,BM451

are both consistent mean estimators for any symmetric452

distribution and the exponential distribution with finite453

second moments. It’s obvious that the asymptotic breakdown454

points of rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m and qmd≈0.088,ν=3,ϵ= 1

24 ,BM455

are both 1
24 . Therefore they are all invariant means.456

To study the impact of the choice of WLs in rm and qm, it457

is constructive to recall that a weighted L-statistic is a combi-458

nation of order statistics. While using a less-biased weighted459

L-statistic can generally enhance performance (SI Dataset460

S1), there is a greater risk of violation in the semiparametric461

framework. However, the mean-WAϵ,γ-γ-median inequality is462

robust to slight fluctuations of the QA function of the underly-463

ing distribution. Suppose for a right-skewed distribution, the464

QA function is generally decreasing with respect to ϵ in [0, u],465

but increasing in [u, 1
1+γ ], since all quantile averages with466

breakdown points from ϵ to 1
1+γ will be included in the com-467

putation of WAϵ,γ , as long as 1
1+γ − u≪

1
1+γ − γϵ, and other468

portions of the QA function satisfy the inequality constraints469

that define the νth γ-orderliness on which the WAϵ,γ is based,470

if 0 ≤ γ ≤ 1, the mean-WAϵ,γ-γ-median inequality still holds.471

This is due to the violation of νth γ-orderliness being bounded,472

when 0 ≤ γ ≤ 1, as shown in RESM I and therefore cannot be473

extreme for unimodal distributions with finite second moments.474

For instance, the SQA function of the Weibull distribution is475

non-monotonic with respect to ϵ when the shape parameter476

α > 1
1−ln(2) ≈ 3.259 as shown in the SI Text of RESM I,477

the violation of the second and third orderliness starts near478

this parameter as well, yet the mean-BMν=3,ϵ= 1
24

-median in-479

equality retains valid when α ≤ 3.387. Another key factor in480

determining the risk of violation of orderliness is the skewness481

of the distribution. In RESM I, it was demonstrated that482

in a family of distributions differing by a skewness-increasing483

transformation in van Zwet’s sense, the violation of orderliness,484

if it happens, only occurs as the distribution nears symmetry485

(12). When γ = 1, the over-corrections in rm and qm are486

dependent on the SWAϵ-median difference, which can be a487

reasonable measure of skewness after standardization (11, 13),488

implying that the over-correction is often tiny with moderate489

d. This qualitative analysis suggests the general reliability of490

rm and qm based on the mean-WAϵ,γ-γ-median inequality, es-491

pecially for unimodal distributions with finite second moments492

when 0 ≤ γ ≤ 1. Extending this rationale to other weighted493

L-statistics is possible, since the γ-U -orderliness can also be494

bounded with certain assumptions, as discussed previously.495

Another crucial property of the central moment kernel dis-496

tribution, location invariant, is introduced in the next theorem.497

The proof is provided in the SI Text.498

Theorem B.3. ψk (x1 = λx1 + µ, ··· , xk = λxk + µ) =499

λkψk (x1, ··· , xk).500

A direct result of Theorem B.3 is that, WHLkm after
standardization is invariant to location and scale. So, the
weighted H-L standardized kth moment is defined to be

WHLskmϵ=min (ϵ1,ϵ2),k1,k2,γ1,γ2,n := WHLkmk1,ϵ1,γ1,n

(WHLvark2,ϵ2,γ2,n)k/2 .

Consider two continuous distributions belonging to the
same location–scale family, according to Theorem B.3, their
corresponding kth central moment kernel distributions
only differ in scaling. Define the recombined kth central
moment as rkmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,WHLkm1,WHLkm2 :=
RId,hk=ψk,k1=k,k2=k,k1,k2,ϵ1,ϵ2,γ1,γ2,n,LU1=WHLkm1,LU2=WHLkm2 .
Then, assuming finite kth central moment and
applying the same logic as in Theorem B.1,
rkm

d=
µk−WHLkm1k1,ϵ1,γ1

WHLkm1k1,ϵ1,γ1 −WHLkm2k2,ϵ2,γ2
,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WHLkm1,WHLkm2

is a consistent kth central moment estimator for a
location-scale distribution, where µk, WHLkm1k1,ϵ1,γ1 , and
WHLkm2k2,ϵ2,γ2 are different kth central moment parameters
from that location-scale distribution. Similarly, the quantile
will not change after scaling. The quantile kth central moment
is thus defined as

qkmd,k,ϵ,γ,n,WHLkm := QId,hk=ψk,k=k,k,ϵ,γ,n,LU=WHLkm.

qkm
d=

Fψk
(µk)−Fψk

(WHLkmk,ϵ,γ )

Fψk
(WHLkmk,ϵ,γ )− γ

1+γ
,k,ϵ,γ,WHLkm

is also a consis- 501

tent kth central moment estimator for a location-scale dis- 502

tribution provided that the kth central moment is finite and 503

Fψk (µk), Fψk (WHLkmk,ϵ,γ) and γ
1+γ are all within the range 504

of [γϵ, 1− ϵ], where µk and WHLkmk,ϵ,γ are different kth cen- 505

tral moment parameters from that location-scale distribution. 506

So, the quantile standardized kth moment is defined to be

qskmϵ=min (ϵ1,ϵ2),k1,k2,γ1,γ2,n,WHLkm,WHLvar :=
qkmd,k1,ϵ1,γ1,n,WHLkm

(qvard,k2,ϵ2,γ2,n,WHLvar)k/2 .

The recombined standardized kth moment 507

(rskmϵ=min (ϵ1,ϵ2),k1,k2,γ1,γ2,n,WHLkm1,WHLkm2,WHLvar1,WHLvar2 )508

is defined similarly and not repeated here. From the better 509

performance of the quantile mean in heavy-tailed distributions, 510

the quantile kth central moments are generally better than 511

recombined kth central moments regarding asymptotic bias. 512

C. Congruent Distribution. In the realm of nonparametric 513

statistics, the relative differences, or orders, of robust esti- 514

mators are of primary importance. A key implication of this 515

principle is that when there is a shift in the parameters of the 516

underlying distribution, all nonparametric estimates should 517

asymptotically change in the same direction, if they are es- 518

timating the same attribute of the distribution. If, on the 519

other hand, the mean suggests an increase in the location 520

of the distribution while the median indicates a decrease, a 521

contradiction arises. It is worth noting that such contradic- 522

tion is not possible for any LL-statistics in a location-scale 523

distribution, as explained in the previous article on semipara- 524

metric robust mean. However, it is possible to construct 525

counterexamples to the aforementioned implication in a shape- 526

scale distribution. In the case of the Weibull distribution, 527

its quantile function is QWei (p) = λ(− ln(1 − p))1/α, where 528

0 ≤ p ≤ 1, α > 0, λ > 0, λ is a scale parameter, α is a 529

shape parameter, ln is the natural logarithm function. Then, 530
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m = λ α
√

ln(2), µ = λΓ
(
1 + 1

α

)
, where Γ is the gamma func-531

tion. When α = 1, m = λ ln(2) ≈ 0.693λ, µ = λ, when α = 1
2 ,532

m = λ ln2(2) ≈ 0.480λ, µ = 2λ, the mean increases as α533

changes from 1 to 1
2 , but the median decreases. Previously,534

the fundamental role of quantile average and its relation to535

nearly all common nonparametric robust location estimates536

were demonstrated by using the method of classifying dis-537

tributions through the signs of derivatives. To avoid such538

scenarios, this method can also be used. Let the quantile539

average function of a parametric distribution be denoted as540

QA (ϵ, γ, α1, ··· , αi, ··· , αk), where αi represent the parameters541

of the distribution, then, a distribution is γ-congruent if and542

only if the sign of ∂QA
∂αi

remains the same for all 0 ≤ ϵ ≤ 1
1+γ .543

If ∂QA
∂αi

is equal to zero or undefined, it can be considered both544

positive and negative, and thus does not impact the analysis.545

A distribution is completely γ-congruent if and only if it is546

γ-congruent and all its central moment kernel distributions547

are also γ-congruent. Setting γ = 1 constitutes the definitions548

of congruence and complete congruence. Replacing the QA549

with γmHLM gives the definition of γ-U -congruence. Cheby-550

shev’s inequality implies that, for any probability distributions551

with finite second moments, as the parameters change, even if552

some LL-statistics change in a direction different from that553

of the population mean, the magnitude of the changes in the554

LL-statistics remains bounded compared to the changes in555

the population mean. Furthermore, distributions with infinite556

moments can be γ-congruent, since the definition is based on557

the quantile average, not the population mean.558

The following theorems show the conditions that a distri-559

bution is congruent or γ-congruent.560

Theorem C.1. A γ-symmetric distribution is always γ-561

congruent and γ-U-congruent.562

Proof. As shown in RESM I, Theorem .2 and Theorem .18,563

for any γ-symmetric distribution, all quantile averages and all564

γmHLMs conincide. The conclusion follows immediately.565

Theorem C.2. A positive definite location-scale distribution566

is always γ-congruent.567

Proof. As shown in RESM I, Theorem .2, for a location-568

scale distribution, any quantile average can be expressed as569

λQA0(ϵ, γ) + µ. Therefore, the derivatives with respect to the570

parameters λ or µ are always positive. By application of the571

definition, the desired outcome is obtained.572

Theorem C.3. The second central moment kernal distribution573

derived from a continuous location-scale unimodal distribution574

is always γ-congruent.575

Proof. Theorem B.3 shows that the central moment kernel576

distribution generated from a location-scale distribution is577

also a location-scale distribution. Theorem A.1 shows that it578

is positively definite. Implementing Theorem C.2 yields the579

desired result.580

For the Pareto distribution, ∂Q
∂α

= xm(1−p)−1/α ln(1−p)
α2 .581

Since ln(1 − p) < 0 for all 0 < p < 1, (1 − p)−1/α >582

0 for all 0 < p < 1 and α > 0, so ∂Q
∂α

< 0,583

and therefore ∂QA
∂α

< 0, the Pareto distribution is γ-584

congruent. It is also γ-U -congruent, since γmHLM can585

also express as a function of Q(p). For the lognormal dis- 586

tribution, ∂QA
∂σ

= 1
2

(
√

2erfc−1(2γϵ)
(
−e

√
2µ−2σerfc−1(2γϵ)√

2

)
+ 587(

−
√

2
)

erfc−1(2(1 − ϵ))e
√

2µ−2σerfc−1(2(1−ϵ))√
2

)
. Since the in- 588

verse complementary error function is positive when the 589

input is smaller than 1, and negative when the input is 590

larger than 1, and symmetry around 1, if 0 ≤ γ ≤ 591

1, erfc−1(2γϵ) ≥ −erfc−1(2 − 2ϵ), eµ−
√

2σerfc−1(2−2ϵ) > 592

eµ−
√

2σerfc−1(2γϵ). Therefore, if 0 ≤ γ ≤ 1, ∂QA
∂σ

> 0, the 593

lognormal distribution is γ-congruent. Theorem C.1 implies 594

that the generalized Gaussian distribution is congruent and 595

U -congruent. For the Weibull distribution, when α changes 596

from 1 to 1
2 , the average probability density on the left side 597

of the median increases, since
1
2

λ ln(2) <
1
2

λ ln2(2) , but the mean 598

increases, indicating that the distribution is more heavy-tailed, 599

the probability density of large values will also increase. So, 600

the reason for non-congruence of the Weibull distribution lies 601

in the simultaneous increase of probability densities on two op- 602

posite sides as the shape parameter changes: one approaching 603

the bound zero and the other approaching infinity. Note that 604

the gamma distribution does not have this issue, Numerical 605

results indicate that it is likely to be congruent. 606

Although some parametric distributions are not congruent, 607

Theorem C.2 establishes that γ-congruence always holds for a 608

positive definite location-scale family distribution and thus for 609

the second central moment kernel distribution generated from 610

a location-scale unimodal distribution as shown in Theorem 611

C.3. Theorem A.2 demonstrates that all central moment 612

kernel distributions are unimodal-like with mode and median 613

close to zero, as long as they are generated from unimodal 614

distributions. Assuming finite moments and constant Q(0)− 615

Q(1), increasing the mean of a distribution will result in a 616

generally more heavy-tailed distribution, i.e., the probability 617

density of the values close to Q(1) increases, since the total 618

probability density is 1. In the case of the kth central moment 619

kernel distribution, k > 2, while the total probability density 620

on either side of zero remains generally constant as the median 621

is generally close to zero and much less impacted by increasing 622

the mean, the probability density of the values close to zero 623

decreases as the mean increases. This transformation will 624

increase nearly all symmetric weighted averages, in the general 625

sense. Therefore, except for the median, which is assumed 626

to be zero, nearly all symmetric weighted averages for all 627

central moment kernel distributions derived from unimodal 628

distributions should change in the same direction when the 629

parameters change. 630

D. A Shape-Scale Distribution as the Consistent Distribution. 631

In Subsection B, the parametric robust estimation is limited 632

to a location-scale distribution, with the location parameter 633

often being omitted for simplicity. For improved fit to ob- 634

served skewness or kurtosis, shape-scale distributions with 635

shape parameter (α) and scale parameter (λ) are commonly 636

utilized. Weibull, gamma, Pareto, lognormal, and generalized 637

Gaussian distributions (when µ is a constant) are all shape- 638

scale unimodal distributions. Furthermore, if either the shape 639

parameter α or the skewness or kurtosis is constant, the shape- 640

scale distribution is reduced to a location-scale distribution. 641

Let D(|skewness|, kurtosis,k, etype, dtype, n) = dikm denote 642

the function to specify d values, where the first input is the 643
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absolute value of the skewness, the second input is the kurtosis,644

the third is the order of the central moment (if k = 1, the645

mean), the fourth is the type of estimator, the fifth is the type646

of consistent distribution, and the sixth input is the sample647

size. For simplicity, the last three inputs will be omitted in the648

following discussion. Hold in awareness that since skewness649

and kurtosis are interrelated, specifying d values for a shape-650

scale distribution only requires either skewness or kurtosis,651

while the other may be also omitted. Since many common652

shape-scale distributions are always right-skewed (if not, only653

the right-skewed or left-skewed part is used for calibration,654

while the other part is omitted), the absolute value of the skew-655

ness should be the same as the skewness of these distributions.656

This setting also handles the left-skew scenario well.657

For recombined moments up to the fourth ordinal, the658

object of using a shape-scale distribution as the consistent659

distribution is to find solutions for the system of equa-660

tions



rm (WL, γm,D(|rskew|, rkurt, 1)) = µ

rvar (WHLvar, γmvar,D(|rskew|, rkurt, 2)) = µ2

rtm (WHLtm, γmtm,D(|rskew|, rkurt, 3)) = µ3

rfm (WHLfm, γmfm,D(|rskew|, rkurt, 4) = µ4

rskew = µ3

µ
3
2
2

rkurt = µ4
µ2

2

,661

where µ2, µ3 and µ4 are the population second,662

third and fourth central moments. |rskew| and663

rkurt should be the invariant points of the func-664

tions ς(|rskew|) =
∣∣∣∣ rtm(WHLtm,γmtm,D(|rskew|,3))

rvar(WHLvar,γmvar,D(|rskew|,2))
3
2

∣∣∣∣ and665

κ(rkurt) = rfm(WHLfm,γmfm,D(rkurt,4))
rvar(WHLvar,γmvar,D(rkurt,2))2 . Clearly, this is666

an overdetermined nonlinear system of equations, given that667

the skewness and kurtosis are interrelated for a shape-scale668

distribution. Since an overdetermined system constructed with669

random coefficients is almost always inconsistent, it is natural670

to optimize them separately using the fixed-point iteration671

(see Algorithm 1, only rkurt is provided, others are the same).672

Algorithm 1 rkurt for a shape-scale distribution
Input: D; WHLvar; WHLfm; γmvar; γmfm; maxit; δ
Output: rkurti−1

i = 0
2: rkurti ← κ(kurtosismax) ▷ Using the maximum kurtosis

available in D as an initial guess.
repeat

4: i = i+ 1
rkurti−1 ← rkurti

6: rkurti ← κ(rkurti−1)
until i > maxit or |rkurti − rkurti−1| < δ ▷ maxit is
the maximum number of iterations, δ is a small positive
number.

The following theorem shows the validity of Algorithm 1.673

Theorem D.1. Assuming γ = 1 and mkms, where 2 ≤ k ≤ 4,674

are all equal to zero, |rskew| and rkurt, defined as the largest675

attracting fixed points of the functions ς(|rskew|) and κ(rkurt),676

are consistent estimators of µ̃3 and µ̃4 for a shape-scale dis-677

tribution whose kth central moment kernel distributions are678

γ-U-congruent, as long as they are within the domain of D,679

where µ̃3 and µ̃4 are the population skewness and kurtosis, 680

respectively. 681

Proof. Without loss of generality, only rkurt is considered, 682

while the logic for |rskew| is the same. Additionally, the 683

second central moments of the underlying sample distribu- 684

tion and consistent distribution are assumed to be 1, with 685

other cases simply multiplying a constant factor according 686

to Theorem B.3. From the definition of D, κ(rkurtD)
rkurtD

= 687

fmD−SWHLfmD
SWHLfmD−mfmD

(SWHLfm−mfm)+SWHLfm

rkurtD

(
varD−SWHLvarD

SWHLvarD−mvarD
(SWHLvar−mvar)+SWHLvar

)2 , where 688

the subscript D indicates that the estimates are from the 689

central moment kernel distributions generated from the consis- 690

tent distribution, while other estimates are from the underlying 691

distribution of the sample. 692

Then, assuming the mkms are all equal to zero and 693

varD = 1, κ(rkurtD)
rkurtD

=
fmD−SWHLfmD

SWHLfmD
(SWHLfm)+SWHLfm

rkurtD

(
SWHLvar

SWHLvarD

)2 = 694(
fmD−SWHLfmD

SWHLfmD
+1
)

(SWHLfm)

fmD

(
SWHLvar

SWHLvarD

)2 = SWHLfmSWHLvar2
D

SWHLfmDSWHLvar2 = 695

SWHLfm
SWHLvar2
SWHLfmD

SWHLvarD2
= SWHLkurt

SWHLkurtD
. Since SWHLfmD are from the 696

same fourth central moment kernel distribution as fmD = 697

rkurtDvarD
2, according to the definition of γ-U -congruence, 698

an increase in fmD will also result in an increase in 699

SWHLfmD. Combining with Theorem B.3, SWHLkurt is 700

a measure of kurtosis that is invariant to location and scale, 701

so limrkurtD→∞
κ(rkurtD)
rkurtD

< 1. As a result, if there is at 702

least one fixed point, let the largest one be fixmax, then 703

it is attracting since | ∂(κ(rkurtD))
∂(rkurtD) | < 1 for all rkurtD ∈ 704

[fixmax, kurtosismax], where kurtosismax is the maximum 705

kurtosis available in D. 706

707

As a result of Theorem D.1, assuming continuity, mkms are 708

all equal to zero, and γ-U -congruence of the central moment 709

kernel distributions, Algorithm 1 converges surely provided 710

that a fixed point exists within the domain of D. At this 711

stage, D can only be approximated through a Monte Carlo 712

study. The continuity of D can be ensured by using linear 713

interpolation. One common encountered problem is that the 714

domain of D depends on both the consistent distribution 715

and the Monte Carlo study, so the iteration may halt at 716

the boundary if the fixed point is not within the domain. 717

However, by setting a proper maximum number of iterations, 718

the algorithm can return the optimal boundary value. For 719

quantile moments, the logic is similar, if the percentiles do 720

not exceed the breakdown point. If this is the case, consistent 721

estimation is impossible, and the algorithm will stop due to 722

the maximum number of iterations. The fixed point iteration 723

is, in principle, similar to the iterative reweighing in Huber 724

M -estimator, but an advantage of this algorithm is that the 725

optimization is solely related to the inputs in Algorithm 1 and 726

is independent of the sample size. Since |rskew| and rkurt 727

can specify drm and drvar after optimization, this algorithm 728

enables the robust estimations of all four moments to reach 729

a near-consistent level for common unimodal distributions 730

(Table 1, SI Dataset S1), just using the Weibull distribution 731

as the consistent distribution. 732

8 | Lee



DRAFT

E. Variance. As one of the fundamental theorems in statistics,733

the Central Limit Theorem declares that the standard devia-734

tion of the limiting form of the sampling distribution of the735

sample mean is σ√
n

. The principle, asymptotic normality, was736

later applied to the sampling distributions of robust location737

estimators. Bickel and Lehmann, also in the landmark series738

(18, 29), argued that meaningful comparisons of the efficiencies739

of various kinds of location estimators can be accomplished by740

studying their standardized variances, asymptotic variances,741

and efficiency bounds. Standardized variance, Var(θ̂)
θ2 , allows742

the use of simulation studies or empirical data to compare743

the variances of estimators of distinct parameters. However, a744

limitation of this approach is the inverse square dependence745

of the standardized variance on θ. If Var
(
θ̂1
)

= Var
(
θ̂2
)
, but746

θ1 is close to zero and θ2 is relatively large, their standardized747

variances will still differ dramatically. Here, the scaled stan-748

dard error (SSE) is proposed as a method for estimating the749

variances of estimators measuring the same attribute, offering750

a standard error more comparable to that of the sample mean751

and much less influenced by the magnitude of θ.752

Definition E.1 (Scaled standard error). Let Msisj ∈ Ri×j753

denote the sample-by-statistics matrix, i.e., the first column754

corresponds to θ̂U , which is the mean or a U -central moment755

measuring the same attribute of the distribution as the other756

columns, the second to the jth column correspond to j − 1757

statistics required to scale, θ̂r1 , θ̂r2 , . . ., θ̂rj−1 . Then, the758

scaling factor S =
[
1,

¯θr1
¯θm
,

¯θr2
¯θm
, . . . ,

¯θrj−1
¯θm

]T
is a j × 1 matrix,759

which θ̄ is the mean of the column of Msisj . The normalized760

matrix is MN
sisj = MsisjS. The SSEs are the unbiased761

standard deviations of the corresponding columns of MN
sisj .762

The U -central moment (the central moment estimated by763

using U -statistics) is essentially the mean of the central mo-764

ment kernel distribution, so its standard error should be gen-765

erally close to σkm√
n

, although not exactly since the kernel766

distribution is not i.i.d., where σkm is the asymptotic standard767

deviation of the central moment kernel distribution. If the768

statistics of interest coincide asymptotically, then the stan-769

dard errors should still be used, e.g, for symmetric location770

estimators and odd ordinal central moments for the symmet-771

ric distributions, since the scaled standard error will be too772

sensitive to small changes when they are zero.773

The SSEs of all robust estimators proposed here are often,774

although many exceptions exist, between those of the sam-775

ple median and those of the sample mean or median central776

moments and U -central moments (SI Dataset S1). This is777

because similar monotonic relations between breakdown point778

and variance are also very common, e.g., Bickel and Lehmann779

(18) proved that a lower bound for the efficiency of TMϵ to780

sample mean is (1− 2ϵ)2 and this monotonic bound holds true781

for any distribution. However, the direction of monotonic-782

ity differs for distributions with different kurtosis. Lehmann783

and Scheffé (1950, 1955) (30, 31) in their two early papers784

provided a way to construct a uniformly minimum-variance785

unbiased estimator (UMVUE). From that, the sample mean786

and unbiased sample second moment can be proven as the787

UMVUEs for the population mean and population second788

moment for the Gaussian distribution. While their perfor-789

mance for sub-Gaussian distributions is generally satisfied,790

they perform poorly when the distribution has a heavy tail791

and completely fail for distributions with infinite second mo- 792

ments. Therefore, for sub-Gaussian distributions, the variance 793

of a robust location estimator is generally monotonic increasing 794

as its robustness increases, but for heavy-tailed distributions, 795

the relation is reversed. As a result, unlike bias, the variance- 796

optimal choice can be very different for distributions with 797

different kurtosis. 798

Lai, Robbins, and Yu (1983) proposed an estimator that 799

adaptively chooses the mean or median in a symmetric dis- 800

tribution and showed that the choice is typically as good as 801

the better of the sample mean and median regarding vari- 802

ance (32). Another approach can be dated back to Laplace 803

(1812) (33) is using wx̄ + (1 − w)mn as a location estima- 804

tor and w is deduced to achieve optimal variance. In this 805

study, for rkurt, there are 364 combinations based on 14 806

SWfms and 26 SWvars (SI Text). Each combination has a 807

root mean square error (RMSE) for a single-parameter distri- 808

bution, which can be inferred through a Monte Carlo study. 809

For qkurt, there are another 364 combinations, but if the 810

percentiles of quantile moments exceed the breakdown point, 811

that combination is excluded. Then, the combination with 812

the smallest RMSE is chosen. Similar to Subsection D, let 813

I(kurtosis, dtype, n) = ikurtSWfm,SWvar denote these rela- 814

tions (the breakdown points of the SWLs in SWkm were 815

adjusted to ensure the overall breakdown points were 1
24 , as 816

detailed in the SI Text). Since limikurt→∞
I(ikurt)
ikurt

< 1, the 817

same fix point iteration algorithm can be used to choose the 818

variance-optimum combination. The only difference is that 819

unlike D, I is defined to be discontinuous but linear interpo- 820

lation can also ensure continuity. The procedure for iskew is 821

the same. The RMSEs of rkm and qkm can also be estimated 822

by a Monte Carlo study and the estimator with the smallest 823

RMSE of each ordinal is named as ikm. iskew and ikurt are 824

then used to determine ikm. This approach yields results that 825

are often nearly optimal (SI Dateset S1) 826

Due to combinatorial explosion, the bootstrap (34), intro- 827

duced by Efron in 1979, is indispensable for computing invari- 828

ant central moments in practice. In 1981, Bickel and Freed- 829

man (35) showed that the bootstrap is asymptotically valid to 830

approximate the original distribution in a wide range of situa- 831

tions, including U -statistics. The limit laws of bootstrapped 832

trimmed U -statistics were proven by Helmers, Janssen, and 833

Veraverbeke (1990) (36). In the previous article, the advan- 834

tages of quasi-bootstrap were discussed (37–39). By using 835

quasi-sampling, the impact of the number of repetitions of 836

the bootstrap, or bootstrap size, on variance is very small 837

(SI Dataset S1). An estimator based on the quasi-bootstrap 838

approach can be seen as a complex deterministic estimator 839

that is not only computationally efficient but also statistical 840

efficient. The only drawback of quasi-bootstrap compared 841

to non-bootstrap is that a small bootstrap size can produce 842

additional finite sample bias (SI Text). The d values should be 843

re-calibrated. In general, the variances of invariant central mo- 844

ments are much smaller than those of corresponding unbiased 845

sample central moments (deduced by Cramér (40)), except 846

that of the corresponding second central moment (Table 1). 847

F. Robustness. The measure of robustness to gross errors used 848

in this series is the breakdown point proposed by Hampel 849

(41) in 1968. In RESM I, it has shown that the median of 850

means (MoM) is asymptotically equivalent to the median 851

Hodge-Lehmann mean. Therefore it is also biased for any 852
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Table 1. Evaluation of invariant moments for five common unimodal distributions in comparison with current popular methods

Errors HM x̄ PEµ imv Tsd2 var PEµ2 ivarv tm PEµ3 itmv fm PEµ4 ifmv

WASAB 0.102 0.000 0.048 0.002 0.234 0.000 0.072 0.047 0.000 0.099 0.013 0.000 0.115 0.109
WRMSE 0.106 0.016 0.064 0.016 0.233 0.019 0.097 0.052 0.023 0.124 0.021 0.029 0.151 0.118
WASBn=4096 0.102 0.000 0.049 0.002 0.233 0.001 0.074 0.037 0.001 0.104 0.011 0.001 0.125 0.100
WSE ∨ WSSE 0.016 0.016 0.026 0.016 0.016 0.019 0.039 0.025 0.022 0.063 0.015 0.027 0.032 0.025

This table presents the use of the Weibull distribution as the consistent distribution plus optimization (ikmv is invariant kth moment, variance-
optimized) for five common unimodal distributions: Weibull, gamma, Pareto, lognormal and generalized Gaussian distributions. Unbiased sample
moments, Huber M-estimator, and percentile estimator (PE) for the Weibull distribution (7) were used as comparisons. The Gaussian distribution
was excluded for PE, since the logarithmic function does not produce results for negative inputs. The breakdown points of invariant moments
are all 1

24 . The table includes the average standardized asymptotic bias (ASAB, as n → ∞), root mean square error (RMSE, at n = 4096),
average standardized bias (ASB, at n = 4096) and variance (SE ∨ SSE, at n = 4096) of these estimators, all reported in the units of the standard
deviations of the distribution or corresponding kernel distributions. The notation bs indicates the quasi-bootstrap central moments. W means that
the results were weighted by the number of Google Scholar search results (including synonyms). The calibrations of d values and the computations
of ASAB, ASB, and SSE were described in Subsection E, F and SI Methods. Detailed results and related codes are available in SI Dataset S1.

asymmetric distribution. However, the concentration bound853

of MoM depends on
√

1
n

(42), it is quite natural to deduce854

that it is a consistent robust estimator. The concept, sample-855

dependent breakdown point, is defined to avoid ambiguity.856

Definition F.1 (Sample-dependent breakdown point). The857

breakdown point of an estimator θ̂ is called sample-dependent858

if and only if the upper and lower asymptotic breakdown859

points, which are the upper and lower breakdown points when860

n→∞, are zero and the empirical influence function of θ̂ is861

bounded. For a full formal definition of the empirical influence862

function, the reader is referred to Devlin, Gnanadesikan and863

Kettenring (1975)’s paper (43).864

Bear in mind that it differs from the "infinitesimal robust-865

ness" defined by Hampel, which is related to whether the866

asymptotic influence function is bounded (44–46). The proof867

of the consistency of MoM assumes that it is an estimator with868

a sample-dependent breakdown point since its breakdown point869

is b
2n , where b is the number of blocks, then limn→∞

(
b

2n

)
= 0,870

if b is a constant and any changes in any one of the points of871

the sample cannot break down this estimator.872

For the robust estimations of central moments or other873

LU -statistics, the asymptotic upper breakdown points are874

suggested by the following theorem, which extends the method875

in Donoho and Huber (1983)’s proof of the breakdown point876

of the Hodges-Lehmann estimator (47). The proof is given in877

the SI Text.878

Theorem F.1. Given a U-statistic associated with a symmet-879

ric kernel of degree k. Then, assuming that as n→∞, k is880

a constant, the upper breakdown point of the LU-statistic is881

1 − (1− ϵ0)
1
k , where ϵ0 is the upper breakdown point of the882

corresponding LL-statistic.883

Remark. If k = 1, 1− (1− ϵ0)
1
k = ϵ0, so this formula also884

holds for the LL-statistic itself. Here, to ensure the break-885

down points of all four moments are the same, 1
24 , since886

ϵ0 = 1− (1− ϵ)k, the breakdown points of all LU -statistics887

for the second, third, and fourth central moment estimations888

are adjusted as ϵ0 = 47
576 , 1657

13824 , 51935
331776 , respectively.889

Every statistic is based on certain assumptions. For in-890

stance, the sample mean assumes that the second moment891

of the underlying distribution is finite. If this assumption is892

violated, the variance of the sample mean becomes infinitely893

large, even if the population mean is finite. As a result, the894

sample mean not only has zero robustness to gross errors,895

but also has zero robustness to departures. To meaningfully 896

compare the performance of estimators under departures from 897

assumptions, it is necessary to impose constraints on these 898

departures. Bound analysis (1) is the first approach to study 899

the robustness to departures, i.e., although all estimators can 900

be biased under departures from the corresponding assump- 901

tions, but their standardized maximum deviations can differ 902

substantially (42, 48–51). In RESM I, it is shown that another 903

way to qualitatively compare the estimators’ robustness to 904

departures from the γ-symmetry assumption is constructing 905

and comparing corresponding semiparametric models. While 906

such comparison is limited to a semiparametric model and is 907

not universal, it is still valid for a wide range of parametric 908

distributions. Bound analysis is a more universal approach 909

since they can be deduced by just assuming regularity con- 910

ditions (42, 48, 49, 51). However, bounds are often hard to 911

deduce for complex estimators. Also, sometimes there are 912

discrepancies between maximum bias and average bias. Since 913

the estimators proposed here are all consistent under certain 914

assumptions, measuring their biases is also a convenient way of 915

measuring the robustness to departures. Average standardized 916

asymptotic bias is thus defined as follows. 917

Definition F.2 (Average standardized asymptotic bias). For a
single-parameter distribution, the average standardized asymp-
totic bias (ASAB) is given by |θ̂−θ|

σ
, where θ̂ represents the

estimation of θ, and σ denotes the standard deviation of the
kernel distribution associated with the LU -statistic. If the
estimator θ̂ is not classified as an RI-statistic, QI-statistic, or
LU -statistic, the corresponding U -statistic, which measures
the same attribute of the distribution, is utilized to determine
the value of σ. For a two-parameter distribution, the first step
is setting the lower bound of the kurtosis range of interest
µ̃4l , the spacing δ, and the bin count C. Then, the average
standardized asymptotic bias is defined as

ASABθ̂ := 1
C

∑
δ+µ̃4l≤µ̃4≤Cδ+µ̃4l
µ̃4 is a multiple of δ

Eθ̂|µ̃4

[∣∣θ̂ − θ∣∣
σ

]

where µ̃4 is the kurtosis specifying the two-parameter distri- 918

bution, Eθ̂|µ̃4
denotes the expected value given fixed µ̃4. 919

Standardization plays a crucial role in comparing the perfor- 920

mance of estimators across different distributions. Currently, 921

several options are available, such as using the root mean 922

square deviation from the mode (as in Gauss (1)), the mean 923
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absolute deviation, or the standard deviation. However, the924

standard deviation is preferred due to its central role in stan-925

dard error estimation. In Table 1, δ = 0.1, C = 70. For the926

Weibull, gamma, lognormal and generalized Gaussian distri-927

butions, µ̃4l = 3 (there are two shape parameter solutions928

for the Weibull distribution, the lower one is used here). For929

the Pareto distribution, µ̃4l = 9. To provide a more practical930

and straightforward illustration, all results from five distribu-931

tions are further weighted by the number of Google Scholar932

search results. Within the range of kurtosis setting, nearly933

all WLs and WHLkms proposed here reach or at least come934

close to their maximum biases (SI Dataset S1). The pseudo-935

maximum bias is thus defined as the maximum value of the936

biases within the range of kurtosis setting for all five unimodal937

distributions. In most cases, the pseudo-maximum biases of938

invariant moments occur in lognormal or generalized Gaussian939

distributions (SI Dataset S1), since besides unimodality, the940

Weibull distribution differs entirely from them. Interestingly,941

the asymptotic biases of TMϵ= 1
24

and WMϵ= 1
24

, after aver-942

aging and weighting, are 0.000σ and 0.000σ, respectively, in943

line with the sharp bias bounds of TM2,14:15 and WM2,14:15944

(a different subscript is used to indicate a sample size of 15,945

with the removal of the first and last order statistics), 0.173σ946

and 0.126σ, for distributions with finite moments without947

assuming unimodality (48, 49).948

Discussion949

Moments, including raw moments, central moments, and stan-950

dardized moments, are the most common parameters that951

describe probability distributions. Central moments are pre-952

ferred over raw moments because they are invariant to trans-953

lation. In 1947, Hsu and Robbins proved that the arithmetic954

mean converges completely to the population mean provided955

the second moment is finite (52). The strong law of large956

numbers (proven by Kolmogorov in 1933) (53) implies that957

the kth sample central moment is asymptotically unbiased.958

Recently, fascinating statistical phenomena regarding Tay-959

lor’s law for distributions with infinite moments have been960

discovered by Drton and Xiao (2016) (54), Pillai and Meng961

(2016) (55), Cohen, Davis, and Samorodnitsky (2020) (56),962

and Brown, Cohen, Tang, and Yam (2021) (57). Lindquist963

and Rachev (2021) raised a critical question in their inspiring964

comment to Brown et al’s paper (57): "What are the proper965

measures for the location, spread, asymmetry, and dependence966

(association) for random samples with infinite mean?" (58).967

From a different perspective, this question closely aligns with968

the essence of Bickel and Lehmann’s open question in 1979969

(10). They suggested using median, interquartile range, and970

medcouple (59) as the robust versions of the first three mo-971

ments. While answering this question is not the focus of this972

paper, it is almost certain that the estimators proposed in this973

series will have a place. Since the efficiency of an L-statistic974

to the sample mean is generally monotonic with respect to the975

breakdown point (18), and the estimation of central moments976

can be transformed into the location estimation of the central977

moment kernel distribution, similar monotonic relations can be978

expected. In the case of a distribution with an infinite mean,979

non-robust estimators will not converge and will not provide980

valid estimates since their variances will be infinitely large.981

Therefore, the desired measures should be as robust as possible.982

Clearly now, if one wants to preserve the original relationship983

between each moment while ensuring maximum robustness, 984

the natural choices are median, median variance, and median 985

skewness. Similar to the robust version of L-moment (60) 986

being trimmed L-moment (15), mean and central moments 987

now also have their standard most robust version based on 988

the complete congruence of the underlying distribution. 989

More generally, statistics, encompassing the collection, anal- 990

ysis, interpretation, and presentation of data, has evolved over 991

time, with various approaches emerging to meet challenges 992

in practice. Among these approaches, the use of probability 993

models and measures of random variables for data analysis 994

is often considered the core of statistics. While the early de- 995

velopment of statistics was focused on parametric methods, 996

there were two main approaches to point estimation. The 997

Gauss–Markov theorem (1, 61) states the principle of mini- 998

mum variance unbiased estimation which was further enriched 999

by Neyman (1934) (62), Rao (1945) (63), Blackwell (1947) 1000

(64), and Lehmann and Scheffé (1950, 1955) (30, 31). Maxi- 1001

mum likelihood was first introduced by Fisher in 1922 (65) in 1002

a multinomial model and later generalized by Cramér (1946), 1003

Hájek (1970), and Le Cam (1972) (40, 66, 67). In 1939, Wald 1004

(68) combined these two principles and suggested the use of 1005

minimax estimates, which involve choosing an estimator that 1006

minimizes the maximum possible loss. Hodges and Lehmann 1007

in 1950 (69) expanded upon this concept and obtained mini- 1008

max estimates for a series of important problems. Following 1009

Huber’s seminal work (3), M -statistics have dominated the 1010

field of parametric robust statistics for over half a century. 1011

Nonparametric methods, e.g., the Kolmogorov–Smirnov test, 1012

Mann-Whitney-Wilcoxon Test, and Hoeffding’s independence 1013

test, emerged as popular alternatives to parametric methods 1014

in 1950s, as they do not make specific assumptions about 1015

the underlying distribution of the data. In 1963, Hodges and 1016

Lehmann proposed a class of robust location estimators based 1017

on the confidence bounds of rank tests (70). In RMSM I, when 1018

compared to other semiparametric mean estimators with the 1019

same breakdown point, the H-L estimator was shown to be the 1020

bias-optimal choice, which aligns Devroye, and Lerasle, Lugosi, 1021

and Oliveira’s conclusion that the median of means is near- 1022

optimal in terms of concentration bounds (42) as discussed. 1023

The formal study of semiparametric models was initiated by 1024

Stein (71) in 1956. Bickel, in 1982, simplified the general 1025

heuristic necessary condition proposed by Stein (71) and de- 1026

rived sufficient conditions for this type of problem, adaptive 1027

estimation (72). These conditions were subsequently applied 1028

to the construction of adaptive estimates (72). It has be- 1029

come increasingly apparent that, in robust statistics, many 1030

estimators previously called "nonparametric" are essentially 1031

semiparametric as they are partly, though not fully, charac- 1032

terized by some interpretable Euclidean parameters. This 1033

approach is particularly useful in situations where the data 1034

do not conform to a simple parametric distribution but still 1035

have some structure that can be exploited. In 1984, Bickel 1036

addressed the challenge of robustly estimating the parameters 1037

of a linear model while acknowledging the possibility that the 1038

model may be invalid but still within the confines of a larger 1039

model (73). He showed by carefully designing the estimators, 1040

the biases can be very small. The paradigm shift here opens up 1041

the possibility that by defining a large semiparametric model 1042

and constructing estimators simultaneously for two or more 1043

very different semiparametric/parametric models within the 1044
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large semiparametric model, then even for a parametric model1045

belongs to the large semiparametric model but not to the1046

semiparametric/parametric models used for calibration, the1047

performance of these estimators might still be near-optimal1048

due to the common nature shared by the models used by the1049

estimators. Closely related topics are "mixture model" and1050

"constraint defined model," which were generalized in Bickel,1051

Klaassen, Ritov, and Wellner’s classic semiparametric textbook1052

(1993) (74) and the method of sieves, introduced by Grenander1053

in 1981 (75). As the building blocks of statistics, invariant1054

moments can improve the consistency of statistical results1055

across studies, particularly when heavy-tailed distributions1056

may be present (76, 77).1057
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