Trace formulae for actions of finite unitary groups on
cohomology of Artin—Schreier varieties

Takahiro Tsushima

Abstract

Associated to a certain additive polynomial, we introduce an Artin—Schreier
variety admitting an action of a finite unitary group. We calculate the character
of the cohomology as a representation of a finite unitary group. One of our main
ingredients is explicit character formulae for Weil representations of unitary groups
due to Gérardin. We give another trace formula for a projective hypersurface
admitting an action of a finite unitary group.

1 Introduction

Let p be a prime number and ¢ a power of it. Let [F be an algebraic closure of F,. Let
R(z) := 3¢, a;x? € Flz] with a positive integer ¢ and a, # 0. Assume that a; = 0
if 7 is even. Let n be a positive integer. We consider the n-dimensional Artin—Schreier
variety Xg, defined by

n e e
41 i A
a’ —a = E z; R(x;) = g ai<$‘f+ +---+a:%+1>: E a'z? x
=1 =0

=0

in A" = SpecFla, 11, ..., T, where = (7;)1<i<n € A" is a column vector and td
denotes the transpose of ¢ = (I?l)lgjgn. For an integer s > 1, let ;s C IF be the
subfield of cardinality ¢°. Let

Un(q) == {g € GL,(Fg2) | g'g = 1.},

where g' := (a,) for g = (a;;) € GL,(Fg). Then X, admits a natural (right) action
of U,(q) given by (a,x) — (a,g ' @) for g € U,(q), which is well-defined, because i is
odd if a; # 0.

Let ¢ # p be a prime number. For a variety X over F and an integer ¢ > 0, let
H!(X,Q,) denote the i-th f-adic cohomology group of X with compact support (cf. [2]
and [3, (1.1)]). We regard H!(Xg.,, Q,) as a U, (g)-representation, where g € U,(q) acts
as ¢g*. In this paper, we give an explicit formula of the following virtual character of
U, (q):

2n

Hi(Xpn Q) = Z(_l)iHé(XR,m Q)

=0

Keywords: Artin—Schreier variety, additive polynomial, finite unitary group, trace formula
2020 Mathematics Subject Classification. Primary: 20C33, 14F20; Secondary:11F27, 14J50.



Let N,(g) := dimg ,, Ker(g—idg, : Fis, — Fil,) for an integer r > 1 and g € Uy (¢").
We define
Xa(9) = (=1)"(=q)™@  for g € Un(q),

which is a character. We show the following trace formula.

Theorem 1.1. We have the equality
H(Xpn, Qo) = (=1)"(q = Dx;, +1
as virtual characters of U,(q).

The curve Xg; has been studied in [4] mainly in the case ¢ = p = 2 and studied
in [1] in the case ¢ = p > 2. The smooth compactification X p; of Xr,1 has interesting
arithmetic and group-theoretic properties and has been studied in many aspects. For
example, X is a supersingular curve, has a large automorphism group and can have
many rational points.

For a skew-hermitian space (V, h) over F 2, a Heisenberg group H(V, k) is introduced
in [5]. The unitary group

UV, h) :={g € Auty , (V) | h(gv, gv") = h(v,v") (v,0" € V)}

acts on H(V, h) naturally. Let ¢: F, — @Z be a non-trivial character. Associated to 1,
an irreducible representation py, v, of H(V, h)xU(V, h) is constructed in [5]. We call py v,
the Heisenberg—Weil representation (shortly HW representation) of H(V,h) x U(V, h)
associated to 1. The restriction of py v, to U(V, h) is called the Weil representation of
U(V, h), whose character is known explicitly in [5] (cf. §2.4).

We state our strategy to show Theorem 1.1. The variety Xp, admits the action
of F, given by (a,z) — (a + (,z) for ¢ € F,. To show Theorem 1.1, it suffices to
study the 1-isotypic part H!(Xg.,, Q)[¢] C H(Xpgn, Q,) for each i > 0. We have
HY(XRgn, Q)] = 0if i # n. Hence our task is to study

Hy = Hf(XR,m@Z)W]-

The automorphism group of X, contains a certain Heisenberg group Hp as a sub-
group (cf. Definition 2.4). By this fact, Xg,, inherits an action of a certain Heisenberg
group Hg,, (cf. Definition 2.28). The unitary group U,(q) acts on Hg, as group au-
tomorphisms. Then Xg, admits an action of Hg,, x U,(¢). We can regard Hj as an
Hg,, x U, (q)-representation, because I, is naturally regarded as a subgroup of the center
of Hg,, x U,(q).

It seems highly non-trivial to compute the character of H,; geometrically. Hence,
we consider to relate Hj to the HW representation above. The HW representations
are defined only for the special Heisenberg groups associated to skew-hermitian spaces.
Hence we need to relate Hg, to such a Heisenberg group. Actually, we will find a
skew-hermitian space (Vg hgr,) satistying the following two properties:

(i) there exist a natural injective homomorphism U,(q) < U(Vg,, hr,) and an iso-
morphism
HR,n X Un(q> = H(VR,m hR,n) X Un(Q)u

(ii) an isomorphism Hy =~ py vy, . hp,, as Hryn X U, (g)-representations holds.
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The first property is so important for our strategy to show Theorem 1.1 and is established
in Corollary 2.33.

The second property is proved in Theorem 2.38. By this, we know that H;} is iso-
morphic to the e-th tensor power of the Weil representation of U, (¢). The character of
the Weil representation of U,(q) equals y,, as shown in [5, Theorem 4.9.2]. As a result,
we obtain Theorem 1.1.

By [8, Case (iii) in Theorem], the U, (q)-representation H,; can be expressed as a
sum of Deligne-Lusztig characters if ¢ is large enough.

If e = 1, the variety Xg, has been studied in [7] and [11]. In this case, we show
that H;; realizes the Weil representation of U,(g) in [7]. It is a natural and interesting
generalization of this result to study Xg,, as above.

As an application of Theorem 1.1, we give other trace formulas for projective hyper-
surfaces. Let ?Rﬂl be the smooth projective hypersurface defined by the homogeneous
equation

ZEW = ZW =3 Wi (X X
i=0
in P"*! = ProjF[Z, W, X1, ..., X,]. This hypersurface has a natural U,(q)-action given

by [Z W (Xi)lgign] —> [Z W gil(Xz‘)lgign] for g < Un(q>
Let pigeq = {x € F* | 2971 = 1}. We define

bnlg) = D (gD for g € Un(g).

E€pqe 11
We show the following trace formula.

Theorem 1.2. We have the equality
H* (Y Rn, Q) = (=1)"(¢° = 1)x5 +n+ 1+ (=1)"¢,
as virtual characters of U,(q).

We give a rough sketch of a proof of Theorem 1.2. Let Yg, be the open subscheme
of YRm defined by W # 0. Let S := 73,71 \ Yg,. Then S is stable under the action of
U,(g). Obviously, we have H*(Y pn, Q) = H(Yrn, Q) + H*(S,Q,). By z; := X;/W
for 1 <i<nanda:=Z/W, the affine variety Yz, is defined by a? —a = >_; a;ted @
in A" with = (2;)1<i<n. Thus we have the finite Galois étale morphism Yz, —
Xpn; (a,2) = (374 a?, x), which is U,(q)-equivariant. Using this, we can relate
H}(Yrn, Q) to HX(Xgn, Q). On the other hand, S equals

{[Z:VV:XI:---:XR]EIPWrl W:X§e+1+...+XgLe+1:0}.

It should be noted that the boundary S depends only on the degree of R. We have the
equality H*(S,Q,) = n+ (—1)"¢,, which is shown in [11]. Under this analysis, Theorem
1.1 implies Theorem 1.2. If e = 1, the formula in Theorem 1.2 is a special case of a trace
formula in [6, Theorem 3].

In a subsequent paper [13], we investigate a variant of this paper.



Notation

For a finite field extension Fyr /Fys, let Tryr /g denote the trace map from Fgr to Fos.

For a finite-dimensional vector space V' over a field k£ and a k-endomorphism f: V' —
V', let Tr(f; V) € k denote the trace of f.

We suppose that every closed subscheme of a variety is equipped with the reduced
scheme structure.

For a finite group G, let Z(G) denote its center.

2 Trace formulae for Artin—Schreier varieties

Our aim in this section is to show Theorem 2.38. Lemma 2.11 and Corollary 2.33 are very
important for us to relate the cohomology of Xz, to the Heisenberg—Weil representation.

2.1 Heisenberg groups and affine curves

In this subsection, we construct fundamental facts on the curve Xg ;. In the case ¢ = p,
similar things are found in [12].

Definition 2.1. We say that f(x) € F[z] is ¢-additive if f(z +y) = f(z) + f(y) and
flazx) =af(z) for o« € F, and z,y € F.

e

Let e be a non-negative integer and let R(z) := 3.¢_, ;29 € Fz] with a, # 0, which
is g-additive. We define

Er(z) : = R(z)* + Z(aix)q” € Flz], (2.1)
fr(z,y) 1= — i ( _i (aixqiy)qj T (xR(y))qi> € Flz,y. (2.2)

Then Egr(z) is g-additive and fr(z,y) is F,-bilinear in a natural sense.

Lemma 2.2. We have fr(z,y)?— fr(z,y) = —27 Eg(y) + 2R(y) + yR(x). In particular,
fr(z,9)* = fr(,y) = 2R(y) + yR(x) fory € F satisfying Er(y) = 0.

Proof. The former equality follows from

e—
e

fr(z,y)" — fr(z,y) = 2R(y) — (zR(y))? +

1 e—1
(aiquy — (aiquy>q )
i=0
= —a Er(y) + zR(y) + yR(z).
The latter claim follows from the former one. O

From now, we assume (p, e) # (2,0).

Lemma 2.3. Let Vi := {x € F | Eg(z) = 0}. Then Vg is an F-vector space of
dimension 2e.



Proof. Since Eg(x) is g-additive, Vi is an F -vector space. By definition, the derivative
of Fr(x) is a non-zero constant by (p,e) # (2,0). Hence Er(x) is a separable polynomial
of degree ¢*¢. This implies that dimg, Vg = 2e. ]

Definition 2.4. Let Hg := {(8,7) € Vg X F | v2 — v = BR(B)} be the group defined by

(67’7) ' (6/77/> = (ﬁ + 6/77 + ’}/ + fR(/B7ﬁ/>> .
This is well-defined by Lemma 2.2.
For a group G and elements g, ¢’ € G, let [g,¢'] := gg’g g .

Lemma 2.5. For g = (8,7), ¢ = (8',7) € Hg, we have [g9,9'] = (0, fr(B, ') —
fr(B',B)). In particular, fr(3,8") — fr(8,8) € F,.

Proof. We have g=! = (=8, —v+ fr(, 3)). Using this, we directly check the claims. [J
Definition 2.6. A group H is called a Heisenberg group if H/Z(H) is abelian.

Lemma 2.7. (1) We have Z(Hg) = {(0,7) | v € F,}. The quotient Hg/Z(Hpg) is
1somorphic to Vg as groups. The group Hg is a Heisenberg group.

(2) The pairing wr: Ve x Ve = Fy; (8,0") — fr(B,8") — fr(B', B) is a non-degenerate
symplectic form.

Proof. We show (1). If e = 0, we have Hg = {0} x F,. Hence the claims are clear. We
may assume e > 1. Let Z := {(0,7v) | v € F,}. Clearly Z C Z(Hg). It suffices to show
Z(Hg) C Z. Let (8,v) € Z(Hgr). We consider X3 := {z € F | fr(B,2) = fr(z,5)}
which is an Fg-vector space since fr(8,z) — fr(x, ) is ¢-additive. If 5 # 0, we have
deg(fr(B,2) — fr(z,B)) = ¢* ' and hence dimg, X5 < 2e — 1. It results that Vp C Xj
from Lemma 2.5 and (8,7) € Z(Hg). We obtain = 0 from dimg, Vz = 2e. Hence
Z(Hg) C Z. The second claim is clear. The last claim follows from the first two claims.

We show (2). Assume that wg(8, ') = 0 for every g’ € Vi. We take (3,7) € Hpg.
Lemma 2.5 implies that (8,7) € Z(Hg). From (1), it follows that g = 0. O

Definition 2.8. (1) Let Cr C A? = SpecFla, z] be the smooth affine curve defined
by a? —a = zR(z).

(2) Let Hg act on Cg by (a,z) - (8,7) = (a + fr(z,B) +v,2 + ) for (a,z) € Cr and
(8,7) € Hg, which is well-defined by Lemma 2.2.

(3) Let IF, act on Cg by (a,z) — (a+ (,x) for ( € F,.

We take a prime number ¢ # p. Let G be a finite group. Let GY denote its character
group. For a finite-dimensional G-representation M over Q, and v € GV, let M[]
denote the -isotypic part of M.

Lemma 2.9. For ¢ € F/\ {1}, we have

H(Cr, Q)] =0 fori# 1 and dim H;(Cr,Q,)[¢] = ¢".

Proof. The former claim and the latter one follow from [2, Remarque 1.18(b), (c) in
Sommes trig.] and [10, Remark 3.29], respectively. O
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For a quasi-projective variety X over F with an action of a finite group G, let X/G
denote the quotient of X by G. If G acts on a vector space V, let V& denote its G-fixed
part. We will use the following standard lemma several times through the paper.

Lemma 2.10. Let f: Y — X be a finite Galois étale morphism between quasi-projective
varieties over F with Galois group G.

(1) We have an isomorphism f*: H{(X,Q,) = H(Y,Q,)€ for anyi.

(2) Let K C G be a normal subgroup. Let f':Y — Y/K be the quotient morphism

and 7: G — G/K the natural homomorphism. For any i € Z and ¢ € (G/K)Y,
we have an isomorphism

f HY/ K, Qo)) = He(Y, Q) o ).

Proof. The claim (1) is well-known (cf. [9, (5.10)]). We show (2). Applying (1) to
fY = Y/K deduces an isomorphism f*: H{(Y/K,Q,) ~ HY(Y,Q,)". Taking the
Y-isotypic part and using H (Y, Q,) 5[] = H{(Y, Q,)[¢ o 7], we obtain the claim. O

Let p, :={x € F | 2" =1} for r € Zso. Let dg := ged{q' + 1 | a; # 0}. For £ € gy,
let £: Cr = Cg; (a,x) — (a,&x), which commutes with the action of F, in Definition
2.8(3). The following lemma will be used in the proof of Theorem 2.38.

Lemma 2.11. Let ¢ € FY\{1} and & € pq, \{1}. Then we have Tr(&; HY(Cr, Q,)[¢)]) =
—1.

Proof. We simply write C' for C. Let D be the affine curve defined by a? —a = xR(z)
over F. Let tr := Tre,, and K := Kertr. We have the finite Galois étale morphism
7 D — C; (a,2) — (362, a?', x) with Galois group K. Applying Lemma 2.10(2) with
(Y,G,K) = (D,Fp, K), we obtain 7*: H{(C,Q,)[\] = HY(D,Q,)[t o tr]. Hence it
suffices to show
Te(&; He (D, Q)[v o tr]) = —1.

Let D denote the smooth projective curve defined by the homogeneous equation Y Z —
Y79 = XZ9R(X/Z) in P2. We have the open immersion D < D; (a,x) — [z :a: 1].
Let oo be the closed point of D defined by [X : Y : Z] =[0:1:0]. Then D\ D = {oc}.
Considering the projection to the (1 o tr)-isotypic part, we obtain

Tu(&§ H (D, Q)¢ o tr]) = ; Y () Te(€ o ¢ HE(D, Q). (2.3)

CEqu

Let ¢ € Fge. The automorphism & o ¢ on D extends to D and the multiplicity of it at
the fixed point oo is one. Let D¢ denote the set of the fixed points of £ o  on D with
multiplicities. From [2, Corollaire 5.4 in Rapport], it follows that

0 if¢#£0,

q° otherwise.

~Te(€0 G Hy (D, Q) +1=Tr(§ 0 G HI(D,Qy)) = |D¥| = {

Hence the claim follows from (2.3). O



2.2 Skew-hermitian forms

Let R(z) = > 5, a;z9 with e € Zo and a, =# 0. We assume that
a; = 0 if 7 is even. (2.4)

This implies that e is odd. By definition, V3 is regarded as an Fj-vector space. Let
wg be as in Lemma 2.7(2). Our aim in this subsection is to introduce a non-degenerate
skew-hermitian form

hRZ VR X VR —)qu

satisfying Try2/, 0hgr = wg (cf. Corollary 2.18). Furthermore, we can interpret Hp as
a Heisenberg group associated to the skew-hermitian space (Vg, hr) in the sense of [5].
Analysis in this subsection is important for us to show Corollary 2.33.

We define

6/ L= (6—1)/26220,

)

d672i($) = Z <ae,2jxqe*2j)q ’

=0
deo;1(7) : = —de_oi(x)? for1<e—2i—1,e—2i<e,

e

§z,y) = Zdi(y)mqm, r(z,y) == yR(z) —xzR(y) for z,y €F.

Lemma 2.12. We have 6(z,y)? + 6(z,y) = r(z,y)? forx € Vg andy € F.

Proof. As x € Vi, we have
r(z,y)” =—y" > (ax)" " — (zR(y))" .

1=0

We note that dy(y) = —R(y)? . We need to show

e—1

dy) = —acy”,  diy) +din@) = - (ay”)  for1<i<e-1.

The above equalities follow from (2.4) and a direct computation. O

For z,y € I, let

di(x,y) : = a (myqi — qui) for i € Z>y,
e'—1 [fe'—i—1 , v
h0($,y> L= Z < Z 62i+1('r7y)q ’ +r('r7y)q ) + 5(x7y)q :
i=0 \ j=0
Let fr(z,y) be as in (2.2).

Lemma 2.13. We have ho(z,y)? + ho(z,y) = fr(z,y) — fr(y,x) for x € Vg and y € F.



Proof. From the definition of fr(x,y), it follows that
e—1 [e—i—1 v v
fr(zy) = frly,2) =) ( > il y)? +r(z,y) ) :
i=0 \ j=0
Let £, (z) := 29+ z. Using (2.4), we easily compute

e'—1 [e/—i—1 e—1 e—i—1 e—2
2, < ( > aia(a, )™ +r<x,y>q2’>) =D dGlmy)” Y ()
0 - -

i= j=0

where the last equality follows from Lemma 2.12. Thus we obtain the claim. O]
Corollary 2.14. We have ho(x,y) € Fp2 for z,y € Vi.

Proof. Lemma 2.5 implies that fr(z,y) — fr(y,z) € F,. Thus we obtain ho(z,y)? +
ho(z,y) = 0 by Lemma 2.13 and hence ho(z,y) € F,e. O

Definition 2.15. We define hr: Vg x Vg — Fgp2 by
hr(z,y) == ho(z,y)! € Fpp  for z,y € Vj.
Corollary 2.16. (1) Let wg be as in Lemma 2.7(2). We have Trp/, ohg = wg.
(2) The pairing hr: Vg x Vg — Fp2 is a non-degenerate F-bilinear form.

Proof. The claim (1) follows from Lemma 2.13.

We show (2). Since hg is an F,-bilinear form on Vg, so is hr. Assume that hp(z,y) =
0 for every y € Vz. By (1), wr(x,y) = 0 for every y € Vg. Since wg is non-degenerate
as in Lemma 2.7(2), we obtain x = 0. Hence hp is non-degenerate. O

Lemma 2.17. Let x,y € Vg. Then

e j . 2 2¢’ e’ P ,
(1) hr(x,y) = —ZZ (ae—2iyq 2$> + Z Z (azit1y)? ’ xq%,

j=0 i=0 j=e'+1i=j—e

(2) hr(y, )"+ hg(z,y) = 0.

Proof. We show (1). Let



and ¢oi41(y) 1= agipy? . From the definitions of hg(x,y) and 6(z,y), it follows that

e'—1 [e'—i—1 €
) — 3 ( S s )™ + 1o y>) S g
=0 j=0 i=1

e'—1e/—i—1

LSS (™ e

i=0 j=0
e'—1 € e'—1 e
2i+1 2(i+j+1 2i+1 e—i
+ (azjt1y)? Pt Z(R(y)x)q Y Zdi(y)xq g
=0 j=0 i=0 =1

We will compute the coefficient of each 29 in hp(z, y). For 0 < j <€’ —1, the coefficient
of 277" equals

e'—j—1
Z 1) = Ry)” + de-2j-1(y)
i=0
e'—j—1 j gt
= ( Z c2i1(y) — R(y) + Z Ce—2i<y>> = 0.
i=0 1=0
The coefficient of 2¢” equals
de—?j(y> if 0 S j S 617
jil j—i)—1 e/ 2(5—1)—1
Z (a2i+ly)q2(] = Z (agis1y)? U e 1 <j<2e.
i=j—e' i=j—e’
Hence
hr(z,y) = A(z,y) + B(z,y). (2.5)
We show (2). We can compute
2¢’ e e—1 j .
2j—1) 25+1 2j+1
Al ) = =3 > (i)™ 2™, Blyw) = D0 (cemily)n)”
j=e’ i=j—e J=0 =0
These imply that
A(z,y)" + B(y, ) = —(R(y)x)",
B(x,y) + Ay, x) = = > _(agipy)” 27

1=0

Summing up these equalities and using (2.5) and y € Vg, we obtain hg(y, z)?+hg(x,y) =
—FEgr(y)z? = 0. Thus the claim follows. O

Corollary 2.18. The pairing hg: Vg x Vg — Fp2 is a non-degenerate skew-hermitian
form.

Proof. By Lemma 2.17(1), hr(az,y) = ahg(z,y) for a € Fp2. Hence the claim follows
from Corollary 2.16(2) and Lemma 2.17(2). O
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2.3 Preparation to construct group isomorphism

Our aim in this subsection is to show Lemma 2.20 and Proposition 2.21, which induce a
group isomorphism in Proposition 2.30.

Definition 2.19. We define

e'—1e—2i— e e-1 1

Z Z (a2z+1$q21+1+1> +Z Z <a2¢+11“12i+1+1)q2]+ € Flx].

=0 ;=0 i=1 j=e'—i
Lemma 2.20. We have gr(x)? — gr(x) = —zR(x) — hg(z,x) for x € V.

Proof. Let byiiq1(x) = a2i+1xq2i+l+1. Substituting = to y at the equality in Lemma
2.17(1), we have

e j . 0! p -
==X b 3 D b

j=0 i=0 j=e'+1i=j—e’
e/ e/ e e-1
2]+1
= — E E boit1(w gt E E boit1(w .
1=0 j=e'—1 i=1 j=e'—i

Let £ (z) := 27 — z. Then we compute

<ez_1 ei boir1(z ) = e/i (bziﬂ(ﬂv)qﬁ_%_l — b2i+1<x>>

=0 j=0

= byia(2)” T — 2R(2),

i=0
e -1 4 e’ e -1
2j+1 2J+1
Z_ g E b2i+1($)q = E E sz‘+1 g b21+1

1=1 j=e'—i i=1 j=e/—i+1 i=1 j=e'—i

€

e—2i—1
= - E baiv1(z)" — hg(z, ).
i=0
Summing up these equalities, we obtain the claim. O

Proposition 2.21. We have gr(x+y)—gr(x)—gr(y) = hr(z,y)— fr(x,y) forz,y € Vg.

Proof. We rewrite (2.2) as follows:

—falz,y) Z ( Z<ajy>q”> (2.6)

We define {h;(y)}o<i<aer by

hi(z,y) = fr(r,y) = Zh (2.7)
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Let cpis1(y) := agiy” . Clearly R(y) = Zflzo c2i+1(y). From Lemma 2.17(1) and
(2.6), it results that

e'—j—1 2j 25+1
hoj(y Z Coinn ()T + Z(Giy)q%ﬂa hajia(y) = R(y)®"" + Z(%y)q%ﬂﬂ (2.8)
i=0 i=0 i=0

for 0 <24, 2j +1 < 2¢ and

e/

haj(y) = Z (aii1y)” 77, hoji1(y) =0  for 2¢' +1<2j, 2j+1<4e. (2.9)

i=j—e’

Clearly

gr(r +y) — gR(fC) —9r(Y)

e'—1e—2i— ¢ e e-1 _ g2+
= Z Z <a21+1$ Y+ i1y 1‘) + Z Z <a2z+1$ y+ 02i+1(y)$>
=0 4j=0 i=1 j=e'—i
e'—1e—2i— i ¢ e e-1 2
= Z Z <a21+1$ Y+ coig1(y I) + Z Z (coip1(y
=0 j=0 i=1 j=e'—i
e e-1 pirt g2+
+ Z Z (a2¢+1$q y)
i=1 j=e'—i
(2.10)
Let [a] be the integral part of a € R. The equalities (2.8) and (2.9) imply that
e'—1e—2i— e e-1 -
21+l J
Z Z <a2,+1x Y+ coir1(y $> + Z Z coi1(y
= i=1 j=e'—1
2¢’ [6_2._2] [];1] 2is1) e'—1 e'—1 b
j i—(2i+ j o+
= Z caipr(y)” + Z (a2i1y)" 2%+ Z Z (c2i41(y)z)"
j=0 i=0 i=0 §=0 i=e’—j
2¢’ v
=Y hi(y)z? and
1=0
e -1 g2+ 2¢’ e’ P 4e’
2i+1 j—i)— 97
Z Z (a2i+1$q Z/) = Z Z (azit1y)" a?’ = Z hi(y)x?
1=1 j=e'—1i j=e'+1li=j—e' 1=2e’+1

Summing up these two equalities and using (2.7) and (2.10), we obtain the claim. [

Remark 2.22. Substituting = to y at the equality in Proposition 2.21 and using gg(2z) =
4gr(z), we have hgr(z,z) — fr(z,x) = 2ggr(x). This implies that

galr) = 200 5 LEGE T
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2.4 Welil representation of unitary group

In this subsection, we follow [5, §3.3]. Let V' be a vector space of dimension n over I
with a non-degenerate skew-hermitian form h: V- x V. — Fp. We call a pair (V,h) a
skew-hermitian space over 2. For skew-hermitian spaces (V, h) and (V', 1) over F 2 of
the same dimension, we have an isomorphism (V, h) ~ (V' h').

Definition 2.23. Let H(V,h) := {(8,7) € V X F | v2 —~v = —h(f,3)} be the group
defined by

(B,7) - (B,7) = B+ 8,7+ +h(B.5))
Lemma 2.24. The center Z(H(V,h)) equals {(0,7) | v € F,}.
Proof. This is shown in [5, Lemma 3.1(a)]. O
We identify Z(H(V,h)) with F, by (0,7) — 7.

Lemma 2.25. Forv € Fy\ {1}, there exists a unique irreducible H(V, h)-representation
puh)w of dimension ¢" containing 1 restricted to the center Z(H(V,h)) ~F,.

Proof. This is stated in [5, the first paragraph of §3.3] (cf. [5, lemma 1.2(b)]). O
Recall U(V, h) = {g € Autg, (V) | h(gv,gv") = h(v,?) (v,v" € V)}. This group

acts on H(V,h) by the group automorphism H(V,h) = H(V,h); (8,7) — (983,7) for
g € U(V,h). We define HU(V, h) := H(V,h) x U(V, h).

Theorem 2.26. Fori € F/\{1}, there exists a unique representation py,v, of HU(V, h)
satisfying

(i) an isomorphism pyvnluwn = puwn.e as H(V, h)-representations and

(ii) the equality
Te(g: pyvn) = (~1)"(=)¥"") for g € UV, h), (2.11)
where N(g,V) = dimg , Ker(g —idy: V — V).

Proof. This follows from [5, Theorems 3.3 and 4.9.2]. O

Definition 2.27. We call py v the Heisenberg—Weil representation of HU(V,h) as-
sociated to 1. We define py, = /7zp,v,h|U(v,h) whose isomorphism class as a U(V, h)-
representation is independent of ¢ by (2.11). This is called the Weil representation of
U(V, h).

2.5 Main theorem

Let R(z) = 3¢ aa? € Flz] with e € Zxo and a. # 0 satisfying (2.4). For & =
(#:)1<i<n € A", let R(@) i= (X @it} )icjen = Yi_gai@” € A". Clearly R(x +y) =
R(x) + R(y) in a natural sense.

We define fp,: A" x A" — Al by

fRn Y y ZfR xmyz - Z (Z (aitmqiy>q] + (tmR(y))ql>

for & = (:)1<i<n, Y = (Yi)1<i<n € A™.



Definition 2.28. Let Vg, := V5™ and let
Hen = {(B.7) € Vu x F | 4! =~ ="BR(B)}

be the group defined by (8,7) - (3,7) = B+ 8,7+ + fra(8,3")). This is well-
defined by Lemma 2.2.

Recall that Vi is regarded as an F-vector space by (2.4) and

Un(q) = {9 € GL,(Fp) | g'g = 1.},

where g' = (a?;) for g = (a;;) € GLy(Fp2). An Fpe-linear map g: Fr, — Fp, induces an
Fp-linear map g: Vg, — Vg, if we identify Vi, with Vg ®F 2 IFZQ. This defines an action
of U,(q) on Vg,. For g € U,(q), we have ‘e R(y) = *(g9x)R(gy) and fr.(9x,gy) =
frn(x,y). Thus U,(q) acts on Hg,, as group automorphisms by (3,v) — (g3,~) for
g€ Un(Q)'

Definition 2.29. (1) Let hr be as in Corollary 2.18. We define a non-degenerate
skew-hermitian form hgr,: Vi, X Vry — Fpe by

hrn(B, ey ZhR 5%7 for B = (5i)1§i§m5/ = (52)151'91 € Ven-
(2) Let gr(x) be as in Definition 2.19. We define

9rn(B) = ZQR(@) for B = (Bi)1<i<n € V-
i=1

Let H(Vg, hr,n) be as in Definition 2.23.

Proposition 2.30. We have the group isomorphism

¢: Hrn = H(Ven, hrn); (B,7) = (8,7 + grn(8))-

Proof. We simply write f, g and h for fr,, gr, and hg,, respectively. Then

(v+9(B)" = (v+49(B)) =" =~ +9(B)" — 9(B)
='BR(B) — 'BR(B) — h(B,8) = —h(B,8),

where the second equality follows from Lemma 2.20. Thus ¢ is well-defined. One has

o((8,7) - (B,7) =B+ 8,7+~ + [(B8,8))

=B+B, 7+ +fB.8)+9(B+08)),
o(B,7) - 6(8',7") = (8,7 +9(B)) - (8,7 + 9(8"))

= (B4 8,7+ +49(B) +9(8) +h(B,3)).

Hence we know that ¢ is a group homomorphism by Proposition 2.21. Clearly ¢ is
injective. Since the source and target of ¢ have the same cardinality, ¢ is bijective. Thus
the claim follows. O
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Lemma 2.31. Let g € U,(q) and 8,8 € Vg,. Then
(1> hR,n(gﬁagB,) = hR,n(/BMB/)7
(2) 9rn(98) = grn(B).

Proof. We consider the skew-hermitian form hg: Flo x Fly — Fp; (z,y) — 'zy.
Under the identification Vg, ~ Vi ®F 2 IF;Z, the form hg, equals hr ® ho. Hence
hrn(98,98') = Z?Zl hr(Bi, Bi)ho(gei, ges) = hrn(B,8'), where B8 = (Bi)i<i<n, B =
(Bi)1<i<n and {e1,..., ey} is the standard basis of Fy,.

We show (2). Using Definition 2.19, we can write

e'—1e—2i—2 o o1
9rn(B) = Z Z <a2i+1t/6q22+15)q] +Z Z (@2i+1t5q21+1,3)q2”1.
=0  j=0 i1 oo
Terms 3" B in gr,,(B) are stable by ¢g. Hence (2) follows. 0

Lemma 2.31(1) implies the injective homomorphism
Un(Q) — U(VR,TH hR,n>‘ (212)

The group U, (q) acts on H(Vg,, hg,) through (2.12) and the action of U(Vg,, hr,) on
H(VR,na hR,n)-

Remark 2.32. We identify Vg, = Vi ®F 2 FZQ and hr, = hr ® hy as in the proof of
Lemma 2.31(1). We have the injective homomorphism

U(VR7 hR) X Un(q> — U(VR,na hR,n); (f7 g) = f ® g,
which appears in the Howe correspondence (cf. [8, §1]).

Corollary 2.33. We have the group isomorphism

¢ % idu,,(g): Hrn ¥ Un(q) = H(Van, hrn) X Un(q); (z,9) = (6(2), 9).

Proof. It suffices to show that ¢ x idy, () is a group homomorphism. This follows from

o(g-(B,7) = ¢(98,7) = (98,7 + grn(9B)) = (98,7 + grn(B)) = g - 9(B,7)

for (8,7) € Hr,, and g € U, (q), where the third equality follows from Lemma 2.31(2).
O]

Definition 2.34. Let g € U,(q). Recall Ni(g) = dimg , Ker(g — idgn, - F, — Fl). We
define xn(g) == (=1)"(—¢)™W.

Then x,, is the character of the Weil representation of U, (q) by (2.11).
Let pv,, hp,. be the U(Vg,, hgy,)-representation as in Definition 2.27. We regard
PVinhnn a5 & Uy(g)-representation via (2.12).

Lemma 2.35. We have the equality py, , h,,, = X5 as characters of Uy(q).
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Proof. We note that dimg , Vr, = en. Let g € Un(q). Applying Vi ®F, (=) to g —
idpn, : Fy, — F,, we obtain g —idvy,, 0 Vrn — Ve Let N(g,Vgn) be as in Theorem
2.26(i1). Then N(g, Vgy) = (dimg , Vi) - Ni(g) = eNi(g). Thus the claim follows from
(2.11). O

Definition 2.36. (1) Let Xg, be the n-dimensional smooth affine variety defined by
a’ —a= Z z;iR(z;) = Z a; (ffiﬂ +-- 4+ I?j“) ='zR(z) in A",
i=1 i=0
where x = ($i)1gi§n e A"

(2) The group U,(q) acts on Hg,, by (8,7) — (98,7) for g € U,(q). The semidirect
group Hrn % Un(q) 3 ((8,7),9) acts on Xg, 3 (a, ) by

(a,2)-((8,7),9) = (a+ 7+ frn(®, B),9 " (x+ ),

which is well-defined since fr,(x,3)?— fra(x, ) = ‘cR(8) +'BR(x) by Lemma
2.2.

(3) Let F, act on Xg, by (a,z) — (a + (,x) for ¢ € F,.

We note that the action of Z(H(Vg,,hry)) ~ F, (cf. Lemma 2.24) on Xg,, equals
the one in Definition 2.36(3).

Lemma 2.37. Assume (n,q) = (2,2). Let 1 = <(1) (1)> € Uy(2). Fory € F/\ {1}, we

have Te(i; (X, @)[0]) = —2°.
Proof. The Kiinneth formula implies the claim in the same way as in [7, Lemma 1.4]. O

For ¢ € F) \ {1}, H{(Xgn, Q)[¢] is regarded as a representation of H(Va,, hry) X
U, (g) by Corollary 2.33. The homomorphism (2.12) implies an injection H(Vg ., hgn) ¥
Un(q) = HU(VRrn, hry). Viathis, we regard the HU (Vg ,, hg,)-representation py vy, . np..
in Definition 2.27 as an H(Vg,, hryn) % U,(g)-representation. Now we state our main
theorem in this paper.

Theorem 2.38. Let ¢ € Y\ {1}.

(1) We have an isomorphism

H'(Xrn, Q) [Y] 2 Py i in

as H(Vgn, hryn) % U, (q)-representations.
(2) We have the equality H"(X .., Q,)[)] = x¢ as characters of U,(q).

Proof. The claim (2) follows from (1) and Lemma 2.35. We show (1). We write H},,

and (V,h) for H(Xgn, Q)[¥] and (Vrn, hrn), respectively. Let £, (s) be the smooth
Artin-Schreier sheaf on A' = SpecF[s| defined by the Galois étale covering a? —a = s
and 1 in the sense of [2, Définition 1.7 in Sommes trig.]. For a morphism of varieties
f: X = Al let Zy(f) = f*Zy(s). We regard a polynomial g(z) € Flx] as a morphism
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Al — A 2 — g(z). Considering the Galois étale morphism Xg,, — A" (a,2z) — @
with Galois group F,, we see that H,, = H(A", Z,(3 "_, 2;R(x;))) for an integer i.
By Xgr1 = Cr and Lemma 2.9, we have H},; = 0 for i # 1 and dim H,,; = ¢°. From
this, the Kiinneth formula in [2, (2.4.1)* 1n Sommes trig.] and fw(zz_l z;R(x;)) =
&?Zlfw(a:iR(xi)), it results that

Hy, ~ Q) H (A, ZLy(xiR(xy))) ~ (Hyj,)®". (2.13)

=1

Hence dim Hy;,, = ¢*". This and Lemma 2.25 imply an isomorphism H, >~ puvn)y as
H(V, h)- representatlons Recall that pg(v,n),y s irreducible as in Lemma 2 25 By Schur’s
lemma, there exists x € U,(q)" such that an isomorphism

Hy =~ Py v @ X

as H(V, h) x U, (q)-representations holds. We need to show x = 1. For (& )i<i<n € g1,
let diag(&y,...,&,) € Uy(q) denote the diagonal matrix. From Lemma 2.11 and (2.13),
it follows that

Tr(diag(&,. .. &) H,) = (=1 for (€)i<icn € (g \ {11 (2.14)

On the other hand, Lemma 2.35 implies

Tr PVRn,hRrn (diag<517 cee agn)) = ( )ne = (_1)n

since e is odd. Furthermore, if (n,q) = (2,2), Tr pvy,np,(t) = (—2)¢ = —2° Using
(2.14) and Lemma 2.37 in the same manner as in the proof of [7, Theorem 1.5], we
obtain the claim. O

Remark 2.39. By Remark 2.32, Theorem 2.38 and [8, Case (iii) in Theorem], the U, (q)-
representation H'(Xg,, Q)[¢] is expressed as a sum of Deligne-Lusztig characters.

For a variety X over I equipped with a U,(q¢)-action, let

[e.e]

H:(Xa @5) = Z<_1)1HCZ(X7 @6)7

=0
which is a virtual character of U, (q).

Corollary 2.40. (1) We have isomorphisms

H{(Xpn, Q)W) =0 for any ¢y € T\ {1} and i # n,
H{(Xpn, Q) =0 fori#mn,2n and H*(Xg,, Q,) ~ Q,.

(2) We have the equalities

H(Xpn, Q) = (g — )X,
Hi(Xpn Qo) = (=1)"(¢ — x5, +1

as virtual characters of Uy,(q).



Proof. We write H, , for H{(Xgn, Q,)[¢]. Clearly H{(Xgn, Q) ~ Dyery m;,,, for any i.
We show (1). If ¢ = 1, we have H, , = H{(Xpn, Q)" ~ H(Xp,/Fy, Q) = HI(A™, Q)
by Xpn/Fg >~ A" and Lemma 2.10(1). Thus H}, , is zero if i # 2n and is isomorphic to
Qif i =2n. Let ¢ € FY\ {1}. Lemma 2.9 implies that H}, = 0 for i # 1. Using the
Kiinneth formula similarly as (2.13), we see that Hé),n = 0 for i # n. Therefore we have
obtained (1).

We show (2). The former equality follows from Theorem 2.38. The latter equality
follows from (1) and the former one. O

3 Trace formulae for projective hypersurfaces

As in §2.5, assume that R(z) = Y27 a;2? € Flz] with e > 0 and a, # 0 satisfies (2.4).
Our aim in this section is to show Theorem 3.8 as an application of Theorem 2.38.

Definition 3.1. (1) Let Yx, be the smooth affine variety defined by

al’ —a= Z a; (w'{“rl +- :v?j“) ='zR(x) in A",
where = (2;)1<;<n € A™.
(2) The unitary group U,(q) acts on Yg,, by (a,x) — (a,g ') for g € U,(q).

(3) Let Fye act on Yg, by (a,2) = (a+ ¢, x) for ¢ € Fpe. For ¢ € F. and an integer
i, the ¥-isotypic part H (Y., Q,)[¢] is regarded as a U, (q)-representation.

For a scheme X over F, we often write H:(X) for H)(X,Q,). We fix "y € Fy \ {1}.
Let £ € F.. We have the finite Galois étale morphism

e—1
Yin = Xenn; (a,2) — (Z(gaw,m)

1=0

whose Galois group is the kernel of Tre: Fgpe — Fy; @+ Trge/o(§2). For £ € Fge and
Y € Fy., we define ¢¢(z) := 9 (§x) for 2 € Fye.

Corollary 3.2. Let ¢ := %9 o Trye), € IFZE and § € Fp.. For any i > 0, we have an
isomorphism H(Yg,)[ve] = HA(X¢rn) ("] as U,(q)-representations.

Proof. By Yr,/ Ker Tre ~ X¢g and Lemma 2.10(2), H:(Yr,)[te] ~ H:(Xern)["Y]. O
Definition 3.3. We define

on(g) = > (=) for g € Un(g), (3.1)

E€pge 11

which is an irreducible unipotent character of U, (¢°) corresponding to the partition
(n—1,1) of n (cf. [6, Theorems 1 and 3]).
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Definition 3.4. Let Yy, be the smooth projective hypersurface defined by
ZIW — ZW =Y W (Xf”l T ng“) in P+, (3.2)
=0

We regard Yg, as an open subscheme of ?R,n by a = Z/W and z; = X;/W for
1 <7 <n. Let Un(q) act on ?R,n by [Z W (Xi>1§iﬁn] — [Z W g_l(Xi)lgiSn]
for g € U,(¢g). This action is an extension of the one in Definition 3.1(2). The closed
subscheme

Si={lZ: WXy X P W = X X =0 C VR (33)

is stable under the action of U,(q).
Lemma 3.5. We have S =Y r, \ Yan.

Proof. Substituting W = 0 to (3.2), we obtain ao(XTH 4. 4 X9t = 0. Hence
Yrn\ Yrn, equals S as a. # 0. O

Lemma 3.6. We have the equality H*(S) = n+ (—1)"¢,, as virtual characters of U,(q).

Proof. The scheme S is denoted by R and ¢, is denoted by 1, in the notation of [11]
The claim is shown in the proof of [11, Lemma 3.6].

Lemma 3.7. (1) We have isomorphisms
H!(Ypn) =0 fori#n,2n, H!(Yra)~ @ HY (Xera) V], HZ'(Yrn) ~ Q.
feF;
(2) We have the equality H (Yr,,) = (—1)"(¢°—1)x;,+1 as virtual characters of U,(q).

Proof. The assertion (2) follows from (1) and Theorem 2.38(2). We show ( ). The claim
H2(Yrn) ~ Qy is clear. Let 1 := %o Tre/,. Then the isomorphism Fye = FY, ges & e
holds. For any ¢ # 2n, we have isomorphisms

Hi(Yrn) = B Hi(Yrn)lte] = @ Hi(Xern) V),
EEF . ¢€F .
where the first equality follows from Lemma 2.10(1) and ¢ # 2n and the second isomor-
phism follows from Corollary 3.2. Hence the claim follows from Corollary 2.40(1). O
Theorem 3.8. We have the equality
H* (YR, Q) = (=1)"(¢° = Dxs, +n+ 14 (=1)"¢,
as virtual characters of U,(q).

Proof. Lemma 3.5 implies that H*(Y p,,) = H(Yg.,) + H*(S). Hence the claim follows
from Lemmas 3.6 and 3.7(2). O

Remark 3.9. Assume ¢ = 1. Then ?R’n is isomorphic to the Fermat hypersurface 5,
defined by 22”“12 29 = 0in P"*! as in [11, Lemma 3.2]. We regard U, (q) as a subgroup

of Up42(q) by g — (0 I ) for g € U,(q). Theorem 3.8 asserts

Tr(g; H (Sure, Qp)) = n+ 1+ (=1)"P¢n12(g)  for g € Un(g).
This equality is shown in [6, Theorem 3].
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