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Abstract: 

Taking abstraction as the starting point, we build a complex, self-organizing fuzzy logic 

system. Such a system, being built on top of abstraction as the base, turns out to be just a 

special outcome of the laws of abstraction. As the system is self-organizing, it runs 

automatically towards optimization. Using such a system in neural networks, we may 

come as close as possible to the workings of the human brain. The abstract fuzzy 

optimization is seen to follow a Gaussian distribution. 

 

Introduction: 

There are quite a large number of differences between the way present day computers 

work and the way the brain works. The very way in which basic processing is done by 

computers varies vastly from the way the brain processes information. Computers, 

working on binary logic, can take into account only high or low states. They can have a 
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number of inputs that are processed by a single processing unit. After being processed, 

the input(s) can have a single output or a number of outputs. On the other hand, brain 

cells seem to be able to process information using abstract fuzzy logic that leads to more 

energy optimization. In fact, estimates suggest that present day computers use up ten 

million times more energy to process the same amount of information that the human 

brain does.  

This does not take into account, however, the accuracy and speed of decision making by 

the two systems for large enough data inputs. The basic difference between the today’s 

computers and the brain lie in the fact that while computers have only two logical 

states, the brain uses can have many such states and in-between states simultaneously 

generating patterns similar to attractor maps. Decisions are asymptotic functions of 

such maps in the case of the brain, while in computers the decisions are only 

approximate points in the output space. As such, all waypoints in the input system 

itself can act as decision making units inside the brain. The way in which this happens 

is no longer linear (as in computers), but nonlinear. This nonlinear information 

processing by the brain is vastly superior to the linear processing used by computers in 

arriving at decisions.  

Abstraction lies at the heart of the complex, self-organizing fuzzy logic that is used by 

the brain. In fact, this logic is the direct fallout and a special case of abstraction. The 

Theory of Abstraction and the principle of Zero Postulation describes directivity towards 

optimized solutions and cluster formation in the decision making space as inherent 

properties of the system itself. They must also be able to describe the formation of 

various structures and patterns in the decisions that the system can arrive at. As such, it 

is of great interest for us to investigate how these structures are formed in the decision 

space. A theory that is able to describe the world in totality has to keep the number of 

basic postulates it depends upon to zero or near zero.  



Reductionism hits a dead end in this regard. On the other hand, abstraction as the 

starting point of building up a theory may be seen to be of fitting use. It would be much 

more than a new way of tackling the problem. Even abstract postulates do away with 

the shackles that bind our theories into the system and bar them from being total 

descriptions of the system. The abstraction we are talking about here may be defined as, 

‚Postulation of non-postulation‛ or, in other words, ‚A system of postulation that gives 

equal weights to all possible solutions inside the system and favors none of such 

solutions over others.‛ 

Abstraction automatically gives rise to optimized solutions within the universal set of 

all possible solutions, as has been shown in this book. It is these optimized solutions 

that make up and drive the non-abstract parts of the world, while the non-optimized 

solutions remain ‘hidden’ from the material world, inside the abstract world. Zero 

postulation or abstraction as the basis of theory synthesis allows us to explore even 

imaginary and chaotic non-favored solutions as possibilities. With no postulation as the 

fundamental basis, we are thus able to pile up postulated results or favored results, but 

not the other way round. We keep describing such implications of abstraction in this 

book. We deal with the abstraction of observable parameters involved in a given system 

and formulate a similar basis of understanding them. 

Let us consider the example of a three-point isolated system. Let the points be ‘A’, ‘B’ 

and ‘C’. Let A and B be decision points, whereas, C be situated anywhere on the straight 

line joining A and B. The decision flow of both A and B tends to move in all possible 

directions. These possible directions include the directions towards each other. Thus, at 

point C, for obvious reasons, an additional effect will be felt due to the tendency of 

decision to flow from A to B and from B to A, as compared to all other directions. 



The points A, B and C being considered parts of an isolated system and all three points 

being assumed fundamentally similar (with the only difference that A and B contain 

decisions, while C is empty), the factors 𝑅 and 𝑆 must be equal. Thus, we have: 

𝐹

𝑇
= 𝑐

𝜆

𝐷
 

 𝐷 being considered the decision distance between A and C and 𝑥 the distance between 

A and B (say), the decision distance between B and C is 𝐷 − 𝑥. This decision distance can 

be any length of any given dimensions (as determined by the scaling-ratio of 

observations, the simplest of dimensions being two) between two points in the decision 

space.  

 The effect on C due to the decision-point A can thus be written as, 

𝐹𝐴

𝑇𝐴
= 𝑐

𝜆𝐴

𝑥
 

Similarly, the effect on the empty point C due to the decision-point B is, 

𝐹𝐵

𝑇𝐵
= 𝑐

𝜆𝐵

𝐷 − 𝑥
; 

where 𝐹𝐴and 𝐹𝐵  are the respective values of flows towards the point C due to A and 

B, respectively. 𝑇𝐴  and 𝑇𝐵  are the respective values of time and 𝜆𝐴  and 𝜆𝐵  are the 

respective values of the differences in concentrations of decisions between A and B. 

    Substituting 𝑥 in the above two equations, we have, 



𝑐
𝑇𝐴𝜆𝐴

𝐹𝐴
= 𝐷 − 𝑐

𝑇𝐵𝜆𝐵

𝐹𝐵
                                                         … (1) 

Considering the points to be having equal factors, i.e., considering 𝜆𝐴 = 𝜆𝐵 = 𝜆 

(say),𝐹𝐴 = 𝐹𝐵 = 𝐹 (say) and 𝑇𝐴 = 𝑇𝐵 = 𝑇 (say), equation  1  reduces to, 

𝑐
𝑇𝜆

𝐹
= 𝐷 − 𝑐

𝑇𝜆

𝐹
 

i.e., 

𝐹

𝑇
= 2𝑐  

𝜆

𝐷
                                                                  … (2) 

Equation (2) describes fundamentally the effect (i.e., the flow 𝐹 in time 𝑇) of two 

decision-points having same factorial conditions regarding one or a number of already 

existing decisions.  

 

Pattern Generation: 

Considering a collection of such points and applying a statistical approach, the logistic 

equation for  
𝐹

𝑇
  can be written as, 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 2𝐾𝑐  
𝜆

𝐷
 
𝑡
 1 − 2𝑐  

𝜆

𝐷
 
𝑡
  



i.e., 

 

 

 
𝜆

𝐷
 
𝑡+1

= 𝐾  
𝜆

𝐷
 
𝑡
 1 − 2𝑐  

𝜆

𝐷
 
𝑡
                                                … (3) 

where 𝐾 is a constant. 

Also, the quadratic map can be written as, 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 𝐾 −  2𝑐
𝜆

𝐷
 
𝑡

2

 

i.e., 

2𝑐  
𝜆

𝐷
 
𝑡+1

= 𝐾 − 4𝑐2  
𝜆

𝐷
 
𝑡

2

                                                   … (4) 

All trajectories described by the quadratic map become asymptotic to −∞ for 

𝐾 < −0.25 and 𝐾 > 2 

As we deal with the flow of a given decision towards one given point or the effects on a 

given point, the expression for the attractor for each such point can be written as, 

 2𝑐
𝜆

𝐷
 
∗

=  1 −
1

𝐾
                                                          …  5 ; 

where 𝑂 < 𝐾 < 𝐵. 



   2𝑐
𝜆

𝐷
 
∗

is a point in the desired dimensional plot into which the trajectories seem to 

crowd. As we do not need to deal with more than one attractor or periodic point, the 

trajectories will tend to revisit only the attractor point concerned, to the desired level of 

accuracy of observations and calculations. 

For 𝐾 ≥ 3, the trajectory behaviour becomes increasingly sensitive to the value of 𝐾. 

There are a few more points to be noted regarding the dependence of the trajectory 

behavior on the values of 𝐾:  

1. For 𝐾≤ 1, the attractor is a fixed point and has a value . 

2. For 1 < 𝐾 < 3, the attractor is a fixed point and its value is  > 0 but <

0.667. 

3. For 3 ≤ 𝐾 ≤ 3.57, period doubling occurs, with the attractor consisting of 

2, 4, 8, etc., periodic points as 𝐾 increases within that range. 

4. For 3.57 < 𝐾≤ 4, we have the region of chaos, where the attractor can be 

erratic (chaotic with infinitely many points) or stable. 

For all calculations, the desired conditions may be placed at the attractor. A trajectory 

never gets completely and exactly all the way into an attractor though, but only 

approaches it asymptotically. In the region of chaos, we apply the method of searching 

for windows or zones of 𝐾-values for which iterations from any initial conditions will 

produce the periodic attractor, instead of a chaotic one. For the logistic equation(3), 



the most common such zone lies at 𝐾 ≈ 3.83 and for the quadratic map(4), 

at 𝐾 ≈ 1.76. 

Let us consider a given representation with fractal dimension 𝐷𝐹 . The fractal 

dimension is purely geometrical, i.e., it only depends on the shape of the representation. 

A suitable probability measure 𝑑𝜇, according to the particular phenomenon 

considered is assigned to the given representation. A coarse grained probability density, 

as the decision of the hypercube Λ𝑖  of size 𝑙 is defined as, 

𝑃𝑖 𝑙 =  𝑑𝜇

Λ 𝑖

 𝑥                                                              

where 𝑖 = 1,2,3, … , 𝑁 𝑙 . 

The information dimension 𝐷𝐼 is such that, 

 𝑃𝑖 ln(𝑃𝑖)

𝑁(𝑙)

𝑖=1

≃ 𝐷𝐼 ln(𝑙)                                                     …  6 ; 

where 𝐷𝐼 ≤ 𝐷𝐹 . 

The number of boxes containing the dominant contributions to the total decision and 

thus relevant part of the information, is, 

𝑁𝑅 𝑙 ∝ 𝑙−𝐷𝐼                                                                 …  7 . 



For each box Λ𝑖 , 𝐷𝐼 = 𝐷𝐹 for a uniform distribution. When 𝐷𝐼 < 𝐷𝐹 , the measure 

itself may be called fractal since it is singular with respect to the uniform distribution, 

𝑃∗ =
1

𝑁(𝑙)
∝ 𝑙𝐷𝐹  

For each box Λ𝑖 .Thus, 
𝑃𝑖

𝑃𝑖
∗ can diverge in the limit of vanishing 𝑙. 

Simulations of the decision-information scaling yields, 

 𝑃𝑖 𝑙 
𝑞 ≡  𝑃𝑖 𝑙 

𝑞+1

𝑁(𝑙)

𝑖=1

∝ 𝑙𝑞.𝑑𝑞+1                                               …  8 . 

The 𝑑𝑞  are the Renyi dimensions which generalize the information dimension 

𝐷𝐼 = 𝑑1as well as the fractal dimension 𝐷𝐹 = 𝑑0 . If the 𝑑𝑞 ’s are not constant, 

anomalous scaling is to be employed and, as the order 𝑞 varies, the amount of the 

difference 𝐷𝑞 − 𝐷𝐹  gives a first rough measure of the heterogeneity of the 

probability distribution. 

The moment generic observables 𝐴 computed on scale 𝑙 is such that, 

 𝐴 𝑙 𝑞 ∝ 𝑙𝑔 𝑞                                             …  9  

Anomalous scaling, i.e., a non-linear shape of the function 𝑔(𝑞) is the more common 

situation, where one does not require unnecessarily to consider only a finite number of 



scaling components. In some cases, one may observe strong time variations in the 

degree of chaoticity. This intermittency phenomenon involves an anomalous scaling 

with respect to time-dilations identifying the parameter 𝑒−𝑡
 with the parameter 𝑙 used 

in spatial dialations of the decision space. A measure of the degree of intermittency 

requires the introduction of infinite sets of exponents which are analogous to the Renyi 

dimensions and can be related to a multifractal structure given by the dynamical system 

in the functional trajectory space. 

The Grassberger-Procaccia correlation dimension 𝜈 is defined by considering the 

scaling of the correlation integral, 

𝐶 𝑙 = lim
𝑀→∞

1

𝑀2   𝜃 (𝑙 −  𝑥𝑖 − 𝑥𝑗  )

𝑗≠𝑖𝑖

; 

where 𝜃 is the Heaviside step function and 𝐶 𝑙  is the percentage of pairs (𝑥𝑖 , 𝑥𝑗 ) 

with distance  𝑥𝑖 − 𝑥𝑗  ≤ 𝑙. 

In the limit 𝑙 → 0, 

𝐶 𝑙 ∝ 𝑙𝑣 . 

In general, 

𝑣 ≤ 𝐷𝐹 . 

 𝑣 is a more relevant scaling index than 𝐷𝐹  since it is related to the point probability 

distribution on the attractor, while 𝐷𝐹  cannot take into account an eventual 

homogeneity in the visit frequencies. 



Let us define the number of points in an 𝐹-dimensional spherical representation of the 

decision space, with radius 𝑙 and centre at 𝑥𝑖  as, 

𝑛𝑖 𝑙 = lim
𝑀→∞

1

𝑀 − 1
 𝜃 (𝑙

𝑗 ≠𝑖

−  𝑥𝑖 − 𝑥𝑗  )                                        …  10 . 

 

We must introduce a whole set of generalized scaling exponents 

 𝑛 𝑙 𝑞 = lim
𝑀→∞

1

𝑀
 𝑛𝑖 𝑙 

𝑞 ∝ 𝑙∅(𝑞)

𝑀

𝑖=1

                                            

where ∅ 1 = 𝜈. 

Considering a uniform partition of decision space into boxes of size 𝑙 it is convenient to 

introduce the probability 𝑃𝐾(𝑙) that a point 𝑥𝑖  falls into the 𝐾𝑡𝑕
 box. In this case, 

the moments of 𝑃𝐾  can be estimated by summing up the boxes, 

 𝑝 𝑙 𝑞 =  𝑃𝐾 𝑙 𝑞+1

𝑁 𝑙 

𝐾=1

∝ 𝑙𝑞.𝑑𝑞+1                  … (11) 

A moment of reflection shows: 

∅  𝑞 𝑞 = 𝑑𝑞+1  



because of the ergodicity 𝑛𝑖 𝑙 ~𝑃𝐾 𝑙 , if  𝑥𝑖  belongs to the 𝐾𝑡𝑕
 box and since one 

can use either an ‘ensemble’ average (weighted sum over the boxes) or a ‘temporal’ 

average (sum of the time evolution 𝑥(𝑙)). 

The fractal dimension for 𝑞 = −1 is, 

𝐷𝐹 = 𝑑0 = −∅ −1                                                            

while the correlation dimension is, 

𝜈 = 𝑑2 = ∅ 1                                                                    

According to the Theory of Physical Abstraction, each point 𝑥 should have the same 

singularity structure, 

Δ𝑉𝑥 𝑟 ∝ 𝑟𝑕 , 𝑕 =
1

3
                                                           … (12) 

In other words 𝜀 𝑥  tends to be smoothly distributed in a region of 𝑅3
. The eddy 

turn-over time and the error deviation per unit decision at scale 𝑟 are defined as, 

𝑡 𝑟 ~
𝑟

Δ𝑉 𝑟 
                                                               … (13) 

and 

𝐸 𝑟 ~Δ𝑉 𝑟 2                                                              … (14) 



The transfer rate of error deviation per unit decision from the eddy at scale 𝑟 to smaller 

eddies is then given by 

𝜀  𝑟 =
𝐸(𝑟)

𝑡(𝑟)
~

Δ𝑉 𝑟 3

𝑟
                                                     … (15) 

Since 

𝜀𝑥 𝑟 =  
1

𝑟3
  𝜀 𝑦 𝑑3𝑦

Λ𝑥(𝑟)

, 

[Λ𝑥(𝑟) is a cube of edge 𝑟 around 𝑥 we have, 

 𝜀 𝑦 𝑑3𝑦

Λ𝑥(𝑟)

~𝑟3                                                          … (16) 

 𝑟 → 0 means 𝑟 in the initial range and the regions containing a large part of 𝜀 𝑥  

are a physical approximation of a fractal structure. In this 𝛽 −model approach, 

 𝜀 𝑦 𝑑3𝑦

Λ𝑥(𝑟)

∝  
𝑟𝐷𝐹        𝑖𝑓 𝑥 ∈ 𝑆
0           𝑖𝑓 𝑥 ∉ 𝑆

   

in an equivalent way 

Δ𝑉𝑥 𝑟 ∝  
𝑟𝑕        𝑖𝑓 𝑥 ∈ 𝑆

0           𝑖𝑓 𝑥 ∉ 𝑆;
  

where 𝑕 = (𝐷𝐹 − 2)/3 

    At scale 𝑟, there is only a fraction, 



𝑟3−𝐷𝐹 ∝
𝑟−𝐷𝐹

𝑟−3  

occupied by active eddies. 

The transfer error deviation from the eddy at scale 𝑙𝑛  (active eddy) to the scale 𝑙𝑛+1  is  

𝜀𝑛 ∝
𝜈𝑛

3

𝑙𝑛
. 

Since, the error deviation transfer rate is constant in the cascade process, for 𝛽 =

2𝐷𝐹−3
, we have, 

𝜀𝑛 = 𝛽𝜀𝑛+1 ,
𝜈𝑛

3

𝑙𝑛
= 𝛽

𝜈𝑛+1
3

𝑙𝑛+1
                                                    … (17) 

Iterating, we have, 

𝜈𝑛 ∝ 𝑙𝑛
1 3  𝑙𝑛 𝑙0  

𝐷𝐹−3
3                                                            

Each eddy at scale 𝑙𝑛  is divided into eddies of scale 𝑙𝑛+1  in such a way that the 

energy transfer for a fraction 𝛽 of eddies increases by a factor 
1

𝛽
, while it becomes zero 

for the other ones. 

In order to generalize the 𝛽-model, we have at scale 𝑙𝑛 , 𝑁𝑛  active eddies. Each eddy 

𝑙𝑛 𝑘  generates active eddies covering a fraction of volume 𝛽𝑛+1(𝑘). 𝑘 labels the 

mother-eddy and 𝑘 = 1, … , 𝑁𝑛 . 



Since the rate of energy transfer is constant among mother-eddies and their effects, we 

have, 

𝜈𝑛 𝑘 3

𝑙𝑛
= 𝛽𝑛+1 𝑘 

𝜈𝑛+1 𝑘 3

𝑙𝑛+1
                                                 … (18) 

The iteration of 𝜈𝑛  gives an eddy generated by a particular history of 

fragmentations[𝛽1 , … , 𝛽𝑛 ], such that, 

𝜈𝑛 ∝ 𝑙𝑛
1 3 

  𝛽𝑖

𝑛

𝑖=1

 

−1/3

                                                      … (19) 

    The fraction of volume occupied by an eddy generated by  𝛽1 , … , 𝛽𝑛   is 

 𝛽𝑖
𝑛
𝑖=1 , such that, 

  ∆𝑉 𝑙𝑛  
𝑃 ∝ 𝑙𝑛

𝑃/3
  𝑑𝛽𝑖

𝑛

𝑖=1

 𝛽𝑖
 1−𝑃 3  

𝑃 𝛽1 , … , 𝛽𝑛                        

 

With no correlation among different steps of the fragmentation, i.e., with 

𝑃 𝛽1 , … , 𝛽𝑛 =  𝑃(𝛽𝑖)
𝑛
𝑖=1 , the exponent concerned, 

𝜁𝑃 =
𝑃

3
− ln2 𝛽

 1−𝑃 3                                                        … (20) 



For a given transport of decision, between an initial and a final point, let the trajectory 

of the initial point 𝑥𝑜 = 𝑥(𝑜) be denoted by, 

𝑥 𝑡 = 𝑓𝑡(𝑥𝑜) 

Expanding 𝑓𝑡(𝑥𝑜 + 𝛿𝑥𝑜) to linear order, the evolution of the distance to a 

neighbouring trajectory 𝑥𝑖(𝑡) + 𝛿𝑥𝑖(𝑡) is given by the Jacobian matrix 𝐽, 

𝛿𝑥𝑖 𝑡 =  𝐽𝑡(𝑥𝑜)𝑖𝑗

𝑑

𝑗 =1

 𝛿𝑥𝑜𝑗 , 

𝐽𝑡(𝑥𝑜)𝑖𝑗 =
𝛿𝑥𝑖 𝑡 

𝛿𝑥𝑜𝑗
                                                           . . . (21) 

A trajectory of a decision as moving on a flat surface, as is the simplest decision space (it 

being a plane), is specified by two position coordinates and the direction of motion. The 

Jacobian matrix describes the deformation of an infinitesimal neighborhood of 

𝑥 𝑡 along the transport. Its eigenvectors and eigenvalues give the directions and the 

corresponding rates of expansion or contraction. The trajectories that start out in an 

infinitesimal neighborhood separate along the unstable directions (those whose 

eigenvalues are greater than unity in magnitude), approach each other along the stable 

directions (those whose eigenvalues are less than unity in magnitude), and maintain 

their distance along the marginal directions (those whose eigenvalues equal unity in 

magnitude). 

Holding the hyperbolicity assumption (i.e., for large 𝑛 the prefactors 𝑎𝑖 , reflecting the 

overall size of the system, are overwhelmed by the exponential growth of the unstable 



eigenvalues 𝛬𝑖 , and may thus be neglected), to be justified, we may replace the 

magnitude of the area of the 𝑖th strip |𝐵𝑖| by 
1

|𝛬𝑖|
 and consider the sum, 

⌈𝑛 =   
1

 𝛬𝑖 

𝑛

𝑖

; 

where the sum goes over all periodic points of period 𝑛. We now define a generating 

function for sums over all periodic orbits of all lengths, 

⌈𝑧 =  ⌈𝑛 𝑧𝑛

∞

𝑛=1

                                                               . . . (22) 

For large 𝑛, the 𝑛th level sum tends to the limit ⌈𝑛 → 𝑒−𝑛γ
, so the escape rate 𝛾 is 

determined by the smallest 𝑧 =  𝑒𝛾
 for which equation (22) diverges, 

⌈𝑧 ≈   𝑧𝑒−𝛾 𝑛
∞

𝑛=1

=
𝑧𝑒−𝛾

1 − 𝑧𝑒−𝛾                                                 . . . (23) 

Making an analogy to the Riemann zeta-function, for periodic orbit cycles, 

⌈𝑧 = −𝑧
𝑑

𝑑𝑥
 ln 1 − 𝑡𝑝 ;

𝑝

 

⌈(𝑧) is a logarithmic derivative of the infinite product 



1

𝜁(𝑧)
=   1 − 𝑡𝑝 ,

𝑝

𝑡𝑝 =
𝑧𝑛𝑝

|𝛬𝑝 |
                                    … (24) 

This represents the dynamical zeta function for the escape rate of the trajectories of 

decision-transport. 

Abstraction says that points inside the decision space cluster to form decision directions 

of a given property, at the desired scaling-ratio. Let us consider one such system of 

decision making, inside which its constituent points have the tendency to form clusters.  

 

Prediction: 

In such transactions, the family of evolution-maps 𝑓𝑡
 form a group. The evolution rule 

𝑓𝑡
 is a family of mappings of strips of transport 𝐵, that we may consider, such that, 

1) 𝑓0 𝑥 = 𝑥 

2) 𝑓𝑡[𝑓𝑡 ′
 𝑥 ] = 𝑓𝑡+𝑡 ′

(𝑥) 

3) (𝑥, 𝑡) → 𝑓𝑡(𝑥) from 𝐵 × 𝑅 into 𝐵 is continuous; 

where 𝑡 represents a time interval and 𝑡 ∈ 𝑅. 

For infinitesimal times, we may write the trajectory of a given transaction as, 

𝑥 𝑡 + 𝜏 = 𝑓𝑡+𝜏 𝑥0  

                                                         = 𝑓[𝑓 𝑥0, 𝑡 , 𝜏]               … (25) 



The time derivative of this trajectory at point 𝑥(𝑡) is, 

 𝑑𝑥

𝑑𝜏
 
𝜏=0

=  𝜕𝜏𝑓[𝑓 𝑥0 , 𝑡 , 𝜏] 𝜏=0 = 𝑥  𝑡                                … (26) 

 

The vector field is a generalized velocity field, 

𝑥  𝑡 = 𝑣 𝑥                                                                            

If 𝑥𝑞  represents an equilibrium point, the trajectory remains stuck at 𝑥𝑞  forever. 

Otherwise, the trajectory passing through 𝑥0  at time 𝑡 = 0 may be obtained by, 

𝑥 𝑡 = 𝑓𝑡 𝑥0 = 𝑥0 +  𝑑𝜏 𝑣 𝑥 𝜏  ,

𝑡

0

𝑥 0 

= 𝑥0                                          … (27) 

The Euler integrator, which advances the trajectory by 𝛿𝜏 × velocity at each time 

step is, 

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 𝑥 𝛿𝜏. 

This may be used to integrate the equations of the dynamics concerned. 

In our decision/perception plane a fuzzy set LF  may be defined as: 

LF : L→[0,1],                                                                                                        …(28). 



where L is a domain of elements (universe of discourse).  

For every particular value of a variable Li  ∈ L the degree of membership to fuzzy set 

LF  is LF  (Li ). 

 

Equation (28) describes how we can incorporate a fuzzy complex number or FCN in our 

decision/perception plane. 

LF  in the universe of discourse L is defined by the complex membership grade 

function 𝜇LF (Li ). The complex membership grade function or CMG is defined as: 

𝜇LF(Li)= LF(Li)𝑒
𝑖𝑐                                                                                …(29). 

The Cartesian representation of CMG for 𝜇LF(Li)= 𝜇LF(𝑐𝑖+i𝑟𝑖) is: 

𝜇(𝑐𝑖 , 𝑟𝑖)= 𝜇(𝑐𝑖)+i𝑟𝑖                                                                              …(30) 

And, the polar representation is: 

𝑐𝑖𝑒
𝑖𝑠𝑟                                                                                                     …(31), 

the scaling factor s being in the interval (0,2𝜋]. 

The degree of fulfillment or DOF of any given proposition follows CMG and lies in the 

interval [0,1]. 



 

According to the definition of transformation of coordinates: 

𝜇(𝑐𝑖 , 𝑟𝑖) 𝑐𝑖𝑒
𝑖𝑠𝑟   

The operators ∧ and ∨ defining t-norm and s-norm respectively and Li  being the set 

of fuzzy numbers concerned, the fuzzy set of a function of  Li  has the membership 

function: 

 

𝜇 𝑐𝑖
′ , 𝑟𝑖

′ =  [𝜇(𝑐1 , 𝑟1𝑐𝑖
′ =𝑓(Li ) )  𝜇(𝑐2 , 𝑟2)  𝜇(𝑐3 , 𝑟3)… 𝜇(𝑐𝑛 , 𝑟𝑛)]      

Using Lyapunov exponents for the measure L, and replacing 2𝑐  
𝜆

𝐷
  by a 

quantity′𝜏′, we have: 

𝑑

𝑑𝜏
𝑓𝑛 𝐿 =

𝛿𝑛

𝛿𝑜
 

i.e., 

𝛿𝑛

𝛿𝑜
=  𝑓′ (𝐿𝑖)

𝑛
𝑖=1                                                                                …(32). 

 

𝑏 =
1

𝑛
log𝑒  

𝛿𝑛

𝛿𝑜
  

i.e., 

𝑏 =
1

𝑛
 log𝑒  𝑓

′ (𝐿𝑖) 
𝑛−1
𝑖=1                                                                …(33). 



 

where 𝑏 is a constant (the local slope of all possible measures), and 

 

Ψ = lim𝑛→∞
1

𝑛
 log𝑒  𝑓

′(𝐿𝑖) 
𝑛−1
𝑖=0                                           …(34). 

 

where Ψ is a constant. 

 

Distribution: 

Signal processing time in abstract fuzzy optimization seems to follow a Gaussian curve.  

 

 

Fig. 1: A Gaussian Curve. 

 

For such a curve, if the height of the peak is R, the mean is μ and the standard 

deviation σ, then, 

𝑓 𝐶,μ,σ =
1

σ 2𝛑
e
−

(𝑥−μ)2

2σ2 =
1

σ 2𝛑
e
−

𝐶2

2σ2  

μ being taken to be zero in the super-complex plane of decision making. 



For the simplest case of a two dimensional decision plane, 

𝐿𝑖 =
1

2𝛑σ2 e
−

(𝐶2+R2)
2σ2                 …  35 . 

 

A two-dimensional elliptical Gaussian function for such a case, may be expressed as: 

𝑓 𝐶, R = Lie
−𝑎(𝐶−C0)2+2𝑏 𝐶−𝐶0  𝑅−𝑅0 +𝑐(𝑅−R0)2

 

where a, b and c forms a positive definite matrix as: 

 
𝑎 𝑏
𝑏 𝑐

    

A measure for precision in any given direction of decision making is given by the covariance matrix, 

𝑉 =
𝜎2

 2𝑃𝐶𝑃
2

 
 
 
 
 
 

3

2𝑐
0

−1

𝑎

0
2𝑐

𝑎2
0

−1

𝑎
0

2𝑐

𝑎2  
 
 
 
 
 

 

 

Where, the precision of the system is represented by P. 

Depending upon the value of precision involved, the number of activated states follows a sigmoid 

distribution: 

𝑛 𝑡 =
1

1 + 𝑒−𝑡  

 



Conclusion: 

Natural processes, including decision making follows non-linear pathways that give 

rise to emergence phenomena. Patterns arise in the whole that cannot be wholly 

attributed to the sum of the parts. The whole decision making process is way more than 

the sum of the individual processes involved. From the Theory of Abstraction, we know 

how information energy changes with changes in the scaling ratio. The same can be 

observed in the decision making process too. The difference in dissipation energy 

information (and as such deviation in a given direction of decision making), which 

tends to infinity as the number of constituent points inside it tends to infinity. In this 

respect, at large enough scaling-ratios, the universe seems to work in a similar way as 

the brain does. 
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