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ABSTRACT The development of connected and automated vehicles (CAVs) presents a great opportunity to
extend the current range of vehicle vision, by gathering information outside of its sensors. Two main sources
could be aggregated for this extended perception; vehicles making use of vehicle-to-vehicle communication
(V2V), and infrastructure using vehicle-to-infrastructure communication (V2I). In this paper, we focus on
the infrastructure side and make the case for low-latency obstacle mapping using V2I communication.
A map management framework is proposed, which allows vehicles to broadcast and subscribe to traffic
information-related messages using the Message Queuing Telemetry Transport (MQTT) protocol. This
framework makes use of our novel candidate/employed map (C/EM) model for the real-time updating of
obstacles broadcast by individual vehicles. This solution has been implemented and tested using a scenario
that contains real and simulated CAVs tasked with doing lane change and braking maneuvers. As a result, the
simulated vehicle can optimize its trajectory planning based on information which could not be observed
by its sensor suite but is instead received from the presented map-management module, while remaining
capable of performing the maneuvers in an automated manner.

INDEX TERMS Connected and Automated Vehicles (CAVs), Dynamic Obstacle Mapping, External
Perception, Real-Time Trajectory Planning, Object Avoidance, Vehicle-to-Network Communication (V2N)

I. INTRODUCTION

CONNECTED and Automated Vehicles (CAVs) have
been met with an increasing amount of interest in the

research of automated vehicles (AVs) lately. Their ability to
communicate allows them to become more robust towards
hard problems faced by AVs, where a correct assessment of
traffic situations is safety critical, such as navigation in con-
gested areas, interactions with emergency vehicles, accidents
in the road, among others. This resilience is – amongst other
causes – the result of the aggregating information supplied
by all vehicles. Such swarm-like networks have shown strong
efficiency for problem solving in traffic automation [1].

The cornerstone of a functional and effective information
sharing framework between individual CAVs is a robust
communication network. In the automotive world, these tech-
nologies have been categorized depending on the agents in-
volved; Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(V2I), and Vehicle-to-Network (V2N) communication have
all been employed to enhance vehicle capabilities and to

improve safety in the road. These technologies have been
focused on the development of standardized services, and
generally make use of specialized hardware. Alongside these
developments, vehicles with their complex networks, in-
creasing connectivity, sensors, and actuators, could also be
considered, Internet-of-Things (IoT) entities [2].

IoT technologies and services have been on the rise in re-
cent years, and a key solution for these has been the develop-
ment of low-latency, low-overhead communication schemes
and wide internet coverage focusing on connected homes,
connected vehicles and smart cities. Among the established
solutions available for IoT communication, MQTT is one
of the most widely deployed protocols. MQTT provides a
network for message delivery between information sources
– i.e., publishers –, and users – i.e., subscribers – through a
broker entity. In the case of CAVs, this channel of commu-
nication can be leveraged to exchange telemetry information
about the vehicle or driver, to monitor fleets of vehicles in the
case of vehicle renting, to exchange high level control inputs
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such as changing automated system parameters remotely, or
to provide channels for cooperation/perception in leveraging
computational load to remote servers; as the one proposed in
the below paper [3].

One particularly important bundle of information that
CAVs must receive is a map of their surroundings, which
can be used for locating themselves and navigating. Use-
cases for maps include the planning of trajectories prior to
departure and during the maneuvering of these vehicles in
complex environments, which often enclose other vehicles,
pedestrians, and diverse obstacles. Currently, the way AVs
navigate in their environments is mostly performed by in-
ternally adding real-time information to static maps – as
the name suggests, these are not kept up-to-date and have
low refresh frequencies. The mapping process is usually
characterized by latencies in the order of years, primarily
because of its costliness and resource-demanding nature. The
dynamic component of the internal maps of the vehicles is
therefore concatenated on-the-fly using their onboard sensors
(LIDARs, cameras, etc.) [4].

In recent years, a compelling trend appeared in map-
ping for automated vehicle development; Namely, the use
of crowdsourced data acquisition solutions. This paradigm
provides a solution for high-frequency database updating.
The process involves numerous data sources, which can pro-
vide raw environmental information for map construction [5].
This solution, however, has only seen scrutiny in the realm
of non-connected automated agents. We argue that having
access to frequently updated maps containing the real-time
location of obstacles and other items enables more robust
and substantially more effective trajectory planning for auto-
mated vehicles. In addition, crowdsourced data contribution
facilitates the functionality of a mapping framework, which
is able to provide the required information for connected
vehicles in real time during maneuvering.

The intersection of the technologies previously outlined
represents an opportunity to deploy a mapping solution into
an IoT network for vehicles. The benefits of and ease of
deployment of an IoT network, make it a real alternative to
leverage the safety improvements of V2X communication. In
addition to this, crowdsourced mapping is a great fit for these
type of networks, leveraging information from all agents
involved in the communication and improving reliability of
the information provided, which in turn is vital for vehicle
assessment of the road situation and decision making.

This paper proposes a novel candidate/employed map
(C/EM) management module, that calculates map updates
(such as obstacles, vehicles, etc) and shares them through
an MQTT network. To do so, this method uses real-time
data from physical and simulated CAVs through an MQTT
network, enabling a crowdsourcing-like framework. As a
result, our solution provides a real-time updated map to
CAVs, which is utilized in their internal trajectory planner
for navigation. Finally, the individual vehicles are enabled to
update their trajectories and switch between maneuvers based
on the real-time-updated central maps on the MQTT-shared

data. This framework was tested with lane change maneuvers
specifically, however, it can be easily scaled and extrapolated
to other maneuvers.

Our contributions in this article are:
• We introduce a novel candidate/employed map manage-

ment solution that enables dynamic mapping of obsta-
cles in a central database based on information supplied
by CAV sensors.

• We show that the presented solution makes use of V2N
communication over the MQTT protocol providing a
novel crowdmapping-based approach for data acquisi-
tion and low-latency map updating and publishing.

• We implement the real-time map management frame-
work and integrate it with the trajectory optimization
and maneuver planning control units of CAVs.

This article is structured as follows: First, we present the
relevant literature, followed by a description of the automated
driving framework utilized in this work. We then introduce
our novel framework enabling real-time map updates and
then provide insights on its integration with the vehicle net-
work. Finally, we present and evaluate the results of testing
the functionality of the combined system and formulate our
conclusions.

A. LITERATURE REVIEW
In this section, we are introducing the state-of-the-art in
relation to the research and results presented in the paper.
First, we introduce works referring to the main maneuver
presented in the article, the lane change. Secondly, the dif-
ferent automated vehicle trajectory planning methods are
reviewed and finally, the methodology of the map creation
and updating techniques are summarized.

1) Lane change
Automated Lane Change maneuvers can be tackled in three
steps [6]. The first one is in the decision-making aspect,
where the environmental variables (vehicles, obstacles, road
shape, etc.) are taken into account in order to decide whether
the lane change can be executed or not. The second step is
more closely related to the trajectory planning aspect, where
the trajectory followed by the vehicle is planned ahead in
order to carry out a safe, feasible lane change. The final
step is associated with path tracking, which aims to follow
a predefined trajectory. From these steps, the first two are the
points of interest in this paper.

Regarding the decision-making aspect there are numerous
works using methods such as Search Algorithm [7], Finite
State Machine (FSM) [8], Deep Reinforcement Learning [9],
Game Theory [10], among others. Whereas, for the second
step there are works using B-splines-curves [11], Bézier
curves [12], further described in the following sub-section.
All these works assume vehicles are not connected, relying
only on their onboard sensors. Meanwhile, works such as
[13], [14] or [15] use communications to coordinate vehicles
lane changes in order to optimize the throughput of the road.
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2) Trajectory planning for automated vehicles
Trajectory planning has been widely researched in the liter-
ature since the early stages of CAV development. It usually
considers the dynamic and/or kinematic models of the vehi-
cle to go from a starting position to a final one [16]. The most
relevant techniques are listed below.

Numerical Optimization
Numerical optimization techniques aim to minimize or max-
imize a function subject to different constrained variables. In
the case of trajectory planning, this method is used to smooth
previously calculated trajectories while taking into account
the vehicle’s kinematic. The main approaches are: Function
Optimization [17]–[19] and Model Predictive Methods [20],
[21], [22]. However, these methods have high computational
costs, due to the optimization process, that takes place at each
motion state, and depend on global waypoints [16], [23].

Graph-Based
Graph-based techniques search for the best paths between the
car’s current state and a goal state in a state space represented
as a graph [16], [23]. These techniques discretize the search
space imposing a graph on an occupancy grid map with
centers of cells acting as neighbors in the search graph [23].
The Graph-Based techniques can be used in both Global
Route Planning and Local Trajectory Planning. However,
in this study, only the ones used in trajectory planning are
considered, being: State Lattice [24]–[26], Elastic Band
[27]–[29], and A-star [23]. However, these methods require a
lot of memory and cause heavy computational costs, leading
to low planning efficiency [30].

Geometry-based
The geometry-based techniques interpolate a set of previ-
ously defined waypoints to build a smooth trajectory that con-
siders the vehicle’s kinematics and dynamics, alongside the
passenger‘s comfort [16], [23]. The most common methods
are: clothoid curves [31], [32] and Bézier curves [33], [34].
This method presents lower computational costs than the two
mentioned before. However, the clothoid curves still have a
significant computational cost due to the integration process,
as opposed to the Bézier curves that have lower computa-
tional cost, because the curvature is defined by control points.

3) Maps for automated vehicle navigation
A high-resolution map of the environment is required by
most vehicles with higher levels of autonomy in order to
ensure their safe and successful operation. In the literature,
the map layers that can be used for this purpose are listed as
follows [35]:

• Road graph layer, which contains basic structural infor-
mation about roads – e.g., number of lanes, intersec-
tions, and road segments.

• Lane-level maps containing information on lane mark-
ings and road segments with sub-centimeter accuracy.

These maps are mostly based on detailed information
collected from roads by road-infrastructure maintenance
organizations.

• High Definition (HD) maps containing high-resolution
features for road identification: Geometric spatial maps
with labeled elements of road infrastructure, built-up of
grouped and labeled points in 3D space. The raw data
used in this case are unstructured point clouds, collected
predominantly by costly active sensors – e.g., Light
detection and ranging units (LIDARs) – that are then
processed and labeled.

Methods that enable the creation and management of such
maps are introduced in the following section. For clarity,
these methods are also listed in Table 1.

Crowdsourced maps
Crowdsourcing is a social computing paradigm that appeared
during the late 2000s. It is defined as a method for solving
tasks, which require many resources to be used that are not
necessary to be in a geographically or temporally joined
environment [36].

Gathering data for map-related usage has also seen
scrutiny in the literature; using crowdsourced data for achiev-
ing this goal is often referred to as Volunteered Geographical
Information (VGI) [37], [38]. Arguably, the most widely
spread VGI platform is OpenStreetMap (OSM) [39], which is
an online platform that became an industry standard for VGI
schemes in the past decade.

Crowdmapping, a subcategory of VGI applications, has
appeared in the technical literature in the last few years
and has shown great usability for traffic developments, such
as passenger or freight vehicle automation. For self-driving
vehicles, it is crucial to sense and interpret their surroundings
correctly, in order to recognize their pose – i.e., location and
orientation – and the traffic situation in their environment.
As a result, the use of crowdmapping has appeared in sev-
eral research endeavors [5], [40], [41] as well as industrial
applications (Waymo [42], Lyft [43], Uber [44], and Google
[45]).

Map updating for low-latency maps
One key problem with maps used for automated vehicle con-
trol, and the decision-making algorithms contained therein,
is the high latency with regard to the updates these maps
receive [46]. The navigation systems of current AVs augment
the built-in static maps with real-time sensed obstacles from
their environment during movement [47]. As a possible so-
lution, CAVs have been developed to be able to share their
individual status with each other. A number of works have
been published in the literature that tackle the problem of
vehicle-to-infrastructure (V2I) or vehicle-to-vehicle (V2V)
communication transfer times [48], [49] to optimize data
sharing rates and as a result improve traffic flow.

Numerous methods have been published for optimized
object detection and avoidance for singular – i.e., non-
connected – automated cars. Occupancy grid mapping al-
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gorithms exist for this domain, wherein the environment of
a vehicle is divided into small regions, and the probability
of it being taken up by an obstacle is constantly updated
[50], [51]. Many articles show solutions for mapping dy-
namic regions in maps via different methods: using hysteretic
validation of dynamic obstacle hypotheses [52], using map-
decay [53], and particle filtering based on occupancy grids
[54].

However, to the best of our knowledge, no work has
been published so far that scrutinizes the online mapping of
dynamic obstacles making use of the collaborating nature of
connected and cooperating cars.

External perception
External perception allows vehicles to gain knowledge about
the existence and characteristics of objects, which are oc-
cluded or outside their sensors range. The foundation of this
paradigm is that the knowledge base of individual vehicles
can be increased and augmented using the information sup-
plied by sensors of other vehicles or infrastructural elements
(e.g., traffic signs, bus stops).

The use of external data can result in progress the smooth-
ness of the navigation of automated vehicles as well as
increasing road safety [55]. Müller et al. [56] extended the
situational awareness of automated vehicles using cameras
mounted on top of lampposts. They used the environmental
model created via adopting both internally and externally
obtained data to optimize and raise the safety levels of the
complex maneuver of automated merging at an intersection.

Currently, to the best of our knowledge, there are no solu-
tions that make use of crowdsourcing-based data acquisition
for dynamic obstacle mapping using the external perception-
like V2N approach.

II. AUTOMATED DRIVING FRAMEWORK
In this section, the automated driving (AD) framework used
to test our approach is described, as well as the trajectory
planning method used for the lane change maneuver. The
AD framework is based on the six blocks architecture defined
previously in [57], [58], consisting of the following compo-
nents:

1) Acquisition: This module is in charge of obtaining
the information coming through the different sensors
(LIDAR, Camera, GNSS, Laser, etc) and sending it to
the perception module.

2) Perception: This module interprets these data and gen-
erates a representation of the environment and the
surrounding obstacles. Furthermore, it provides vehicle
positioning.

3) Communication: This module is in charge of obtaining
and processing the information coming from other
vehicles (V2V), infrastructure (V2I), and/or the cloud
(V2N).

4) Decision: Using the information from the perception
and communication modules, this module generates a

FIGURE 1: Automated Driving six block architecture dia-
gram.

trajectory followed by the vehicle. It is subdivided into
a global, behavioral, and local planner.

5) Control: This module is subdivided into a Longitudinal
module, which produces throttle and brake signals in
order to follow a speed reference and a Lateral module
that produces steering signals to follow the trajectory.

6) Actuation: this block interprets the references pro-
duced by the control block, so real actuators or sim-
ulated vehicle models can read these signals.

The six-block architecture framework is shown in Figure 1.
As the decision module is of key importance in relation to the
main subject of this study, it is further explained below.

A. DECISION MODULE
As previously mentioned, the decision module is divided into
3 blocks:

• Global Planner: in this block, the first representation
of a trajectory is carried out using a predefined OSM
map. This definition follows a simplified version of
the Lanelet2 standard [59], which is used in an A-star
algorithm to find the optimal trajectory from point A to
point B. Once this trajectory is found, a drivable space
is defined containing the lanes in which the vehicle has
to get through to reach its destination [60].

• Behavioral Planner: the decision-making is imple-
mented in this block. To do so, a Finite State Machine
(FSM) is defined with possible maneuvers that can
be executed during the driving process. As has been
mentioned, the maneuver analyzed in this work is a lane
change, so, two states are possible: keep lane (the base
state that is in charge of the basic driving task) and lane
change, which will execute depending on environmental
variables.

• Local Planner: with the information of the drivable
space already supervised by the behavioral planner.
This block generates a safe, smooth, and continuous
trajectory with a speed profile to be tracked by the
vehicle controllers. This trajectory is derived from the
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TABLE 1: Methods for automated vehicle navigation-aiding map management

Classification Method Year
published

Short description Disadvantages

Crowdsourced
maps

OSM [39] 2008 A crowdsourced platform for VGI data gather-
ing and visualization

Offers no support for low-latency
map updates

Mapillary Vistas [40] 2017 Crowdsourced dataset of human-annotated se-
mantic segmented images collected across 6
continents

Dataset is static that offers no solution
for low-latency data updating

Mapillary Depth [41] 2020 Crowdsourced dataset of street-level images
with automatically generated depth informa-
tion collected across 6 continents

Dataset is static that offers no solution
for low-latency data updating

CrowdMapping [5] 2019 Our previous work describing the basis of
a platform for crowdsourcing-based VGI for
real-time crowdsourced data gathering and
management

Offers no solution for real-time com-
munication of mapped data between
connected vehicles

Google [45]
Uber [44]
Waymo [42]
Lyft [43]

2010
2018
2020
2021

Openly accessible datasets and services re-
leased by commercial players

Internally sourced data acquisition &
offers no open solution for data up-
dating

Low-latency
map updates

Darms et al. [52] 2009 An object mapping and tracking algorithm
based on hysteretic validation of dynamic ob-
stacle hypotheses

Requires inputs from several onboard
sensors & offers no solution for data
sharing between connected vehicles

Danescu et al. [54] 2011 An object tracking method using a particle
filter-based occupancy updating method

Requires birds-eye view images as
input & offers no solution for data
sharing between connected vehicles

Veronese et al. [50] 2016 A localization method for autonomous vehicles
based on a particle filter-supported 2D occu-
pancy grid

Offers no solution for data sharing
between connected vehicles

Teixeira et al. [53] 2018 A temporally corrected occupancy grid method
for obstacle mapping using map-decay for un-
observable regions of maps

Offers no solution for data sharing
between connected vehicles

β-SLAM [51] 2019 A simultaneous localization and mapping
(SLAM) method for autonomous vehicle posi-
tioning and navigation using occupancy grids

Offers no solution for data sharing
between connected vehicles

External
perception

Müller et al. [56] 2022 A method for extending the situational aware-
ness of connected vehicles using externally
sensed obstacles via cameras mounted on top
of lampposts

Requires special sensors mounted on
infrastructure elements – i.e., lamp-
posts – & takes no data directly from
other connected vehicles

Bézier curves approaches presented in previous works
[61] [62].

B. LANE CHANGE DEVELOPMENT
The first step in the maneuver is the behavioral planner FSM
and the second step is the Bézier local planner. As it can be
seen in Figure 2, the FSM states considered for this work, due
to the maneuver analyzed, are the Lane Change and the Keep
Lane. To go to the Lane change state there are three possible
ways:

1) An obstacle is detected in the trajectory of the vehicle.
2) The user decides to change the lane.
3) The lane came to an end or it is closed.

Whereas to go from the lane change state to the keep lane:
1) The lane change is finished.
2) The lane change is aborted.
This work’s main case study is when an obstacle is de-

tected in the trajectory.
The second step is the generation of the smooth trajectory

used to change lanes. To do so, the work done by Lattarulo
et al. [63] was followed, in which different configurations of
Bézier parametric curves are defined to design trajectories
for different road components and maneuvers such as lane
change.

III. REAL-TIME MAP UPDATES
In this section, our novel C/EM scenario is explained. First,
we give an overview of the mapping setup, then provide a
more in-depth explanation of the mapping algorithm.

A. MAPPING SETUP
Our aim with the mapping framework is to supply the dynam-
ically updated map through the MQTT network: All vehicles
as well as the map management module are connected to the
MQTT broker (Figure 3).

The individual CAVs are publishing pre-processed ob-
servation data obtained by their LIDAR sensors over a
designated MQTT topic. The map management module is
subscribed to this topic and thus receives observations from
the vehicles. The information is then processed by the map
management module (see Section III-B). If necessary, the
updated map is published on another specified topic to the
MQTT broker. Since all vehicles are subscribed to this latter
topic, they immediately receive map updates when those get
published.

B. MAP MANAGEMENT
The map management module’s functionality is made pos-
sible using our novel C/EM scheme. In this approach, we
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FIGURE 2: State machine diagram for the Keep Lane and the
Lane Change states.

MQTT broker

Map 

management

ith Connected and

Autonomous Vehicle

Connected and 

Autonomous Vehicles

Legend

Publish / Subscribe observations

Publish / Subscribe map

Legend

Publish / Subscribe observations

Publish / Subscribe map

FIGURE 3: Communication scheme between the individual
CAVs, and the map management module. The communica-
tion is established via MQTT, therefore all actors shall be
connected to the MQTT broker as clients, and publish or
subscribe to the same topics.

define two separate maps that are constantly being updated:
the candidate map (Mc) and the employed map (Me). The
candidate map is kept private whereas the employed map is
published through the MQTT broker. The ap management
module has been implemented using Python as a program-
ming language.

The implemented software uses a state machine architec-
ture. The states are initialization, idle, update map, broadcast
map, and exit. During the initialization state, both the em-
ployed and the candidate maps are initialized as empty maps.

The functionality of the module following initialization
is demonstrated in Figure 4. Once the idle state is reached,

the map management module waits for new observations
published by the individual CAVs over the “obstacles” topic
of MQTT. When a new observation is received, the module
decodes it into separate items containing the following pa-
rameter fields:

• ObstacleId: an ID assigned to the obstacle by the sensor
perceiving it,

• Timestamp: A timestamp as a string in the format
“Y Y Y Y −MM −DDZhh : mm : ss.msT”.

• Type: One of {vehicle, pedestrian, other}.
• Latitude: latitude coordinate of the obstacle.
• Longitude: longitude coordinate of the obstacle.
• Speed: speed of the obstacle.
• Length: length of the obstacle.
• Width: width of the obstacle.
The payload published over MQTT also contains informa-

tion on the location of the sensor at the time of the obser-
vation – that is, the latitude and longitude coordinates of the
LIDAR sensor of the vehicle. This information is necessary
since the map management module calculates the observable
area prior to the map comparison steps shown in the top row
of Figure 4. Two observable maps are calculated as subsets
from the employed and candidate map respectively, whose
points are closer than a given radius – the default is 50 meters
– to the sensor position at time of observation. This results in
two sets of items: observable employed items and observable
candidate items (denoted by Pe, m, and Pc, m, respectively).

Once the observable map subsets are calculated, the newly
observed items are matched against the items in the ob-
servable subset of the employed map. Then, if any newly
observed obstacles remain unmatched, these are matched
against the observable subset of the candidate map. For the
process steps of matching, see Section III-B1. Finally, if an
observed item cannot be assigned to any previously mapped
(employed or candidate) item, it is added to the candidate
map.

Any obstacle or item listed in one of the maps has the
following additional parameters:

• Obstacle UID: a globally unique identifier for the item,
which is assigned to it as it first appears on either the
employed or the candidate map.

• Number of observations: a counter showing the amount
of times an item has been observed. This number is
incremented or decremented during the map update
steps (see Section III-B1).

• First timestamp: timestamp of the first observation of
the item.

• Latest timestamp: timestamp of the most recent obser-
vation of the item.

1) Map updating
The maps are updated during every iteration when a new
observation is received through MQTT (see 2nd and 3rd

columns of Figure 4). The updating process finds the poten-
tial pairings between the observable subset of a given map
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FIGURE 4: Process flow diagram of the map management module. The diagram shows the steps the module transitions through
after a new observation is received from a CAV over MQTT.

and the list of new observations. It does so by calculating the
cost matrix (C) using Gaussian Radial Basis Functions (RBF)
between the numerical parameters – i.e., latitude, longitude,
speed, length, and width – of the mapped and the newly
observed items. C is formulated as

C =



C0,0 C0,1 . . . C0,j . . . C0,m

C1,0 C1,1 . . . C1,j . . . C1,m

...
...

Ci,0 Ci,1
. . .

...
...

...
Cn,0 Cn,1 . . . Cn,m


. (1)

It is calculated between mapped items Pm
i , i = (1, 2, ..., n)

and newly observed items Po
j , j = (1, 2, ...,m). The ele-

ments of C are calculated as

Ci,j = βΦ(Pm
i ,P

o
j ,σ), (2)

where Φ is the Gaussian Radial Basis Function formulated as

Φ(Pm
i ,P

o
j ,σ) =

5∑
k=1

exp

(
(Pm

i k − P o
j k)

2

2σ2
k

)
. (3)

In the above equation, k ∈ {latitude, longitude, speed,
length, width}, and Pm

i and Po
j are the numerical parameters

of the observable obstacles:

Pm
i =


Pm
i latitude

Pm
i longitude

Pm
i speed

Pm
i length

Pm
i width

 , Po
j =


P o
j latitude

P o
j longitude

P o
j speed

P o
j length

P o
j width

 . (4)

In (3), σ is the array of variances corresponding with the
numerical parameters describing the individual items. It is
formulated as

σ =


σlatitude

σlongitude

σspeed

σlength

σwidth

 . (5)

Prior to matching the newly observed items with the
mapped ones, a thresholding step is carried out on the cost
matrix to forego any weak assignments. In Equation 2, β
denotes the masking function:

β =

{
1, if Φ(Pm

i ,P
o
j ,σ) ≥ T

0, otherwise
, (6)

where T is the preset assignment cost threshold value for the
map under inspection – i.e., employed or candidate. Once the
cost matrix is finalized, the obstacle matching is calculated
using the Hungarian algorithm [64]. This step is denoted by
H(C) in lines 5 and 14 of Algorithm 1.

After the matching is calculated, the numeric parameters
of the matched mapped items are updated using an average
filter.

Pm, new
matched =

αPm, old
matched +Po

matched

α+ 1
, (7)

where the subscript matched denotes that the averaging is
performed on the mapped and the newly observed obstacles
that have been assigned to each other by the Hungarian
algorithm. α is the number of observations parameter of
the mapped item. If a newly observed item is assigned to a
previously mapped item, then this counter is incremented.
However, if the item should have been observed – i.e., it
is in the observable subset of the map, but it has not been
matched with any one of the observed items – then the
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number of observations counter of the item is decremented.
For matched items, the latest timestamp parameter is also
updated to contain the timestamp of this new observation.

As shown in Figure 4, this assignment and updating
is first executed on the employed map, after which the
matched items are removed from the list of new observations.
Next, the same matching-updating-removing sequence is per-
formed for the candidate map. The remaining items in the
new observation are then added to the candidate map with
α = 1 – meaning that this item has only been observed once.

The final step of the map updating process is item pro-
motion and demotion, which is performed once all the items
of the new observation have either been assigned to an item
in one of the maps or added as a new item to the candidate
map. This is the process of transferring any strong candidate
items from the candidate map into the employed map (i.e.,
promotion) and any weak employed items from the employed
map to the candidate map (i.e., demotion). This is performed
via hysteretic thresholding to minimize type I. and type
II. errors (i.e., falsely demoted employed items and falsely
promoted candidate items, respectively) of the transferring
process. The threshold values for promotion and demotion
therefore must be carefully optimized.

Finally, when the new observation is fully processed, the
employed map must be published over MQTT by the map
management module, if any of the following conditions are
met:

• An item was promoted from the candidate map to the
employed map.

• An item was demoted from the employed map to the
candidate map.

• The threshold for map re-broadcast has been reached.
This threshold parameter contains two separate values –
one in the temporal, and one in the spatial dimension.
This clause is therefore activated, if the map has not
been published for a sufficiently long time period –
regardless of whether there have been any new obser-
vations published by CAVs – or if the spatial location –
i.e., longitude and latitude – of a listed item has changed
more then a preset value as a result of the parameter
updating shown in Equation 7.

The steps of a map management cycle are shown in Algo-
rithm 1.

IV. RESULTS AND DISCUSSIONS
In this section, the functionality of the map management
solution is presented using simulated observation broadcasts.
Then, the test scenario is described, taking into account the
platforms and procedures used. Furthermore, the results are
presented, and so is a discussion of them.

A. MAP MANAGEMENT MODULE
To test the functionality of the C/EM solution, a simulated
sequence of observations was presented to the system. The
candidate and the employed maps were compared using a
series of experiments.

Algorithm 1 Map management cycle on new observations
Input: Me,Mc,σ

1: Pe, m ← observable_subset(Me)

2: Pc, m ← observable_subset(Mc)

3: Po ←new_observation[items]
4: Ce ← Φ(Pe, m,Po,σ)

5: Pe, o
matched ← H(Ce)

6: if Pe, o
matched ̸= ∅ then

7: update_map(Me,Pe, o
matched)

8: end if
9: for item in Pe, o

matched do
10: delete item from Po

11: end for
12: if Po ̸= ∅ then
13: Cc ← Φ(Pc, m,Po,σ)

14: Pc, o
matched ← H(Cc)

15: if Pc, o
matched ̸= ∅ then

16: update_map(Mc,Pc, o
matched)

17: end if
18: for item in Pc, o

matched do
19: delete item from Po

20: end for
21: if Po ̸= ∅ then
22: for item in Po do
23: Mc.add_item(item)
24: end for
25: end if
26: end if
27: promote_demote_items(Me,Mc)

28: if item promoted or item demoted
or broadcast threshold reached then

29: Me.broadcast_map()
30: end if

First, we tested a simple simulation where a single obstacle
was broadcast by the ego-vehicle over MQTT. The broadcast
frequency was 3.33 Hz – i.e., a new broadcast was sent by
the simulated ego-vehicle once every 0.3 s. While optimizing
the threshold values of the mapping algorithm, we found
that there is a trade-off between the long-term precision of
the location of an employed obstacle and the time delay
it takes the method to promote an obstacle. To understand
this phenomenon, we tested the effect of different promotion
threshold values on mapping.

We have carried out numerous tests varying the value
of the promotion threshold. With the threshold pre-sets, we
measured the following values during mapping:

• Location differences between the latitude and longi-
tude values of the obstacle in consecutive time frames
were calculated using the haversine formula. The total
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jitter was then calculated by summing up the individual
location differences through the entire simulation.

• Time delay was calculated between the first time frame
when the obstacle was broadcast by the ego-vehicle and
the timestamp when it was promoted to the employed
map.

The experiments have been carried out 10 times for each
promotion threshold value. Time delay values have been
averaged over these runs. The results of the experiments are
shown in Figure 5.

FIGURE 5: Trade-off between time delay of obstacle map-
ping and location jitter

Based on the results of this test, we opted to use the value
8 for the promotion threshold in our later experiments. We
decided to use this value since according to our experimental
results, it provided an acceptable time delay while ensuring
tolerable noise in the mapped location of the obstacle.

Using the same test simulation as before we tested the
functionality of the map management module. We have con-
cluded that the mapping solution successfully included the
obstacle to the employed map and published them again over
a different MQTT topic. During the test shown in Figure 6,
the obstacle was promoted to the employed map once the
preset promotion threshold was reached – this value was
set to 8, hence it took the mapping system 8 subsequent
observations to promote the obstacle.

Moreover, we have tested the capabilities of our newly
introduced C/EM solution using a simulation with numerous
observed obstacles. Figure 7 shows the functionality of our
implementation at a randomly selected time-frame of a series
of observations acquired by an ego-vehicle in a simulated
environment.

B. TEST SCENARIO
In order to test our solution, the Tecnalia Test Track (Fig-
ure 8) was used, where the real CAV detects static obstacles
and sends them through MQTT to the map management
module. Additionally, a virtual CAV is implemented, which
receives information about the obstacles and executes the cor-
responding maneuver. The goal of the scenario is to show the
capabilities of the map and the reaction of vehicles that can
neither rely on internal perception nor V2V communication.

The real platform is a Renault Twizy 80 (Figure 9a),
instrumented with different sensors such as LIDAR, GNSS,
throttle, brake, and steering actuators. Furthermore, it is
connecting to the internet safely, thanks to the protection of
the IoTAC platform [65] and also enables V2X connectivity
through a Commsignia OBU. The virtual CAV (Figure 9b) is
simulated with a desktop computer with internet connectivity.
Both platforms run the AUDRIC2 architecture described in
Section II, with the difference in the model of the actuator.
In the Twizy, the control outputs are sent to the real actua-
tors, whereas the virtual CAV runs the architecture using a
kinematic bicycle model as an actuator model in Robot Op-
erating System (ROS). By implementing this testing method,
situations where one vehicle can not count on its perception
system or has one that is compromised can be mitigated in
a safe manner without removing the conditions provided by
real environments.

C. RESULTS
Mainly, two cases were studied. First, the vehicle’s ability to
change the lane and avoid obstacles, and second, if the lane
change is not possible, execute other maneuvers (emergency
braking, re-route, etc.). The first case can be observed in
Figure 10 from the perspective of both vehicles. Figure 10a
shows the Twizy (green box) and the obstacles detected
(red boxes) on the real test track in ROS. These obstacles,
due to the clustering algorithm used, were separated into
smaller rectangles that were sent to the map management
module. Figure 10b shows the virtual CAV (blue box) in
ROS with a filtrated amount of obstacles, received by the map
management module (red boxes). Furthermore, it can be seen
that if one obstacle is in the same lane as the virtual CAV, the
lane change trajectory is planned. Thus, the vehicle is able to
avoid the obstacle and accomplish the maneuver.

The second case is shown in Figure 11, where obsta-
cles block both lanes as can be seen in Figure 11a. The
virtual CAV re-planning the trajectory can be observed in
Figure 11b, however, as it detects the obstacle in the other
lane, it aborts the maneuver and proceeds with braking in
front of the obstacles.

D. DISCUSSIONS
The map management module is capable of introducing
obstacles to the candidate and then, to the employed map and
broadcasting it over MQTT (Figures 6 and 7). The time delay
of this process is characterized by the promotion threshold.
We have identified a trade-off between this time-delay and
the location jitter of the individual employed obstacles - i.e.,
how much their location inappropriately changes over time.
This trade-off is shown in Figure 5.

As shown in Figure 10 and Figure 11, the proposed ap-
proach combining the map management solution with the
AUDRIC2 framework through MQTT connection presents
promising results as in both cases the maneuvers were com-
pleted successfully. In the case of the lane change, the vehicle
could react with enough distance (16 m) to perform a safe
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FIGURE 6: Newly observed and mapped obstacles after the 1st (top row) and after the 8th (bottom row) broadcast. Blue star
and blue circle denote the ego-vehicle and the obstacle, respectively

FIGURE 7: Newly observed and mapped obstacles in a simulated environment. Blue stars and circles denote the ego-vehicle
and the obstacles, respectively

FIGURE 8: Tecnalia Test track.

lane change in 3 s. That is within the time limits of an
average lane change [66], [67]. This is achieved without

compromising the driving performance since a smooth tra-
jectory is generated without disturbing the lateral behavior of
the vehicle. In the case of the braking maneuver, it can be
observed that the lane change is activated, however, since it
still detects an obstacle blocking the other lane, the virtual
CAV proceeds with the braking maneuver, stopping at 6.3 m
from the obstacle.

V. CONCLUSION

In this paper, we have introduced a map management module
that communicates with CAVs using MQTT. We have shown
that this novel solution is capable of introducing low-latency
externally perceived obstacles to CAVs connected to it. Us-
ing a novel candidate/employed mapping solution, we have
proven that objects observed on road segments by a physical
CAV can be registered to a map with low-latency and thus
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(a) Renault Twizy 80 instrumented

(b) Virtual CAV simulated in ROS

FIGURE 9: Experimental platforms

(a) Real CAV observed in ROS

(b) Virtual CAV observed in ROS

FIGURE 10: Virtual CAV lane change scenario, from the
perspective of both vehicles

(a) Real CAV observed in ROS

(b) Virtual CAV observed in ROS

FIGURE 11: Virtual CAV emergency break scenario, from
the perspective of both CAVs

known to other CAVs. We have demonstrated the abilities
of the novel candidate/employed mapping in two maneuvers;
first, a successful and safe lane change maneuver was carried
out with sufficient clearance – that is not coming closer than
16 m to the obstacles and performing the lane change in 3
s. Secondly, if the lane change is unavailable (i.e., the traffic
lane is blocked), the maneuver is aborted successfully and
the vehicle stops at a safe distance (6.3 m) from all obstacles.
Both maneuvers were successful using our solution based
on information from external sources (i.e., sensors of other
CAVs) gathered in the employed map and distributed over
MQTT.

A. FUTURE WORK

Seeing the results of our novel proposed solution, we plan on
further investigating its usage in more complex and realistic
scenarios. One way to scale up the complexity presented in
this study, is to increase the number of agents participating
in the sharing of data; physical and virtual CAVs as well as
independent road users. Another generalization that could be
further researched, is to extend the study into more complex
and general maneuvers, which would be representative of
CAVs continuous operation, and its effects in and its effects
with regard to crowdsourced mapping solutions.

The robust functionality of our proposed solution – i.e.,
its resilience to faulty data points and outliers – can be
substantially increased by involving more data acquisition
vehicles. Information resulting in faulty data points can be
caused by malfunctions in the acquisition, perception, or even
communication systems in the vehicle, including possible at-
tacks in a vehicle asset. It is important to correctly model the
effects in the mapping system, to have better understanding
on the requirements needed for a high level of availability
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and correctness in the mapping solution proposed.
A way of testing this, would be to increase the number

of physical as well as virtual vehicles in complex scenarios.
In the case of larger scenarios, a grid-based version of our
solution could be implemented, that would enable the use
of locally crowdsourced maps. In this setup, the map could
be divided into smaller regions, over which different map
management modules would be run simultaneously. This
development however raises questions regarding the different
modalities involved in our solution, which can be researched
in a future study.

A key component for crowdsourcing is to define the task
in a way that makes it as inclusive as possible. In the case
of our proposed solution, this was achieved through the use
of MQTT. Our MQTT solution used the currently supplied
mechanisms of cybersecurity present in the protocol; each
vehicle was authorized and whitelisted for the topics, and
certificates were necessary to establish connectivity to the
broker. Nonetheless, other channels of communication can
be evaluated for the functionality of the map management
solution in scenarios. An in depth analysis of risks and threats
for this communication channels need to be performed before
a full deployment. An alternative is to make use of V2X com-
munication protocols – e.g., Dedicated Short-Range Commu-
nication (DSRC), cellular V2X – which are being studied and
employed in the CAV sector, and extend their cooperative
services by using our proposed solution.
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