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ABSTRACT We investigate a reciprocal and passive linear time-invariant multiport, having a port set

coupled to a generator and a port set coupled to a load, in the harmonic steady state. Two configurations

are considered, in which the port set at which the generator is connected and the port set at which the load

is connected are exchanged. We improve earlier reciprocal theorems, and establish new results about the

power available at output ports, and the bounds of the sets of the values of power transfer ratios, operating

power gains, available power gains and unnamed power gains for all relevant excitations. The new results

include five reciprocal theorems. One of them is used to generalize the Friis transmission formula.

INDEX TERMS Operating power gain, transducer power gain, available power gain, power transfer ratio,

unnamed power gain, insertion power gain, passive circuits, linear circuits, reciprocity, circuit theory.

I. INTRODUCTION

This article is a sequel of [1] and [2]. In what follows, [1] is

referred to as “Part 1”, and [2] as “Part 2”. The numbering of

lemmas, theorems, etc, is a continuation of the one used in

Part 1 and Part 2, but no prior knowledge of Part 1 or Part 2

is assumed. Appendix A lists some corrections to Part 2.

As in Part 1, we consider two linear time-invariant (LTI)

circuits, referred to as “configurations”, operating in the

harmonic steady state, at a given frequency. Both comprise

a device under study (DUS), which is a passive LTI multiport

having 2 sets of ports, referred to as port set 1 and port set 2.

Port set 1 consists of m ports numbered from 1 to m, and port

set 2 consists of n ports numbered from 1 to n, where m and

n are integers greater than or equal to 1. When we say that

port set 1 is connected to an m-port device, we assume that

the ports of the m-port device are numbered from 1 to m, and

that, for any integer p ∈ {1, . . . ,m}, its port p is connected

to port p of port set 1 (positive terminal to positive terminal

and negative terminal to negative terminal). Likewise, when

we say that port set 2 is connected to an n-port device, we

assume that the ports of the n-port device are numbered from

1 to n, and that, for any integer q ∈ {1, . . . , n}, its port q is

connected to port q of port set 2 (positive terminal to positive

terminal and negative terminal to negative terminal).

The two configurations are shown in Fig. 1. In config-

uration A (CA), port set 1 is connected to an LTI m-port

generator of internal impedance matrix ZS1, and port set 2

FIGURE 1. The two configurations, CA and CB, considered in the article.

is connected to an LTI n-port load of impedance matrix ZS2.

In configuration B (CB), port set 1 is connected to an LTI

m-port load of impedance matrix ZS1, and port set 2 is

connected to an LTI n-port generator of internal impedance

matrix ZS2. As in Part 1, we assume that the hermitian parts

of ZS1 and ZS2 are positive definite.

The average power available from one or more ports,

also referred to as “available power”, is the greatest average

power that can be drawn from these one or more ports by
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an arbitrary LTI and passive load [3, Sec. 3-8], [4]. Ignoring

noise power contributions, we consider 8 average powers:

• PAAVG1 is the average power available from the gener-

ator connected to port set 1, in CA;

• PARP1 means the average power received by port set 1,

in CA;

• PAAV P2 means the average power available from port

set 2, in CA;

• PADP2 means the average power delivered by port set 2,

in CA;

• PBAVG2 is the average power available from the gener-

ator connected to port set 2, in CB;

• PBRP2 means the average power received by port set 2,

in CB;

• PBAV P1 means the average power available from port

set 1, in CB; and

• PBDP1 means the average power delivered by port set 1,

in CB.

In [5], it was shown that, in the case m = n = 1, these

average powers satisfy

PADP2PBAVG2 = PAAV P2PBRP2 , (1)

PBDP1PAAVG1 = PBAV P1PARP1 , (2)

and, if the DUS is a reciprocal device,

PADP2PBAVG2 = PAAV P2PBRP2

= PBDP1PAAVG1 = PBAV P1PARP1 . (3)

In [5], it was also shown that (1)–(3) can be used to obtain

6 reciprocal relations between 6 power ratios related to CA

and 6 power ratios related to CB, these power ratios including

2 transducer power gains, 4 power transfer ratios, 2 operating

power gains, 2 available power gains, and 2 unnamed power

gains. Broadly speaking, the purpose of the present article

is the extension of these 6 reciprocal relations to the general

case m > 1 and n > 1. Appendix A lists corrections to [5].

The present work rests on results about generalized

Rayleigh ratios originally presented in [6], an article on

antenna theory. To avoid repeated references to [6], they are

stated in a slightly revised form and proven in Section II.

Section III is about our assumptions and simple or known

results. In Section IV, we improve the reciprocal theorems

about the transducer power gains and insertion power gains

in CA and CB previously disclosed in Part 1.

Section V provides new results on operating power gains.

Section VI discloses a new computation of PAAV P2 and

PBAV P1. Section VII is about power transfer ratios, and

presents two new reciprocal theorems about them. Sec-

tion VIII is about available power gains, and presents two

new reciprocal theorems involving operating power gains and

available power gains. Section IX is about unnamed power

gains, and presents a new reciprocal theorem on them.

Section X treats some inequalitites involving power ratios.

In Section XI, we derive relations applicable to a lossless

DUS, among which several new results. Examples are pro-

vided in Section XII. Unnamed power gains are used in

Section XIII to generalize the Friis transmission formula [7].

II. GENERALIZED RAYLEIGH RATIO
A. WHAT IS A GENERALIZED RAYLEIGH RATIO?

Let ν be a positive integer. The vector space of the complex

column vectors of size ν is denoted by C
ν . For any E ⊂ C

ν ,

we use E⊥ to denote the orthogonal complement of E, that is

the set of all vectors in C
ν that are orthogonal to every vector

lying in E.

We use 1ν to denote the identity matrix of size ν by ν. For

a positive integer µ, the null matrix of size µ by ν is denoted

by 0µ, ν or by 0 when no confusion may arise. We use

diagν(a1, . . . , aν) to denote the diagonal matrix of diagonal

entries a11 = a1 to aνν = aν . Let M be a complex matrix.

We use kerM to denote the nullspace of M, rankM the rank

of M, MT the transpose of M, and M∗ the hermitian adjoint

of M. If M is square, trM denotes the trace of M.

Let A be a positive semidefinite matrix. We know [8,

Sec. 7.2.6] that there exists a unique positive semidefinite

matrix B such that B2 = A. The matrix B is referred to

as the unique positive semidefinite square root of A, and is

denoted by A1/2. If A is positive definite, A−1 and A1/2 are

positive definite, and (A1/2)−1 = (A−1)1/2, so that we can

write A−1/2 = (A1/2)−1 = (A−1)1/2.

Observation 6. Let A be a positive semidefinite matrix of

size ν by ν. For any x ∈ C
ν , x∗ Ax = 0 if and only if

x ∈ kerA.

Proof: If x ∈ kerA1/2, we have Ax = A1/2A1/2x =
A1/2 0 = 0, so that x ∈ kerA. Conversely, let x ∈ kerA.

Since by [8, Sec. 7.2.6] there is a polynomial p with real

coefficients such that A1/2 = p(A), we have A1/2x =
p(A)x = 0, so that x ∈ kerA1/2.

We have proven that kerA1/2 = kerA.

For any x ∈ C
ν , we have x∗ Ax = 0 if and only if

x∗ A1/2A1/2 x = 0 if and only if (A1/2 x)∗(A1/2 x) = 0 if

and only if A1/2 x = 0 if and only if x ∈ kerA1/2.

Thus, x∗ Ax = 0 if and only if x ∈ kerA.

Note that there are other proofs of this well-known result

[8, Sec. 7.1.6].

Let A be an hermitian matrix of size ν by ν. The expres-

sion x∗Ax/x∗x, where x ∈ C
ν , is known as a Rayleigh

ratio, or Rayleigh-Ritz ratio, or Rayleigh quotient [8, Sec.

4.2], [9, Sec. 4.2]. In this article, this concept is extended as

follows. Let N and D be hermitian matrices of size ν by

ν, D being positive semidefinite. The generalized Rayleigh

ratio of N to D is a real-valued function r : Cν → R such

that, for any x ∈ C
ν satisfying x∗Dx 6= 0, we have

r(x) =
x∗Nx

x∗Dx
. (4)

The generalized Rayleigh ratio r may be viewed as a ratio

of two hermitian quadratic forms [10, Sec. 3.2.4], [11, Sec.

10.1] (also called “hermitian forms” [12, Ch. X]) in the

variable x: the hermitian quadratic form fN : C
ν → R

such that fN(x) = x∗Nx and the positive definite hermitian

quadratic form fD : Cν → R such that fD(x) = x∗Dx.

By Observation 6, the domain of definition of r, denoted

by Dr , is

Dr = {x ∈ C
ν : x /∈ kerD} , (5)
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where the colon means “such that”. Let d = dimkerD be

the nullity of D. By Observation 6, D is positive definite if

and only if d = 0, that is to say if and only if kerD = {0}.

Observation 7. Let ||x||2 =
√
x∗x be the euclidian vector

norm of an arbitrary complex column vector x. We use Sν to

denote the hypersphere of the unit vectors of Cν . It follows

from (4) that, for x 6= 0 and a fixed x/||x||2, if r(x) is

defined, it does not depend on ||x||2. Thus, the set of the

values of r(x) such that x ∈ Dr is equal to the set of the

values of r(x) such that x ∈ Dr ∩ Sν .

Observation 8. If N is positive semidefinite, for any x ∈ Dr

we have r(x) > 0.

B. BOUNDS OF GENERALIZED RAYLEIGH RATIOS

To investigate the bounds of generalized Rayleigh ratios, we

will first cover the special case where D is positive definite.

Afterwards, we will address the general case, which is more

involved.

Theorem 12. Let N and D be hermitian matrices of size ν
by ν. We assume that D is positive definite. Let r be the

generalized Rayleigh ratio of N to D. Since D is positive

definite, Dr = {x ∈ C
ν : x 6= 0} and we can define

M = D−1/2ND−1/2 . (6)

M is of size ν by ν, and hermitian. Thus, its eigenvalues

are real. Let λmax be the largest eigenvalue of M and λmin

the smallest eigenvalue of M. For any x ∈ C
ν satisfying

x 6= 0, we have

λmin = min
y 6=0

y∗My

y∗y
6 r(x) 6 λmax = max

y 6=0

y∗My

y∗y
. (7)

Moreover,

• the equality r(x) = λmax is satisfied if and only if

x = D−1/2y, where y is an eigenvector of M asso-

ciated with λmax;

• the equality r(x) = λmin is satisfied if and only if

x = D−1/2y, where y is an eigenvector of M asso-

ciated with λmin; and

• M and ND−1 are similar, so that the eigenvalues of

ND−1 are real, λmax is the largest eigenvalue of ND−1

and λmin is the smallest eigenvalue of ND−1.

Proof: For any x ∈ C
ν , let y = D1/2x. Since D is positive

definite, x 6= 0 if and only if y 6= 0, we have x = D−1/2y

and, for y 6= 0, we get

r(x) =
(D1/2x)∗M(D1/2x)

(D1/2x)∗(D1/2x)
=

y∗My

y∗y
. (8)

Using Rayleigh’s theorem [8, Sec. 4.2.2], we obtain (7).

The other assertions of Theorem 12 relating to the equalities

r(x) = λmax and r(x) = λmin result from Rayleigh’s

theorem and the definition of y. Moreover, we observe that

ND−1 = D1/2MD−1/2 , (9)

so that M is similar to ND−1. It follows that M and ND−1

have the same eigenvalues, counting multiplicity, by [8, Sec.

1.3.4].

Observation 9. If D is positive definite and N is positive

semidefinite, then M defined in Theorem 12 is positive

semidefinite, so that λmin > 0.

Theorem 13. Let N and D be hermitian matrices of size ν
by ν, D being positive semidefinite. Let r be the generalized

Rayleigh ratio of N to D, and let Dr be the domain of

definition of r. Let r(Dr) be the image of Dr under r. If

Dr 6= ∅ and if there exists x ∈ kerD such that x∗Nx 6= 0,

then r(Dr) is not bounded.

Proof: We assume that Dr 6= ∅. It follows that there exists

y ∈ Dr. We have y∗ Dy 6= 0. If there exists x ∈ kerD such

that x∗Nx 6= 0, we observe that for any λ ∈ R,

(x+ λy)∗ D (x+ λy) = λ2 y∗ Dy , (10)

so that x + λy ∈ kerD if and only if λ = 0. It follows

that we can define g : R → R such that for any λ 6= 0,

g(λ) = |r(x+ λy)|. For any nonzero λ ∈ R, we have

g(λ) =

∣

∣

∣

∣

x∗Nx+ λ(y∗Nx+ x∗Ny) + λ2y∗Ny

λ2 y∗ Dy

∣

∣

∣

∣

, (11)

which becomes arbitrarily large as λ approaches 0, because

x∗Nx 6= 0. Thus, r(Dr) is not bounded.

Corollary 3. Let N and D be positive semidefinite matrices

of size ν by ν. Let r be the generalized Rayleigh ratio of N

to D, and let Dr be the domain of definition of r. If Dr 6= ∅

and if r(Dr) is bounded, then kerD ⊂ kerN.

Proof: We assume that Dr 6= ∅ and r(Dr) is bounded.

By Theorem 13, there is no x ∈ kerD such that x∗Nx 6= 0.

Since N is positive semidefinite, we can use Observation 6 to

conclude that there is no x ∈ kerD such that x /∈ kerN.

Theorem 14. Let N and D be hermitian matrices of size ν
by ν, D being positive semidefinite. Let r be the generalized

Rayleigh ratio of N to D, let Dr be the domain of definition

of r, and let d be the nullity of D. We assume that Dr 6= ∅

and kerD ⊂ kerN.

D being positive semidefinite, it has ν eigenvalues, count-

ing multiplicity, and these values are real and nonnegative by

[8, Sec. 7.2.1]. Let us label these eigenvalues according to a

non-decreasing order µ1, . . . , µν . Since Dr 6= ∅, we have

d 6 ν − 1, so that 0 < µd+1 6 . . . 6 µν . For any positive

integer i such that i 6 d, we have µi = 0. D being hermitian,

by [8, Sec. 2.5.6] there exists a unitary matrix L of size ν by

ν such that

D = L diagν(µ1, . . . , µν)L
∗ (12)

For any i ∈ {1, . . . , ν}, let the i-th column vector of L be

denoted by L<i>. Let L be the submatrix of L, of size ν by

Copyright © 2023 by Excem 3
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ν− d, whose column vectors are L<d+1>, . . . ,L<ν>, in this

order. Let

P = L diagν−d

(

1
√
µd+1

, . . . ,
1√
µν

)

(13)

and

Q = P∗ NP . (14)

The matrix P is of size ν by ν−d. The matrix Q is clearly

hermitian, of size ν − d by ν − d. Thus, its eigenvalues are

real. Let κmax be the largest eigenvalue of Q and κmin the

smallest eigenvalue of Q. For any x ∈ Dr, we have

κmin = min
u 6=0

u∗Qu

u∗u
6 r(x) 6 κmax = max

u 6=0

u∗Qu

u∗u
. (15)

Moreover,

• we have r(x) = κmax if x = Pu, where u is an

eigenvector of Q associated with κmax;

• we have r(x) = κmin if x = Pu, where u is an

eigenvector of Q associated with κmin; and

• Q is similar to

R = L∗NLdiagν−d

(

1

µd+1

, . . . ,
1

µν

)

, (16)

so that the eigenvalues of R are real, κmax is the largest

eigenvalue of R and κmin the smallest eigenvalue of R.

Proof: Since DL = Ldiagν(µ1, . . . , µν), we know that,

for any i ∈ {1, . . . , ν}, L<i> is an eigenvector of D asso-

ciated with the eigenvalue µi. It follows that L<1> to L<d>

are vectors of kerD. L being unitary, (L<1>, . . . ,L<ν>) is

an orthonormal basis of Cν . Thus, (L<d+1>, . . . ,L<ν>) is

an orthonormal basis of (kerD)⊥.

For any x ∈ C
ν , there is a unique p1(x) ∈ kerD, and

a unique p2(x) ∈ (kerD)⊥ such that x = p1(x) + p2(x).
We have x∗ Dx = p2(x)

∗ D p2(x). Thus, if x ∈ Dr, then

p2(x) 6= 0. Since we assume that kerD ⊂ kerN, we also

have x∗ Nx = p2(x)
∗ N p2(x). Thus, we can assert that, if

x ∈ Dr, then

r(x) =
p2(x)

∗ N p2(x)

p2(x)∗ D p2(x)
= r(p2(x)) . (17)

It follows that

r(Dr) = r((kerD)⊥) . (18)

Let x ∈ Dr and z = p2(x). Let ζd+1, . . . , ζν be the coor-

dinates of z in the basis (L<d+1>, . . . ,L<ν>) of (kerD)⊥.

We introduce a column vector of size ν − d, given by

z =







ζd+1

...

ζν






. (19)

The product L z is a column vector of size ν. Using the rule

for the multiplication of block matrices, we find

L z =

ν
∑

i=d+1

L<i>ζi = z . (20)

Using (17) and (20), we get

r(x) =
z
∗L∗ NL z

z∗L∗ DL z
, (21)

and (12) leads us to

r(x) =
z
∗L∗ NL z

z∗L∗ L diagν(µ1, . . . , µν)L∗ L z
. (22)

L∗L is of size ν by ν − d. Since L is unitary, we find that

L∗L is given by

L∗L =

(

0d, ν−d

1ν−d

)

. (23)

Using (22) and (23), we obtain

r(z) =
z
∗L∗ NL z

z∗ diagν−d(µd+1, . . . , µν) z
=

u∗Qu

u∗u
, (24)

where u = diagν−d(µd+1, . . . , µν)
1/2

z, so that we have

L z = Pu. Since z is the column vector of the coordinates of

z in the basis (L<d+1>, . . . ,L<ν>) of (kerD)⊥, it follows

from (18) that r(Dr) is the set of all r(z) given by (24)

when z takes on any nonzero value in C
ν−d. Thus, using

Theorem 12, we obtain (15), and

• we have r(x) = κmax if we have x = L z
′ in which

z
′ = diagν−d(µd+1, . . . , µν)

−1/2u, where u is an

eigenvector of Q associated with κmax;

• we have r(x) = κmin if we have x = L z
′ in which

z
′ = diagν−d(µd+1, . . . , µν)

−1/2u, where u is an

eigenvector of Q associated with κmin; and

• Q is similar to R given by (16), so that the eigenvalues

of R are real, κmax is the largest eigenvalue of R and

κmin the smallest eigenvalue of R.

This leads to the final results of Theorem 14.

In the case d = 0, we can use Theorem 12 and Theo-

rem 14, the latter giving the same results as the former.

Corollary 4. Let N and D be positive semidefinite matrices

of size ν by ν. Let r be the generalized Rayleigh ratio of

N to D, and let Dr be the domain of definition of r. We

assume that Dr 6= ∅. Then r(Dr) is bounded if and only if

kerD ⊂ kerN.

Proof: This is a direct consequence of Corollary 3 and

Theorem 14.

C. RELATED RESULTS THAT DO NOT USE A RATIO

Corollary 5. Let N and D be hermitian matrices of size ν
by ν. We assume that D is positive definite, so that we can

define M = D−1/2ND−1/2. The matrix M is of size ν by

ν, and hermitian. Thus, its eigenvalues are real. Let λmax be

the largest eigenvalue of M and λmin the smallest eigenvalue

of M. For any x ∈ C
ν , we have

λmin x
∗Dx 6 x∗Nx 6 λmax x

∗Dx . (25)

Moreover,
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• we have x∗Nx = λmax x
∗Dx if x = D−1/2y, where

y is an eigenvector of M associated with λmax;

• we have x∗Nx = λmin x
∗Dx if x = D−1/2y, where

y is an eigenvector of M associated with λmin; and

• M and ND−1 are similar, so that the eigenvalues of

ND−1 are real, λmax is the largest eigenvalue of ND−1

and λmin the smallest eigenvalue of ND−1.

Proof: This is a direct consequence of Theorem 12.

Corollary 6. Let N and D be hermitian matrices of size ν by

ν, D being positive semidefinite. Let d be the nullity of D.

We assume that D 6= 0 and kerD ⊂ kerN.

D being positive semidefinite, it has ν eigenvalues, count-

ing multiplicity, and these values are real and nonnegative.

Let us label these eigenvalues according to a non-decreasing

order µ1, . . . , µν . Since D 6= 0, we have d 6 ν − 1, so

that 0 < µd+1 6 . . . 6 µν . For any positive integer i
such that i 6 d, we have µi = 0. D being hermitian,

there exists a unitary matrix L of size ν by ν such that

D = Ldiagν(µ1, . . . , µν)L
∗.

For any i ∈ {1, . . . , ν}, let the i-th column vector of L

be denoted by L<i>. Let L be the submatrix of L, of size

ν by ν − d, whose column vectors are L<d+1>, . . . ,L<ν>,

in this order. Let P = L diagν−d(µ
−1/2
d+1

, . . . , µ
−1/2
ν ) and

Q = P∗ NP. The matrix Q is hermitian, of size ν − d by

ν − d. Thus, its eigenvalues are real. Let κmax be the largest

eigenvalue of Q and κmin the smallest eigenvalue of Q. For

any x ∈ C
ν , we have

κmin x
∗Dx 6 x∗Nx 6 κmax x

∗Dx . (26)

Moreover,

• we have x∗Nx = κmax x
∗Dx if x = Pu, where u is

an eigenvector of Q associated with κmax;

• we have x∗Nx = κmin x
∗Dx if x = Pu, where u is

an eigenvector of Q associated with κmin; and

• Q is similar to R = L∗NL diagν−d(µ
−1

d+1
, . . . , µ−1

ν ),
so that the eigenvalues of R are real, κmax is the largest

eigenvalue of R and κmin the smallest eigenvalue of R.

Proof: This is a direct consequence of Theorem 14.

D. LAST REMARKS

Theorem 12 is a consequence of the results on pencils of

quadratic forms and pencils of hermitian forms presented in

sections 7 and 9 of [12, Ch. X]). Special cases of Corollary 5

were obtained in Theorem 3 and Theorem 5 of Part 1,

and in Theorem 7 of Part 2. It seems that results similar

to Theorem 13, Theorem 14, Corollary 3, Corollary 4 and

Corollary 6 were first stated and proven in [6, Sec. II].

Examples of generalized Rayleigh ratios, together with

different methods of computing the least upper bound and

greatest lower bound of r(x) for x ∈ Dr, were provided in

[6, Sec. III] and are not repeated here.

III. ASSUMPTIONS, MISCELLANEOUS RESULTS AND
SIMPLE FORMULAE ON AVERAGE POWERS
A. NOTATIONS, ASSUMPTIONS AND BASIC RESULTS

In the special case where m = n, in addition to the powers

defined in Section I, we can consider two additional average

powers:

• PAW is the average power which would be received by

the load connected at port set 2 in CA, if the DUS was

not present and this load was directly connected to the

generator connected at port set 1 in CA; and

• PBW is the average power which would be received by

the load connected at port set 1 in CB, if the DUS was

not present and this load was directly connected to the

generator connected at port set 2 in CB.

Let M be a square complex matrix. We use H(M) to

denote the hermitian part of M. As said above, we assume

that the DUS is LTI and passive, that the generators and the

loads are LTI, and that H(ZS1) and H(ZS2) are positive

definite. As explained in Section IV of Part 1, this ensures

that the loads are passive and that PAAVG1 and PBAVG2 are

defined. The DUS being a passive (m + n)-port, it follows

that:

0 6 PADP2 6 PARP1 6 PAAVG1 ; (27)

PAAV P2 is defined and satisfies

0 6 PADP2 6 PAAV P2 6 PAAVG1 ; (28)

0 6 PAW 6 PAAVG1 ; (29)

0 6 PBDP1 6 PBRP2 6 PBAVG2 ; (30)

PBAV P1 is defined and satisfies

0 6 PBDP1 6 PBAV P1 6 PBAVG2 ; (31)

and

0 6 PBW 6 PBAVG2 . (32)

By Lemma 1 of Part 1, we can assert that:

• we can define YS1 = Z−1

S1
and YS2 = Z−1

S2
;

• H(YS1) and H(YS2) are positive definite; and

• instead of assuming that ZS1 and ZS2 exist and are such

that H(ZS1) and H(ZS2) are positive definite, we could

equivalently have assumed that YS1 and YS2 exist and

are such that H(YS1) and H(YS2) are positive definite.

We use VO1 and IS1 = YS1VO1 to denote the column

vectors of the rms open-circuit voltages and of the rms short-

circuit currents, respectively, of the m-port generator con-

nected to port set 1 in CA. We use VO2 and IS2 = YS2VO2

to denote the column vectors of the rms open-circuit voltages

and of the rms short-circuit currents, respectively, of the n-

port generator connected to port set 2 in CB. We use V1 and

I1 to denote the column vectors of the rms voltages across

port set 1 and of the rms currents flowing into port set 1,

respectively, in a specified configuration. We use V2 and

I2 to denote the column vectors of the rms voltages across

port set 2 and of the rms currents flowing into port set 2,

respectively, in a specified configuration.
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B. AUGMENTED MULTIPORTS

As in Section IV of Part 1, we consider the ports of the DUS

in the following order: ports 1 to m of port set 1, and then

ports 1 to n of port set 2.

We introduce a parallel-augmented multiport, as defined

in Section II of Part 1, composed of the DUS (as original

multiport), of an m-port load of admittance matrix YS1

connected in parallel with port set 1, and of an n-port load of

admittance matrix YS2 connected in parallel with port set 2.

Here, the admittance matrix of the added multiport is

YADD =

(

YS1 0

0 YS2

)

. (33)

H(YS1) and H(YS2) being positive definite, H(YADD)
is positive definite. By Theorem 1 of Part 1, the parallel-

augmented multiport has an impedance matrix ZPAM . The

matrix ZPAM is of size (m + n) by (m + n) and it may

be partitioned into four submatrices, ZPAM11 of size m by

m, ZPAM12 of size m by n, ZPAM21 of size n by m and

ZPAM22 of size n by n, which are such that

ZPAM =

(

ZPAM11 ZPAM12

ZPAM21 ZPAM22

)

. (34)

By Theorem 1 of Part 1, if YS1 and YS2 are symmetric

and the original multiport is a reciprocal device, then ZPAM

is symmetric. By Corollary 1 of Part 1, in the special case

where the DUS has an admittance matrix Y, then: ZPAM is

invertible;

Z−1

PAM = Y +YADD ; (35)

and, if YADD is symmetric, ZPAM is symmetric if and only

if Y is symmetric.

We also introduce a series-augmented multiport, as defined

in Section II of Part 1, composed of the DUS (as original

multiport), of an m-port load of impedance matrix ZS1

connected in series with port set 1, and of an n-port load of

impedance matrix ZS2 connected in series with port set 2.

Here, the impedance matrix of the added multiport is

ZADD =

(

ZS1 0

0 ZS2

)

= Y−1

ADD . (36)

H(ZS1) and H(ZS2) being positive definite, H(ZADD)
is positive definite. By Theorem 2 of Part 1, the series-

augmented multiport has an admittance matrix YSAM . The

matrix YSAM is of size (m + n) by (m + n) and it may

be partitioned into four submatrices, YSAM11 of size m by

m, YSAM12 of size m by n, YSAM21 of size n by m and

YSAM22 of size n by n, which are such that

YSAM =

(

YSAM11 YSAM12

YSAM21 YSAM22

)

. (37)

By Theorem 2 of Part 1, if ZS1 and ZS2 are symmetric

and the original multiport is a reciprocal device, then YSAM

is symmetric. By Corollary 2 of Part 1, in the special case

where the DUS has an impedance matrix Z, then: YSAM is

invertible;

Y−1

SAM = Z+ ZADD ; (38)

and, if ZADD is symmetric, YSAM is symmetric if and only

if Z is symmetric.

C. FORMULAS USING THE OPEN-CIRCUIT VOLTAGES

We want to compute some of the above-defined average pow-

ers, using the open-circuit voltages of the generators to define

the excitations, and YSAM to define the DUS. Ignoring noise

power contributions, and using the fact that, H(ZS1) and

H(ZS2) being positive definite, they are invertible, we get

[4], [13]:

PAAVG1 = V∗
O1YAAVG1VO1 , (39)

where the admittance matrix

YAAVG1 =
1

2
(ZS1 + Z∗

S1)
−1

(40)

is positive definite; and

PBAVG2 = V∗
O2YBAVG2VO2 , (41)

where the admittance matrix

YBAVG2 =
1

2
(ZS2 + Z∗

S2)
−1

(42)

is positive definite.

By inspection, ignoring noise power contributions, we

find:

PARP1 = V∗
O1YARP1VO1 , (43)

where the admittance matrix

YARP1 =
YSAM11 +Y∗

SAM11

2

−Y∗
SAM11

ZS1 + Z∗
S1

2
YSAM11 (44)

is positive semidefinite because the DUS and the n-port load

connected to port set 2 in CA are passive, and because VO1

can take on any value lying in C
m;

PADP2 = V∗
O1YADP2VO1 , (45)

where the admittance matrix

YADP2 = Y∗
SAM21

ZS2 + Z∗
S2

2
YSAM21 (46)

is positive semidefinite because the DUS and the n-port load

connected to port set 2 in CA are passive, and because VO1

can take on any value lying in C
m;

PAW = V∗
O1YAWVO1 , (47)

where the admittance matrix

YAW = (ZS1 + ZS2)
−1∗

× ZS2 + Z∗
S2

2
(ZS1 + ZS2)

−1 (48)

is positive definite;

PBRP2 = V∗
O2YBRP2VO2 , (49)

where the admittance matrix

YBRP2 =
YSAM22 +Y∗

SAM22

2

−Y∗
SAM22

ZS2 + Z∗
S2

2
YSAM22 (50)
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is positive semidefinite because the DUS and the m-port load

connected to port set 1 in CB are passive, and because VO2

can take on any value lying in C
n;

PBDP1 = V∗
O2YBDP1VO2 , (51)

where the admittance matrix

YBDP1 = Y∗
SAM12

ZS1 + Z∗
S1

2
YSAM12 (52)

is positive semidefinite because the DUS and the m-port load

connected to port set 1 in CB are passive, and because VO2

can take on any value lying in C
n; and

PBW = V∗
O2YBWVO2 , (53)

where the admittance matrix

YBW = (ZS1 + ZS2)
−1∗

× ZS1 + Z∗
S1

2
(ZS1 + ZS2)

−1 (54)

is positive definite.

D. FORMULAS USING THE SHORT-CIRCUIT CURRENTS

We now wish to compute the same average powers as in

(39)–(54), using the short-circuit currents of the generators

to define the excitations, and ZPAM to define the DUS.

Ignoring noise power contributions, and using the fact that

H(YS1) and H(YS2) are invertible, we obtain:

PAAVG1 = I∗S1ZAAVG1IS1 , (55)

where the impedance matrix

ZAAVG1 =
1

2
(YS1 +Y∗

S1)
−1

(56)

is positive definite; and

PBAVG2 = I∗S2ZBAVG2IS2 , (57)

where the impedance matrix

ZBAVG2 =
1

2
(YS2 +Y∗

S2)
−1

(58)

is positive definite.

By inspection, ignoring noise power contributions, we get:

PARP1 = I∗S1ZARP1IS1 , (59)

where the impedance matrix

ZARP1 =
ZPAM11 + Z∗

PAM11

2

− Z∗
PAM11

YS1 +Y∗
S1

2
ZPAM11 (60)

is positive semidefinite because the DUS and the n-port load

connected to port set 2 in CA are passive, and because IS1

can take on any value lying in C
m;

PADP2 = I∗S1ZADP2IS1 , (61)

where the impedance matrix

ZADP2 = Z∗
PAM21

YS2 +Y∗
S2

2
ZPAM21 (62)

is positive semidefinite because the DUS and the n-port load

connected to port set 2 in CA are passive, and because IS1

can take on any value lying in C
m;

PAW = I∗S1ZAW IS1 , (63)

where the impedance matrix

ZAW = (YS1 +YS2)
−1∗

× YS2 +Y∗
S2

2
(YS1 +YS2)

−1 (64)

is positive definite;

PBRP2 = I∗S2ZBRP2IS2 , (65)

where the impedance matrix

ZBRP2 =
ZPAM22 + Z∗

PAM22

2

− Z∗
PAM22

YS2 +Y∗
S2

2
ZPAM22 (66)

is positive semidefinite because the DUS and the m-port load

connected to port set 1 in CB are passive, and because IS2

can take on any value lying in C
n;

PBDP1 = I∗S2ZBDP1IS2 , (67)

where the impedance matrix

ZBDP1 = Z∗
PAM12

YS1 +Y∗
S1

2
ZPAM12 (68)

is positive semidefinite because the DUS and the m-port load

connected to port set 1 in CB are passive, and because IS2

can take on any value lying in C
n; and

PBW = I∗S2ZBW IS2 , (69)

where the impedance matrix

ZBW = (YS1 +YS2)
−1∗

× YS1 +Y∗
S1

2
(YS1 +YS2)

−1 (70)

is positive definite.

E. REMARKS

Additional results can be obtained by applying (368)–(371)

of Appendix C to the impedance and admittance matrices

defined above in Section III.C and Section III.D. Also, these

two sections do not cover the computation of PAAV P2 and

PBAV P1, which is complicated and treated in Section VI.

IV. TWO IMPROVED RECIPROCAL THEOREMS
A. THEOREM ON THE TRANSDUCER POWER GAINS

As in Part 1, we consider two transducer power gains: the

transducer power gain in CA, given by

GAT =
PADP2

PAAVG1

, (71)

and the transducer power gain in CB, given by

GBT =
PBDP1

PBAVG2

. (72)
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It follows from (27) and (30) that we have 0 6 GAT 6 1
and 0 6 GBT 6 1.

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1. Based on the results of Section III.C

and Section III.D, we find that GAT is given by

GAT =
X∗

A NAT XA

X∗
A DAT XA

, (73)

where NAT and DAT are hermitian matrices of size m by

m, and given in Table 1. We note that NAT is positive

semidefinite, and DAT positive definite.

TABLE 1. Variable XA and associated NAT and DAT .

Variable XA NAT DAT

VO1 YADP2 YAAV G1

IS1 ZADP2 ZAAV G1

GAT is given by (73) in the form of a generalized Rayleigh

ratio of NAT to DAT , in the variable XA. Thus, GAT

depends on the excitation. Since DAT is positive definite,

GAT is defined for any nonzero XA ∈ C
m.

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2. Based on the results of Section III.C

and Section III.D, we find that GBT is given by

GBT =
X∗

B NBT XB

X∗
B DBT XB

, (74)

where NBT and DBT are hermitian matrices of size n by

n, and given in Table 2. We note that NBT is positive

semidefinite, and DBT positive definite.

TABLE 2. Variable XB and associated NBT and DBT .

Variable XB NBT DBT

VO2 YBDP1 YBAV G2

IS2 ZBDP1 ZBAV G2

GBT is given by (74) in the form of a generalized Rayleigh

ratio of NBT to DBT , in the variable XB . Thus, GBT

depends on the excitation. Since DBT is positive definite,

GBT is defined for any nonzero XB ∈ C
n.

By Observation 7, the set of the values of GAT obtained

for all XA ∈ C
m such that XA 6= 0 is equal to the set of

the values of GAT obtained for all XA ∈ Sm; and the set

of the values of GBT obtained for all XB ∈ C
n such that

XB 6= 0 is equal to the set of the values of GBT obtained for

all XB ∈ Sn.

Since IS1 = YS1VO1, where YS1 is invertible, we can

assert that the set of the values of GAT obtained for all

nonzero XA ∈ C
m, or for all XA ∈ Sm, does not depend

on the choice XA = VO1 or XA = IS1.

Likewise, since IS2 = YS2VO2, where YS2 is invertible,

we can assert that the set of the values of GBT obtained for

all nonzero XB ∈ C
n, or for all XB ∈ Sn, does not depend

on the choice XB = VO2 or XB = IS2.

We can now state and prove a reciprocal theorem on the

bounds of the sets of the values of the transducer power gains

in CA and CB, which is an improved version of Theorem 4

of Part 1.

Theorem 15. Ignoring noise power contributions, we can

assert that:

(a) the set of the values of the transducer power gain in CA,

obtained for all nonzero VO1 ∈ C
m, or equivalently

for all nonzero IS1 ∈ C
m, has a least element referred

to as “minimum value” and denoted by GAT MIN , and

a greatest element referred to as “maximum value” and

denoted by GAT MAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NAT to DAT , in the

variable XA according to (73) and Table 1, we have

GAT MIN = λmin and GAT MAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NAT to DAT , in the variable XA,

an average value of GAT over a number min{m,n} of

nonzero excitations is

GAT AV R =
trM

min{m,n} =
tr
(

NATD
−1

AT

)

min{m,n} ; (75)

(d) GAT AV R doesn’t depend on the choice of XA, and

0 6 GAT MIN 6 GAT AV R 6 GAT MAX 6 1 ; (76)

(e) the set of the values of the transducer power gain in CB,

obtained for all nonzero VO2 ∈ C
n, or equivalently for

all nonzero IS2 ∈ C
n, has a least element referred to

as “minimum value” and denoted by GBT MIN , and a

greatest element referred to as “maximum value” and

denoted by GBT MAX ;

(f) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NBT to DBT , in the

variable XB according to (74) and Table 2, we have

GBT MIN = λmin and GBT MAX = λmax ;

(g) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NBT to DBT , in the variable XB ,

an average value of GBT over a number min{m,n} of

nonzero excitations is

GBT AV R =
trM

min{m,n} =
tr
(

NBTD
−1

BT

)

min{m,n} ; (77)

(h) GBT AV R doesn’t depend on the choice of XB , and

0 6 GBT MIN 6 GBT AV R 6 GBT MAX 6 1 ; (78)

(i) if the DUS and both loads are reciprocal devices, then

GAT MAX = GBT MAX (79)

and

GAT AV R = GBT AV R ; (80)

(j) if the DUS and both loads are reciprocal devices, then

(m = n) =⇒ (GAT MIN = GBT MIN ) , (81)

(m > n) =⇒ (GAT MIN = 0) (82)

and

(m < n) =⇒ (GBT MIN = 0) . (83)
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Proof: Since DAT and DBT are positive definite, asser-

tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NATD
−1

AT

)

, and then the second equality of (75).

By (8), each eigenvector y of M corresponds to a nonzero

excitation XA = D
−1/2
AT y, and to an eigenvalue that is equal

to GAT for this XA. Using Table 1, (46) and (62), we get

rank
(

NATD
−1

AT

)

= rankNAT 6 min{m,n} , (84)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is less than or equal to min{m,n}. Since trM is

the sum of the eigenvalues of M, counting multiplicity, it fol-

lows that GAT AV R given by (75) is an average of GAT over

a number min{m,n} of nonzero excitations. This proves (c).

Assertion (d) follows from (c), (372) of Appendix C, and the

fact that, as said above, we have 0 6 GAT 6 1.

In (g), by Theorem 12, we have trM = tr
(

NBTD
−1

BT

)

,

which allows us to write the second equality of (77). Using

Table 2, (52) and (68), we get

rank
(

NBTD
−1

BT

)

= rankNBT 6 min{m,n} , (85)

which can be used to prove (g) as we used (84) to prove (c).

Assertion (h) follows from (g), (373) of Appendix C, and the

fact that 0 6 GBT 6 1.

To prove (i) and (j), we can assume XA = IS1 and

XB = IS2. By Theorem 12, we only need to compare

the eigenvalues of A = NATD
−1

AT with the eigenvalues of

B = NBTD
−1

BT . It follows from Table 1, (56) and (62) that

A = Z∗
PAM21(YS2 +Y∗

S2)ZPAM21(YS1 +Y∗
S1) , (86)

which is of size m by m. It follows from Table 2, (58) and

(68) that

B = Z∗
PAM12(YS1 +Y∗

S1)ZPAM12(YS2 +Y∗
S2) , (87)

which is of size n by n. If the DUS and both loads are

reciprocal devices, ZPAM , ZS1 and ZS2 are symmetric.

Thus, YS1 and YS2 are symmetric and the transpose of

ZPAM12 is ZPAM21, so that

BT = (YS2 +Y∗
S2)

× ZPAM21(YS1 +Y∗
S1)Z

∗
PAM21 . (88)

By [8, Sec. 1.4.1], the eigenvalues of BT are the same

as those of B, counting multiplicity. We note that, if we

write C = (YS2 + Y∗
S2)ZPAM21(YS1 + Y∗

S1), the right

hand sides of (86) and (88) are Z∗
PAM21C and CZ∗

PAM21,

respectively. Thus, using [8, Sec. 1.3.22] and the fact that

Z∗
PAM21 is of size m by n, we find that:

• if m = n, then A and B have the same eigenvalues,

counting multiplicity;

• if m > n, then A has the same eigenvalues as B,

counting multiplicity, together with m − n additional

eigenvalues equal to zero; and

• if m < n, then B has the same eigenvalues as A,

counting multiplicity, together with n − m additional

eigenvalues equal to zero.

This leads to the final assertions of Theorem 15.

B. THEOREM ON THE INSERTION POWER GAINS

As in Part 1, we consider two insertion power gains in the

special case where n = m: the insertion power gain in CA,

given by

GAI =
PADP2

PAW
, (89)

and the insertion power gain in CB, given by

GBI =
PBDP1

PBW
. (90)

GAI and GBI are nonnegative, but they need not be less

than or equal to one.

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1. Based on the results of Section III.C

and Section III.D, we find that GAI is given by

GAI =
X∗

A NAI XA

X∗
A DAI XA

, (91)

where NAI and DAI are hermitian matrices of size m by

m, and given in Table 3. We note that NAI is positive

semidefinite, and DAI positive definite.

TABLE 3. Variable XA and associated NAI and DAI .

Variable XA NAI DAI

VO1 YADP2 YAW

IS1 ZADP2 ZAW

GAI is given by (91) in the form of a generalized Rayleigh

ratio of NAI to DAI , in the variable XA. Thus, GAI depends

on the excitation. Since DAI is positive definite, GAI is

defined for any nonzero XA ∈ C
m.

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2. Based on the results of Section III.C

and Section III.D, we find that GBI is given by

GBI =
X∗

B NBI XB

X∗
B DBI XB

, (92)

where NBI and DBI are hermitian matrices of size m by

m, and given in Table 4. We note that NBI is positive

semidefinite, and DBI positive definite.

TABLE 4. Variable XB and associated NBI and DBI .

Variable XB NBI DBI

VO2 YBDP1 YBW

IS2 ZBDP1 ZBW

GBI is given by (92) in the form of a generalized Rayleigh

ratio of NBI to DBI , in the variable XB . Thus, GBI depends

on the excitation. Since DBI is positive definite, GBI is

defined for any nonzero XB ∈ C
m.

By Observation 7, the set of the values of GAI obtained

for all XA ∈ C
m such that XA 6= 0 is equal to the set of

the values of GAI obtained for all XA ∈ Sm; and the set

of the values of GBI obtained for all XB ∈ C
m such that

XB 6= 0 is equal to the set of the values of GBI obtained for

all XB ∈ Sm.
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Since IS1 = YS1VO1, where YS1 is invertible, we can

assert that the set of the values of GAI obtained for all

nonzero XA ∈ C
m, or for all XA ∈ Sm, does not depend

on the choice XA = VO1 or XA = IS1.

Likewise, since IS2 = YS2VO2, where YS2 is invertible,

we can assert that the set of the values of GBI obtained for

all nonzero XB ∈ C
m, or for all XB ∈ Sm, does not depend

on the choice XB = VO2 or XB = IS2.

We can now state and prove a reciprocal theorem on the

bounds of the sets of the values of GAI and GBI , which is a

better version of Theorem 6 of Part 1.

Theorem 16. If m = n, ignoring noise power contributions,

we can assert that:

(a) the set of the values of the insertion power gain in CA,

obtained for all nonzero VO1 ∈ C
m, or equivalently

for all nonzero IS1 ∈ C
m, has a least element referred

to as “minimum value” and denoted by GAI MIN , and

a greatest element referred to as “maximum value” and

denoted by GAI MAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NAI to DAI , in the

variable XA according to (91) and Table 3, we have

GAI MIN = λmin and GAI MAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NAI to DAI , in the variable XA, an

average value of GAI over m nonzero excitations is

GAI AV R =
trM

m
=

tr
(

NAID
−1

AI

)

m
; (93)

(d) GAI AV R doesn’t depend on the choice of XA, and

0 6 GAI MIN 6 GAI AV R 6 GAI MAX ; (94)

(e) the set of the values of the transducer power gain in CB,

obtained for all nonzero VO2 ∈ C
m, or equivalently

for all nonzero IS2 ∈ C
m, has a least element referred

to as “minimum value” and denoted by GBI MIN , and

a greatest element referred to as “maximum value” and

denoted by GBI MAX ;

(f) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NBI to DBI , in the

variable XB according to (92) and Table 4, we have

GBI MIN = λmin and GBI MAX = λmax ;

(g) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NBI to DBI , in the variable XB , an

average value of GBI over m nonzero excitations is

GBI AV R =
trM

m
=

tr
(

NBID
−1

BI

)

m
; (95)

(h) GBI AV R doesn’t depend on the choice of XB , and

0 6 GBI MIN 6 GBI AV R 6 GBI MAX ; (96)

(i) assuming that the DUS and both loads are reciprocal

devices, if there exist two complex numbers ZS1 and

ZS2 such that ZS1 = ZS11m and ZS2 = ZS21m, or

if ZPAM21, ZS1 and ZS2 are circulant, then

GAI MAX = GBI MAX , (97)

GAI AV R = GBI AV R (98)

and

GAI MIN = GBI MIN . (99)

Proof: Since DAI and DBI are positive definite, asser-

tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NAID
−1

AI

)

, and then the second equality of (93).

By (8), each eigenvector y of M corresponds to a nonzero

excitation XA = D
−1/2
AI y, and to an eigenvalue that is equal

to GAI for this XA. Using Table 3, (46) and (62), we get

rank
(

NAID
−1

AI

)

= rankNAI 6 m, (100)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is less than or equal to m. Since trM is the sum

of the eigenvalues of M, counting multiplicity, it follows that

GAI AV R given by (93) is an average of GAI over m nonzero

excitations. This proves (c). Assertion (d) follows from (c),

(372) of Appendix C, and GAI > 0.

In (g), by Theorem 12, we have trM = tr
(

NBID
−1

BI

)

,

which allows us to write the second equality of (95). Using

Table 4, (52) and (68), we get

rank
(

NBID
−1

BI

)

= rankNBI 6 m, (101)

which can be used to prove (g) as we used (100) to prove (c).

This, (373) of Appendix C, and GBI > 0 lead us to (h).

To prove (i), we can assume XA = IS1 and XB = IS2.

By Theorem 12, we only need to compare the eigenvalues of

A = NAID
−1

AI with the eigenvalues of B = NBID
−1

BI . It

follows from Table 3, (62) and (64) that

A = Z∗
PAM21(YS2 +Y∗

S2)ZPAM21

× (YS1 +YS2)(YS2 +Y∗
S2)

−1(YS1 +YS2)
∗ , (102)

which is of size m by m. It follows from Table 4, (68) and

(70) that

B = Z∗
PAM12(YS1 +Y∗

S1)ZPAM12

× (YS1 +YS2)(YS1 +Y∗
S1)

−1(YS1 +YS2)
∗ , (103)

which is of size m by m. If the DUS and both loads are

reciprocal devices, ZPAM , ZS1 and ZS2 are symmetric.

Thus, YS1 and YS2 are symmetric and the transpose of

ZPAM12 is ZPAM21, so that

BT = (YS1 +YS2)
∗(YS1 +Y∗

S1)
−1

× (YS1 +YS2)ZPAM21(YS1 +Y∗
S1)Z

∗
PAM21 . (104)

We need an additional assumption, suitable to allow us to

remove: (YS2 +Y∗
S2) and (YS2 +Y∗

S2)
−1 from (102); and

(YS1+Y∗
S1) and (YS1+Y∗

S1)
−1 from (104). A first possi-

bility is that we assume that there exist two complex numbers

ZS1 and ZS2 such that ZS1 = ZS11m and ZS2 = ZS21m.

A second possibility is that we assume that ZPAM21, ZS1
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and ZS2 are circulant, because: circulant matrices commute;

linear combinations of circulant matrices are circulant; and

the inverse of an invertible circulant matrix is circulant [8,

Sec. 0.9.6]. Using either assumption, we obtain

A = Z∗
PAM21ZPAM21(YS1+YS2)(YS1+YS2)

∗ , (105)

and

BT = ZPAM21(YS1 +YS2)(YS1 +YS2)
∗Z∗

PAM21 .
(106)

By [8, Sec. 1.4.1], the eigenvalues of BT are the same as

those of B, counting multiplicity. We then observe that, if we

write C = ZPAM21(YS1 + YS2)(YS1 + YS2)
∗, the right

hand sides of (105) and (106) are Z∗
PAM21C and CZ∗

PAM21,

respectively. Thus, using [8, Sec. 1.3.22], we find that A and

B have the same eigenvalues, counting multiplicity, which

leads to the final assertions of Theorem 16.

V. OPERATING POWER GAINS
An operating power gain is sometimes called “power gain”

[14, Sec. 3.2]. It could also be called “efficiency” since we

are considering a passive DUS. We consider two operating

power gains: the operating power gain in CA, given by

GAO =
PADP2

PARP1

, (107)

and the operating power gain in CB, given by

GBO =
PBDP1

PBRP2

. (108)

It follows from (27) and (30) that we have 0 6 GAO 6 1
and 0 6 GBO 6 1.

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1. Based on the results of Section III.C

and Section III.D, we find that GAO is given by

GAO =
X∗

A NAO XA

X∗
A DAO XA

, (109)

where NAO and DAO are hermitian matrices of size m by

m, and given in Table 5. We note that NAO and DAO are

positive semidefinite.

TABLE 5. Variable XA and associated NAO and DAO .

Variable XA NAO DAO

VO1 YADP2 YARP1

IS1 ZADP2 ZARP1

GAO is given by (109) in the form of a generalized

Rayleigh ratio of NAO to DAO, in the variable XA. It fol-

lows that GAO depends on the excitation, and that, according

to the explanations provided in Section II.A, GAO is defined

for XA ∈ D(DAO), where

D(DAO) = {XA ∈ C
m : XA /∈ kerDAO} . (110)

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2. Based on the results of Section III.C

and Section III.D, we find that GBO is given by

GBO =
X∗

B NBO XB

X∗
B DBO XB

, (111)

where NBO and DBO are hermitian matrices of size n by

n, and given in Table 6. We note that NBO and DBO are

positive semidefinite.

TABLE 6. Variable XB and associated NBO and DBO .

Variable XB NBO DBO

VO2 YBDP1 YBRP2

IS2 ZBDP1 ZBRP2

GBO is given by (111) in the form of a generalized

Rayleigh ratio of NBO to DBO, in the variable XB . It

follows that GBO depends on the excitation, and is defined

for XB ∈ D(DBO), where

D(DBO) = {XB ∈ C
n : XB /∈ kerDBO} . (112)

By Observation 7, the set of the values of GAO obtained

for all XA ∈ D(DAO) is equal to the set of the values of

GAO obtained for all XA ∈ D(DAO) ∩ Sm. Likewise, we

can assert that the set of the values of GBO obtained for all

XB ∈ D(DBO) is equal to the set of the values of GBO

obtained for all XB ∈ D(DBO) ∩ Sn.

Since IS1 = YS1VO1, where YS1 is invertible, it is

possible to show that the set of the values of GAO obtained

for all XA ∈ D(DAO), or for all XA ∈ D(DAO)∩Sm, does

not depend on the choice XA = VO1 or XA = IS1.

Likewise, since IS2 = YS2VO2, where YS2 is invertible,

we can show that the set of the values of GBO obtained for

all XB ∈ D(DBO), or for all XB ∈ D(DBO) ∩ Sn, does

not depend on the choice XB = VO2 or XB = IS2.

We can now state and prove two new theorems on the

operating power gains.

Theorem 17. We assume that we have D(DAO) 6= ∅, since

otherwise studying GAO is not interesting. Ignoring noise

power contributions, we can assert that:

(a) we have kerDAO ⊂ kerNAO so that Theorem 14 can

be applied to the generalized Rayleigh ratio of NAO to

DAO;

(b) the set of the values of the operating power gain in CA,

obtained for all XA ∈ D(DAO), has a least element re-

ferred to as “minimum value” and denoted by GAOMIN ,

and a greatest element referred to as “maximum value”

and denoted by GAOMAX ;

(c) if κmin and κmax are given by Theorem 14 applied to

the generalized Rayleigh ratio of NAO to DAO, in the

variable XA according to (109) and Table 5, we have

GAOMIN = κmin and GAOMAX = κmax ;

(d) if d is the nullity of DAO, and if Q and R are given by

Theorem 14 applied to the generalized Rayleigh ratio of

NAO to DAO, in the variable XA, an average value of

GAO over a number N = min{m − d, n} of nonzero

excitations XA ∈ D(DAO) is

GAOAV R =
trQ

N
=

trR

N
; (113)
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(e) we have

0 6 GAOMIN 6 GAOAV R 6 GAOMAX 6 1 ; (114)

(f) if DAO is positive definite and if λmin and λmax are

given by Theorem 12 applied to the generalized Rayleigh

ratio of NAO to DAO, in the variable XA according

to (109) and Table 5, we have GAOMIN = λmin and

GAOMAX = λmax ;

(g) if DAO is positive definite and if M is given by Theo-

rem 12 applied to the generalized Rayleigh ratio of NAO

to DAO, then GAOAV R doesn’t depend on the choice of

the variable XA, and we have

GAOAV R =
trM

min{m,n} =
tr
(

NAOD
−1

AO

)

min{m,n} . (115)

Proof: We have already observed that power conservation

entails GAO 6 1. Since DAO is positive semidefinite, we

can apply Corollary 3 to the generalized Rayleigh ratio of

NAO to DAO. It follows that kerDAO ⊂ kerNAO. Thus,

the assumptions of Theorem 14 applied to the generalized

Rayleigh ratio of NAO to DAO are satisfied. This proves (a),

and also (b) and (c), which directly follow from Theorem 14.

In (d), by Theorem 14 and [8, Sec. 1.3.3], we obtain

trQ = trR, which allows us to write the second equality

of (113). Let L, L and P be given by Theorem 14 applied

to the generalized Rayleigh ratio of NAO to DAO. By (24),

each eigenvector u of Q corresponds to a nonzero excitation

XA = Pu, and to an eigenvalue that is equal to GAO for this

XA. We have rankQ 6 m − d, and rankQ 6 rankNAO.

Using Table 5, (46) and (62), we get

rankQ 6 min{m− d, n} , (116)

so that the number of nonzero eigenvalues of Q, counting

multiplicity, is less than or equal to N = min{m − d, n}.

Since trQ is the sum of the eigenvalues of Q, counting

multiplicity, it follows that GAOAV R given by (113) is an

average of GAO over a number N of nonzero excitations

XA ∈ D(DAO). This leads us to (d) and (e).

If DAO is positive definite, we have d = 0 and L = L,

so that, according to (13), we have PL∗ = PL−1 = D
−1/2
AO .

Consequently, it follows from (6) and (14) that

LQL−1 = D
−1/2
AO NAOD

−1/2
AO = M . (117)

Thus, if DAO is positive definite, M is similar to Q. It

follows that M and Q have the same eigenvalues, counting

multiplicity, by [8, Sec. 1.3.4]. This, Theorem 12, Theo-

rem 14 and (372) of Appendix C lead us to (f) and (g).

Theorem 18. We assume that we have D(DBO) 6= ∅, since

otherwise studying GBO is not interesting. Ignoring noise

power contributions, we can assert that:

(a) we have kerDBO ⊂ kerNBO so that Theorem 14 can

be applied to the generalized Rayleigh ratio of NBO to

DBO;

(b) the set of the values of the operating power gain in CB,

obtained for all XB ∈ D(DBO), has a least element re-

ferred to as “minimum value” and denoted by GBOMIN ,

and a greatest element referred to as “maximum value”

and denoted by GBOMAX ;

(c) if κmin and κmax are given by Theorem 14 applied to

the generalized Rayleigh ratio of NBO to DBO, in the

variable XB according to (111) and Table 6, we have

GBOMIN = κmin and GBOMAX = κmax ;

(d) if d is the nullity of DBO, and if Q and R are given by

Theorem 14 applied to the generalized Rayleigh ratio of

NBO to DBO, in the variable XB , an average value of

GBO over a number N = min{m,n − d} of nonzero

excitations XB ∈ D(DBO) is

GBOAV R =
trQ

N
=

trR

N
; (118)

(e) we have

0 6 GBOMIN 6 GBOAV R 6 GBOMAX 6 1 ;
(119)

(f) if DBO is positive definite and if λmin and λmax are

given by Theorem 12 applied to the generalized Rayleigh

ratio of NBO to DBO, in the variable XB according

to (111) and Table 6, we have GBOMIN = λmin and

GBOMAX = λmax ;

(g) if DBO is positive definite and if M is given by Theo-

rem 12 applied to the generalized Rayleigh ratio of NBO

to DBO, then GBOAV R doesn’t depend on the choice of

the variable XB , and we have

GBOAV R =
trM

min{m,n} =
tr
(

NBOD
−1

BO

)

min{m,n} . (120)

Proof: Theorem 18 is Theorem 17 with a different labeling

of the ports.

Neither Theorem 17 nor Theorem 18 qualifies as a recip-

rocal theorem about the bounds of the sets of the values of

the operating power gains in CA and CB. This comment also

applies to the following new theorem.

Theorem 19. We assume D(DAO) 6= ∅ and D(DBO) 6= ∅.

Ignoring noise power contributions, we can assert that:

(a) if ZPAM11 is invertible, for a specified DUS and a

specified YS2, GAOMIN and GAOMAX do not depend

on YS1;

(b) if YSAM11 is invertible, for a specified DUS and a

specified ZS2, GAOMIN and GAOMAX do not depend

on ZS1;

(c) if ZPAM22 is invertible, for a specified DUS and a

specified YS1, GBOMIN and GBOMAX do not depend

on YS2; and

(d) if YSAM11 is invertible, for a specified DUS and a

specified ZS1, GBOMIN and GBOMAX do not depend

on ZS2.
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Proof: In CA, if ZPAM11 is invertible, then port set 1 of

the DUS has an admittance matrix

YAPP1 = Z−1

PAM11
−YS1 . (121)

Accordingly, the vector V1 may lie anywhere in C
m, we

have I1 = YAPP1V1 for any V1 ∈ C
m, and YAPP1 is

positive semidefinite because PARP1 > 0 for any V1 ∈ C
m.

Of course, YAPP1 does not depend on YS1.

In CA, if ZPAM11 is invertible, for a specified DUS and

a specified YS2, it follows that PADP2 and PARP1 are

completely determined by V1, so that any change in YS1 can

be compensated by a change in IS1 = (YAPP1+YS1)V1 to

obtain the same V1 and the same I1, hence the same PADP2

and the same PARP1, so that GAOMIN and GAOMAX do not

depend on YS1. This proves (a).

In CA, if YSAM11 is invertible, then port set 1 of the DUS

has an impedance matrix

ZAPP1 = Y−1

SAM11
− ZS1 . (122)

Accordingly, the vector I1 may lie anywhere in C
m, we

have V1 = ZAPP1I1 for any I1 ∈ C
m, and ZAPP1 is

positive semidefinite because PARP1 > 0 for any I1 ∈ C
m.

Of course, ZAPP1 does not depend on ZS1.

In CA, if YSAM11 is invertible, for a specified DUS

and a specified ZS2, it follows that PADP2 and PARP1 are

completely determined by I1, so that any change in ZS1 can

be compensated by a change in VO1 = (ZAPP1+ZS1)I1 to

obtain the same I1 and the same V1, hence the same PADP2

and the same PARP1, so that GAOMIN and GAOMAX do not

depend on ZS1. This proves (b).

Regarding (c) and (d), they correspond to (a) and (b),

respectively, with a different labeling of the port sets.

VI. AVAILABLE POWERS AT OUTPUT PORTS
A. PLAN

To investigate more power ratios, we need to compute the

available powers at the output ports of the DUS, that is to say

PAAV P2 in CA and PBAV P1 in CB.

We will study two new configurations, using short-circuit

currents in Section VI-B, and using open-circuit voltages

in Section VI-C. The theorems covering the computation of

PAAV P2 and PBAV P1 will be obtained in Section VI-D.

B. SOME RESULTS USING SHORT-CIRCUIT CURRENTS

We consider the parallel-augmented multiport defined in

Section III-B. Port set 1 of the parallel-augmented multiport

corresponds to port set 1 of the DUS connected to an m-port

load of admittance matrix YS1. Port set 2 of the parallel-

augmented multiport corresponds to port set 2 of the DUS

connected to an m-port load of admittance matrix YS2.

We will use the equivalent circuit of the DUS defined in

Corollary 1 of Part 1, composed of: the parallel-augmented

multiport defined in Section III-B; an m-port circuit of ad-

mittance matrix −YS1 connected in parallel with port set 1

of the parallel-augmented multiport; and an n-port circuit of

admittance matrix −YS2 connected in parallel with port set 2

of the parallel-augmented multiport.

In a configuration C (CC), port set 1 of the DUS is

connected to an LTI m-port generator of internal admittance

matrix YS1 and rms short-circuit current vector IS1, as in

CA, and port set 2 of the DUS is connected to an LTI n-port

device, which need neither be passive nor have an admittance

matrix. We see that an equivalent circuit of CC comprises: the

parallel-augmented multiport, of impedance matrix ZPAM ;

an m-port current source delivering IS1 connected in parallel

with port set 1 of the parallel-augmented multiport; an n-port

circuit of admittance matrix −YS2 connected in parallel with

port set 2 of the parallel-augmented multiport; and said LTI

n-port device also connected in parallel with port set 2 of the

parallel-augmented multiport. It follows that, in CC, we have

V2 = ZPAM21IS1 + ZPAM22(I2 +YS2V2) . (123)

In a configuration D (CD), port set 2 of the DUS is

connected to an LTI n-port generator of internal admittance

matrix YS2 and rms short-circuit current vector IS2, as in

CB, and port set 1 of the DUS is connected to an LTI m-port

device, which need neither be passive nor have an admittance

matrix. We find that, in CD, we have

V1 = ZPAM12IS2 + ZPAM11(I1 +YS1V1) . (124)

Let IC2 be the column vector of size n given by

IC2 = I2 +YS2V2 , (125)

and ID1 be the column vector of size m given by

ID1 = I1 +YS1V1 . (126)

Lemma 4. In CC, the LTI n-port device connected to port

set 2 of the DUS produces a relationship between V2 and

I2, but if we leave this relationship undetermined, that is to

say if this LTI n-port device is not specified, then the vector

IC2 = I2 +YS2V2 may lie anywhere in C
n.

Likewise, in CD, the LTI m-port device connected to port

set 1 of the DUS produces a relationship between V1 and

I1, but if we leave this relationship undetermined, that is to

say if this LTI m-port device is not specified, then the vector

ID1 = I1 +YS1V1 may lie anywhere in C
m.

Proof: In CC, IS1 is the vector of the rms currents

flowing in port set 1 of the parallel-augmented multiport,

and IC2 = I2 + YS2V2 is the vector of the rms currents

flowing in port set 2 of the parallel-augmented multiport.

The fact that ZPAM exists entails that the parallel-augmented

multiport creates no constraint on IS1 and IC2, so that ZPAM

can be measured by injecting arbitrary currents in the ports

of the parallel-augmented multiport. Thus, in CC, if the n-

port device connected to port set 2 is not specified, IC2 may

lie anywhere in C
n. In practice, we can decide that the LTI

n-port device is an n-port generator of internal admittance

matrix YS2 and rms short-circuit current IS2, as in CB. In

this case, IS2 = IC2, which may lie anywhere in C
n.

The argument is similar for CD.

Copyright © 2023 by Excem 13



EXCEM 

F. Broyde and E. Clavelier: Some Results on Power in Passive Linear Time-Invariant Multiports, Part 3

Observation 10. In contrast, since the DUS need not have an

impedance matrix, I2 may be constrained to lie in a proper

subspace of Cn and I1 may be constrained to lie in a proper

subspace of Cm.

Lemma 5. In CC, let PCDP2 be the average power delivered

by port set 2. Ignoring noise power contributions, we find

2PCDP2 = I∗S1Z
∗
PAM21(YS2 +Y∗

S2)ZPAM21IS1

− I∗C2ZE2IC2 + 2Re (I∗S1Z
∗
PAM21KE2IC2) , (127)

where Re(z) denotes the real part of z ∈ C, where the

impedance matrix ZE2 is of size n by n and given by

ZE2 = ZPAM22 + Z∗
PAM22

− Z∗
PAM22(YS2 +Y∗

S2)ZPAM22 , (128)

and where the dimensionless matrix KE2 is of size n by n
and given by

KE2 = (YS2 +Y∗
S2)ZPAM22 − 1n . (129)

In CD, let PDDP1 be the average power delivered by port

set 1. Ignoring noise power contributions, we find

2PDDP1 = I∗S2Z
∗
PAM12(YS1 +Y∗

S1)ZPAM12IS2

− I∗D1ZE1ID1 + 2Re (I∗S2Z
∗
PAM12KE1ID1) , (130)

where the impedance matrix ZE1 is of size m by m and given

by

ZE1 = ZPAM11 + Z∗
PAM11

− Z∗
PAM11(YS1 +Y∗

S1)ZPAM11 , (131)

and where the dimensionless matrix KE1 is of size m by m
and given by

KE1 = (YS1 +Y∗
S1)ZPAM11 − 1m . (132)

Proof: In CC, PCDP2 is given by

PCDP2 = −1

2
(V∗

2I2 + I∗2V2) . (133)

so that, using (123) and (125), we get (134) shown at the

bottom of this page. We then get (135) shown at the bottom

of this page, which leads us to (127)–(129).

The proof for CD corresponds to the proof for CC, with a

different labeling of the port sets.

Lemma 6. ZE2 and ZE1 are positive semidefinite.

Proof: By (128), ZE2 is hermitian. Let λmin be the

smallest eigenvalue of ZE2. Since, by Lemma 4, IC2 can be

any complex column vector of size n, we can assume that

IC2 = µJ, where J is an eigenvector of ZE2 associated with

the eigenvalue λmin, and where µ is an arbitrary complex

number. In this case, we have:

I∗C2ZE2IC2 = λmin|µ|2J∗J . (136)

Since J∗J > 0 and |µ| can be arbitrarily large, it follows

from (127) and (136) that PCDP2 could be arbitrarily large if

λmin was negative. But this is impossible because, the DUS

being passive, PCDP2 must be less than PAAVG1. We may

conclude that λmin is nonnegative, so that ZE2 is positive

semidefinite by [8, Sec. 7.2.1].

The proof for ZE1 corresponds to the proof for ZE2, with

a different labeling of the port sets.

Lemma 7. We have

kerZE2 ⊂ ker (Z∗
PAM21KE2) (137)

and

kerZE1 ⊂ ker (Z∗
PAM12KE1) . (138)

Proof: Let Im(z) denote the imaginary part of z ∈ C.

For any J ∈ kerZE2, since, by Lemma 4, IC2 can be any

complex column vector of size n, we can posit IC2 = µJ,

where µ is an arbitrary complex number. We get:

2PCDP2 = I∗S1Z
∗
PAM21(YS2 +Y∗

S2)ZPAM21IS1

+ 2Re(µ)Re (I∗S1Z
∗
PAM21KE2J)

− 2Im(µ)Im (I∗S1Z
∗
PAM21KE2J) . (139)

Since PCDP2 must be less than PAAVG1 for any value of

µ in C, it follows that

I∗S1Z
∗
PAM21KE2J = 0 . (140)

Since ZPAM21 and KE2 are independent of IS1, since

ZE2 is independent of IS1 so that J is independent of IS1,

and since (140) is applicable to any IS1 ∈ C
n, it follows that

J ∈ ker(Z∗
PAM21KE2). We have proven (137).

The proof for (138) corresponds to the proof for (137),

with a different labeling of the port sets.

2PCDP2 = −(ZPAM21IS1 + ZPAM22IC2)
∗
[

IC2 −YS2(ZPAM21IS1 + ZPAM22IC2)
]

−
[

IC2 −YS2(ZPAM21IS1 + ZPAM22IC2)
]∗
(ZPAM21IS1 + ZPAM22IC2) . (134)

2PCDP2 = I∗S1Z
∗
PAM21(YS2 +YS2)ZPAM21IS1

+ I∗C2

[

Z∗
PAM22(YS2ZPAM22 − 1n) + (Z∗

PAM22Y
∗
S2 − 1n)ZPAM22

]

IC2

+ I∗S1Z
∗
PAM21

[

(YS2 +Y∗
S2)ZPAM22 − 1n

]

IC2 + I∗C2

[

Z∗
PAM22(YS2 +Y∗

S2)− 1n

]

ZPAM21IS1 . (135)
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Lemma 8. We have

range (K∗
E2ZPAM21) ⊂ rangeZE2 (141)

and

range (K∗
E1ZPAM12) ⊂ rangeZE1 (142)

Proof: By Lemma 7, for any J ∈ C
n, we have

(ZE2J = 0) =⇒ (Z∗
PAM21KE2J = 0) (143)

so that, since ZE2 is hermitian,

(J∗ZE2 = 0) =⇒ (J∗K∗
E2ZPAM21 = 0) . (144)

We use the standard scalar product of Cn to define orthog-

onality [8, Sec. 0.6]. In (144), J∗ZE2 = 0 means that J is

orthogonal to each column vector of ZE2, or equivalently that

J is orthogonal to rangeZE2. In (144), J∗K∗
E2ZPAM21 = 0

means that J is orthogonal to range(K∗
E2ZPAM21).

If ZE2 is invertible, there is nothing to prove to obtain

(141). In the opposite case, using q to denote rankZE2,

where q < n, and using a Gram-Schmidt orthonormaliza-

tion process, we can build an orthonormal basis J1, . . . ,Jn

of C
n, such that J1, . . . ,Jq is an orthonormal basis of

rangeZE2. Here, for any k ∈ {q + 1, . . . , n}, Jk is or-

thogonal to rangeZE2, so that, by (144), Jk is orthogonal

to range(K∗
E2ZPAM21).

Let V be an arbitrary element of C
n, of coordinates

v1, . . . , vn in the basis J1, . . . ,Jn. For any k ∈ {1, . . . , n},

we have vk = J∗
kV. Thus, if V ∈ range(K∗

E2ZPAM21),
then vq+1 = . . . = vn = 0, so that V ∈ rangeZE2. We have

proven (141).

The proof for (142) corresponds to the proof for (141),

with a different labeling of the port sets.

Lemma 9. Let A be an arbitrary complex matrix. We use

A†, to denote the Moore-Penrose generalized inverse of A.

We assert that: Z
†
E2

and Z
†
E1

are positive semidefinite;

X = Z
†
E2

K∗
E2ZPAM21IS1 (145)

is a solution of the equation

ZE2X = K∗
E2ZPAM21IS1 (146)

in the variable X ∈ C
n; and

X = Z
†
E1

K∗
E1ZPAM12IS2 (147)

is a solution of the equation

ZE1X = K∗
E1ZPAM12IS2 (148)

in the variable X ∈ C
m.

Proof: Let p be a positive integer. If A is of size p by p and

positive semidefinite, there exist a unitary matrix U and a real

diagonal matrix Λ = diagp(λ1, . . . , λp) such that we have

λ1 > . . . > λp > 0 and A = UΛU∗. Here, A = UΛU∗

is a diagonalization of A and a singular value decomposition

of A. If A is invertible, since A−1 = A†, it follows from [8,

Sec. 7.2.1] that A† is positive definite. If A is not invertible,

we write r = rankA, and by [8, Sec. 7.3.P7] we get

A† = Udiagp

(

1

λ1

, . . . ,
1

λr
, 0, . . . , 0

)

U∗ , (149)

which is hermitian and positive semidefinite according to [8,

Sec. 7.2.1].

Thus, A† is positive semidefinite if A is positive semidefi-

nite. It follows from Lemma 6 that Z
†
E2

and Z
†
E1

are positive

semidefinite

By Lemma 8, (146) has at least one solution, and (148) has

at least one solution. Consequently, by [15, Sec. 4.3] or [16,

Sec. 5.7 to 5.8] or [8, Sec. 7.3.P9], we find that: (145) is a

solution of the equation (146); and (147) is a solution of the

equation (148).

Theorem 20. In CC, for any IS1 ∈ C
m, if we study PCDP2

as a function of IC2, which by Lemma 4 may lie anywhere

in C
n, we find that PCDP2 has a maximum, denoted by

PCDP2max and given by

PCDP2max = I∗S1ZCDP2maxIS1 , (150)

where the impedance matrix

ZCDP2max = Z∗
PAM21

× YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2

2
ZPAM21 (151)

is positive semidefinite. Thus, PCDP2max is nonnegative.

In CD, for any IS2 ∈ C
n, if we study PDDP1 as a function

of ID1, which by Lemma 4 may lie anywhere in C
m, we

find that PDDP1 has a maximum, denoted by PDDP1max and

given by

PDDP1max = I∗S2ZDDP1maxIS2 , (152)

where the impedance matrix

ZDDP1max = Z∗
PAM12

× YS1 +Y∗
S1 +KE1Z

†
E1

K∗
E1

2
ZPAM12 (153)

is positive semidefinite. Thus, PDDP1max is nonnegative.

Proof: According to Lemma 5, we have

2PCDP2 = I∗S1Z
∗
PAM21(YS2 +Y∗

S2)ZPAM21IS1

− I∗C2ZE2IC2

+ I∗S1Z
∗
PAM21KE2IC2 + I∗C2K

∗
E2ZPAM21IS1 . (154)

A variation ∆IC2 in IC2 entails a variation ∆PCDP2 in

PCDP2, where ∆PCDP2 is given by

∆PCDP2 =
1

2

[

∆I∗C2(K
∗
E2ZPAM21IS1 − ZE2IC2)

+ (I∗S1Z
∗
PAM21KE2 − I∗C2ZE2)∆IC2

−∆I∗C2ZE2∆IC2

]

. (155)
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Using Landau’s little-o notation and the fact that ZE2 is

hermitian, we obtain

∆PCDP2 = o (||∆IC2||2)
+ Re

(

∆I∗C2(K
∗
E2ZPAM21IS1 − ZE2IC2)

)

. (156)

A stationary point of PCDP2 exists if and only if, for any

∆IC2, we have ∆PCDP2 = o(||∆IC2||2), that is if and only

if we have

Re(∆I∗C2)Re(K
∗
E2ZPAM21IS1 − ZE2IC2)

− Im(∆I∗C2)Im(K∗
E2ZPAM21IS1 − ZE2IC2) = 0 ,

(157)

for any ∆IC2. Consequently, IC2 is a stationary point of

PCDP2 if and only if

ZE2IC2 = K∗
E2ZPAM21IS1 . (158)

Since, according to Lemma 9, (158) has a solution given

by (145), it follows that a stationary point of PCDP2 exists.

Using (154), (158), and the fact that ZE2 is hermitian, we

find that, at any of the stationary points, the stationary value

is

PCDP2 =
1

2

[

I∗S1Z
∗
PAM21(YS2 +Y∗

S2)ZPAM21IS1

+ I∗C2ZE2IC2

]

. (159)

If IC2 is a stationary point of PCDP2, (157) is satisfied, so

that, according to (155), we have

∆PCDP2 = −1

2
∆I∗C2ZE2∆IC2 . (160)

Thus, the single stationary value of PCDP2 is a maximum,

since ZE2 is positive semidefinite by Lemma 6. Let us use

PCDP2max to denote this maximum, which is given by (159)

where IC2 is any solution of (158). Using Lemma 9, we get

PCDP2max =
1

2

[

I∗S1Z
∗
PAM21(YS2 +Y∗

S2)ZPAM21IS1

+ I∗S1Z
∗
PAM21KE2Z

†
E2

ZE2Z
†
E2

K∗
E2ZPAM21IS1

]

.
(161)

By [15, Sec. 4.3] or [8, Sec. 7.3.P7], Z
†
E2

satisfies

Z
†
E2

= Z
†
E2

ZE2Z
†
E2

, (162)

so that (161) leads us to (150)–(151). Moreover, the

impedance matrix defined by (151) is positive semidefinite

because YS2 + Y∗
S2 is positive definite and Z

†
E2

is positive

semidefinite according to Lemma 9.

The proof for (152)–(153) corresponds to the proof for

(150)–(151), with a different labeling of the port sets.

C. SOME RESULTS USING OPEN-CIRCUIT VOLTAGES

To use open-circuit voltages, we need to define: the admit-

tance matrix YF2 given by

YF2 = YSAM22 +Y∗
SAM22

−Y∗
SAM22(ZS2 + Z∗

S2)YSAM22 , (163)

which is of size n by n; the dimensionless matrix KF2 given

by

KF2 = (ZS2 + Z∗
S2)YSAM22 − 1n , (164)

which is of size n by n; the admittance matrix YF1 given by

YF1 = YSAM11 +Y∗
SAM11

−Y∗
SAM11(ZS1 + Z∗

S1)YSAM11 , (165)

which is of size m by m; and the dimensionless matrix KF1

given by

KF1 = (ZS1 + Z∗
S1)YSAM11 − 1m , (166)

which is of size m by m.

Let VC2 be the column vector of size n given by

VC2 = V2 + ZS2I2 , (167)

and VD1 be the column vector of size m given by

VD1 = V1 + ZS1I1 . (168)

Theorem 21. In CC, for any VO1 ∈ C
m, if we study PCDP2

as a function of VC2, which may lie anywhere in C
n, we

find that PCDP2 has a maximum, denoted by PCDP2max and

given by

PCDP2max = V∗
O1YCDP2maxVO1 , (169)

where the admittance matrix

YCDP2max = Y∗
SAM21

× ZS2 + Z∗
S2 +KF2Y

†
F2

K∗
F2

2
YSAM21 (170)

is positive semidefinite. Thus, PCDP2max is nonnegative.

In CD, for any VO2 ∈ C
n, if we study PDDP1 as a

function of VD1, which may lie anywhere in C
m, we find

that PDDP1 has a maximum, denoted by PDDP1max and

given by

PDDP1max = V∗
O2YDDP1maxVO2 , (171)

where the admittance matrix

YDDP1max = Y∗
SAM12

× ZS1 + Z∗
S1 +KF1Y

†
F1

K∗
F1

2
YSAM12 (172)

is positive semidefinite. Thus, PDDP1max is nonnegative.

Proof: Theorem 21 follows from Theorem 20 and the

properties of dual networks [17, Ch. 10].

Corollary 7. In CC, the value of PCDP2max given by The-

orem 20 for a given IS1 ∈ C
m is equal to the value of

PCDP2max given by Theorem 21 for VO1 = ZS1IS1.

Likewise, in CD, the value of PDDP1max given by The-

orem 20 for a given IS2 ∈ C
n is equal to the value of

PCDP2max given by Theorem 21 for VO2 = ZS2IS2.
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Proof: By (125) and (167), VC2 = ZS2IC2, so that,

since ZS2 is invertible, a maximum of PCDP2 for IC2 lying

anywhere in C
n means the same thing as a maximum of

PCDP2 for VC2 lying anywhere in C
n.

Likewise, by (126) and (168), VD1 = ZS1ID1, so that,

since ZS1 is invertible, a maximum of PDDP1 for ID1 lying

anywhere in C
m means the same thing as a maximum of

PDDP1 for VD1 lying anywhere in C
m.

D. COMPUTATION OF THE AVAILABLE POWERS AT

THE OUTPUT PORTS

Recall that an available power is defined in Section I as the

greatest average power that can be drawn from one or more

ports by an arbitrary LTI and passive load.

Observation 11. Neither Theorem 20 nor Theorem 21 prove

that PCDP2max can be reached using an LTI n-port device

connected to port set 2 in CC, this n-port device being

passive. Thus, at this stage, PCDP2max need not be the

available power at port set 2. Likewise, neither Theorem 20

nor Theorem 21 prove that PDDP1max can be reached using

an LTI m-port device connected to port set 1 in CD, this

m-port device being passive. Thus, at this stage, PDDP1max

need not be the available power at port set 1.

Lemma 10. We assert that:

(a) a passive LTI n-port device, having an admittance matrix

YL2, is such that PCDP2 = PCDP2max when it is

connected to port set 2 in CC, if and only if there exists

IC2max ∈ C
n such that

ZPAM21IS1 + ZPAM22IC2max

∈ ker (Z∗
PAM22[YL2 +Y∗

S2]− 1n) (173)

and

ZE2IC2max = K∗
E2ZPAM21IS1 ; (174)

(b) a passive LTI n-port device, having an impedance matrix

ZL2, is such that PCDP2 = PCDP2max when it is

connected to port set 2 in CC, if and only if there exists

VC2max ∈ C
n such that

YSAM21VO1 +YSAM22VC2max

∈ ker (Y∗
SAM22[ZL2 + Z∗

S2]− 1n) (175)

and

YF2VC2max = K∗
F2YSAM21VO1 ; (176)

(c) a passive LTI m-port device, having an admittance ma-

trix YL1, is such that PDDP1 = PDDP1max when it is

connected to port set 1 in CD, if and only if there exists

ID1max ∈ C
m such that

ZPAM12IS2 + ZPAM11ID1max

∈ ker (Z∗
PAM11[YL1 +Y∗

S1]− 1m) (177)

and

ZE1ID1max = K∗
E1ZPAM12IS2 ; (178)

(d) a passive LTI m-port device, having an impedance matrix

ZL1, is such that PDDP1 = PDDP1max when it is

connected to port set 1 in CD, if and only if there exists

VD1max ∈ C
m such that

YSAM12VO2 +YSAM11VD1max

∈ ker (Y∗
SAM11[ZL1 + Z∗

S1]− 1m) (179)

and

YF1VD1max = K∗
F1YSAM12VO2 . (180)

Proof: It follows from (123) and (125) that we have

V2 = ZPAM21IS1 + ZPAM22IC2 . (181)

IC2 is a stationary point of PCDP2 if and only if the

condition (158) is satisfied. Using (181) in (158), we obtain

ZE2IC2 = K∗
E2 (V2 − ZPAM22IC2) . (182)

If a passive LTI n-port device having an admittance matrix

YL2 is connected to port set 2, we have I2 = −YL2V2.

Thus, it follows from (125) that

IC2 = (YS2 −YL2)V2 . (183)

The n-port device of admittance matrix YL2 is such that

PCDP2 = PCDP2max when it is connected to port set 2

in CC, if and only if we can simultaneously satisfy: (181),

which represents the characteristics of port set 2 of the

DUS; (182), which expresses that IC2 is a stationary point;

and (183) which represents the characteristics of the n-port

device of admittance matrix YL2.

Combining (182) and (183), we obtain
[

(ZE2 +K∗
E2ZPAM22)(YS2 −YL2)−K∗

E2

]

V2 = 0 .
(184)

It follows from (128) and (129) that

(ZE2 +K∗
E2ZPAM22)(YS2 −YL2)−K∗

E2

= Z∗
PAM22(YS2 −YL2)− Z∗

PAM22(YS2 +Y∗
S2) + 1n

= −Z∗
PAM22(YL2 +Y∗

S2) + 1n . (185)

Combining (184) and (185), we get
[

Z∗
PAM22(YL2 +Y∗

S2)− 1n

]

V2 = 0 . (186)

Taking into account (185), we can easily check that (181),

(182) and (183) are simultaneously satisfied if and only if

(158), (181) and (186) are simultaneously satisfied.

We can also eliminate V2 from (181) and (186) and note

that the DUS enforces (181). It follows that the n-port device

of admittance matrix YL2 is such that PCDP2 = PCDP2max

when it is connected to port set 2 in CC, if and only if we can

simultaneously satisfy (173) and (174).

We have proven assertion (a). Assertion (b) follows from

assertion (a) and the properties of dual networks. Assertion

(c) corresponds to assertion (a) with a different labeling of

port sets. Assertion (d) corresponds to assertion (b) with a

different labeling of port sets.
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Theorem 22. Ignoring noise power contributions, we have:

(a) if ZPAM22 is invertible, then YL2 = Z−1∗
PAM22

−Y∗
S2 is

such that any solution of (174) satisfies (173), and

PAAV P2 = I∗S1ZAAV P2IS1 , (187)

where the impedance matrix

ZAAV P2 = Z∗
PAM21

× YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2

2
ZPAM21 (188)

is positive semidefinite. Moreover, if H(Z−1

PAM22
−YS2)

is invertible, then

ZAAV P2 =
1

2
Z∗

PAM21Z
−1∗
PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21 ; (189)

(b) if YSAM22 is invertible, then ZL2 = Y−1∗
SAM22

− Z∗
S2 is

such that any solution of (176) satisfies (175), and

PAAV P2 = V∗
O1YAAV P2VO1 , (190)

where the admittance matrix

YAAV P2 = Y∗
SAM21

× ZS2 + Z∗
S2 +KF2Y

†
F2

K∗
F2

2
YSAM21 (191)

is positive semidefinite. Moreover, if H(Y−1

SAM22
−ZS2)

is invertible, then

YAAV P2 =
1

2
Y∗

SAM21Y
−1∗
SAM22

×
(

Y−1

SAM22
+Y−1∗

SAM22
− ZS2 − Z∗

S2

)−1

×Y−1

SAM22
YSAM21 ; (192)

(c) if ZPAM11 is invertible, then YL1 = Z−1∗
PAM11

−Y∗
S1 is

such that any solution of (178) satisfies (177), and

PBAV P1 = I∗S2ZBAV P1IS2 , (193)

where the impedance matrix

ZBAV P1 = Z∗
PAM12

× YS1 +Y∗
S1 +KE1Z

†
E1

K∗
E1

2
ZPAM12 (194)

is positive semidefinite. Moreover, if H(Z−1

PAM11
−YS1)

is invertible, then

ZBAV P1 =
1

2
Z∗

PAM12Z
−1∗
PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1

PAM11
ZPAM12 ; (195)

(d) if YSAM11 is invertible, then ZL1 = Y−1∗
SAM11

− Z∗
S1 is

such that any solution of (180) satisfies (179), and

PBAV P1 = V∗
O2YBAV P1VO2 , (196)

where the admittance matrix

YBAV P1 = Y∗
SAM12

× ZS1 + Z∗
S1 +KF1Y

†
F1

K∗
F1

2
YSAM12 (197)

is positive semidefinite. Moreover, if H(Y−1

SAM11
−ZS1)

is invertible, then

YBAV P1 =
1

2
Y∗

SAM12Y
−1∗
SAM11

×
(

Y−1

SAM11
+Y−1∗

SAM11
− ZS1 − Z∗

S1

)−1

×Y−1

SAM11
YSAM12 . (198)

Proof: ZPAM22 being invertible, YL2 = Z−1∗
PAM22

−Y∗
S2

is such that Z∗
PAM22(YL2+Y∗

S2)−1n = 0, so that (173) is

satisfied for any solution of (174), which exists by Lemma 9.

Thus, (187)-(188) follow from Theorem 20 and Lemma 10.

Port set 2 may be viewed as an n-port generator of internal

admittance matrix YT1 = Z−1

PAM22
− YS2 and rms short-

circuit current vector Z−1

PAM22
ZPAM21IS1 in CA, and as

a load of admittance matrix YT1 in CB. Thus, H(YT1) is

positive semidefinite. By [8, Sec. 7.2.1], it is positive definite

if it is invertible. Thus, (189) follows from the maximum

power transfer theorem for multiports [4], [13]. Appendix B

shows that (189) can be alternatively derived from (188).

We have proven assertion (a). Assertion (b) follows from

assertion (a) and the properties of dual networks. Assertions

(c) and (d) correspond to assertions (a) and (b), respectively,

with a different labeling of port sets.

Corollary 8. Ignoring noise power contributions, we assert

that:

(a) if ZPAM22 is invertible, it follows from (a) of Theo-

rem 22 and IS1 = YS1VO1 that PAAV P2 is also given

by (190), where the admittance matrix

YAAV P2 = Y∗
S1Z

∗
PAM21

× YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2

2
ZPAM21YS1 (199)

is positive semidefinite. Moreover, if H(Z−1

PAM22
−YS2)

is invertible, then

YAAV P2 =
1

2
Y∗

S1Z
∗
PAM21Z

−1∗
PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21YS1 ; (200)

(b) if YSAM22 is invertible, it follows from (b) of Theo-

rem 22 and VO1 = ZS1IS1 that PAAV P2 is also given

by (187), where the impedance matrix

ZAAV P2 = Z∗
S1Y

∗
SAM21

× ZS2 + Z∗
S2 +KF2Y

†
F2

K∗
F2

2
YSAM21ZS1 (201)
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is positive semidefinite. Moreover, if H(Y−1

SAM22
−ZS2)

is invertible, then

ZAAV P2 =
1

2
Z∗

S1Y
∗
SAM21Y

−1∗
SAM22

×
(

Y−1

SAM22
+Y−1∗

SAM22
− ZS2 − Z∗

S2

)−1

×Y−1

SAM22
YSAM21ZS1 ; (202)

(c) if ZPAM11 is invertible, it follows from (c) of Theo-

rem 22 and IS2 = YS2VO2 that PBAV P1 is also given

by (196), where the admittance matrix

YBAV P1 = Y∗
S2Z

∗
PAM12

× YS1 +Y∗
S1 +KE1Z

†
E1

K∗
E1

2
ZPAM12YS2 (203)

is positive semidefinite. Moreover, if H(Z−1

PAM11
−YS1)

is invertible, then

YBAV P1 =
1

2
Y∗

S2Z
∗
PAM12Z

−1∗
PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1

PAM11
ZPAM12YS2 ; (204)

(d) if YSAM11 is invertible, it follows from (d) of Theo-

rem 22 and VO2 = ZS2IS2 that PBAV P1 is also given

by (193), where the impedance matrix

ZBAV P1 = Z∗
S2Y

∗
SAM12

× ZS1 + Z∗
S1 +KF1Y

†
F1

K∗
F1

2
YSAM12ZS2 (205)

is positive semidefinite. Moreover, if H(Y−1

SAM11
−ZS1)

is invertible, then

ZBAV P1 =
1

2
Z∗

S2Y
∗
SAM12Y

−1∗
SAM11

×
(

Y−1

SAM11
+Y−1∗

SAM11
− ZS1 − Z∗

S1

)−1

×Y−1

SAM11
YSAM12ZS2 . (206)

Proof: If ZPAM22 is invertible, it follows from (a) of

Theorem 22 and IS1 = YS1VO1 that PAAV P2 is also given

by

PAAV P2 = V∗
O1Y

′
AAV P2VO1 , (207)

where the admittance matrix

Y′
AAV P2 = Y∗

S1Z
∗
PAM21

× YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2

2
ZPAM21YS1 (208)

is positive semidefinite. Moreover, if H(Z−1

PAM22
−YS2) is

invertible, then

Y′
AAV P2 =

1

2
Y∗

S1Z
∗
PAM21Z

−1∗
PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21YS1 . (209)

It follows from (190) and (207) that, if ZPAM22 and

YSAM22 are invertible, then, for any VO1 ∈ C
m, we have

V∗
O1YAAV P2VO1 = V∗

O1Y
′
AAV P2VO1 . (210)

Thus, using (367) of Appendix C, we may conclude that

Y′
AAV P2 = YAAV P2. This is what allows us to obtain

(199)–(200) from (208)–(209). Similar reasonings can be

used to obtain (201)–(206).

We now define two convenient propositions:

• proposition P1 is true if and only if ZPAM11 is invert-

ible or YSAM11 is invertible, or both;

• proposition P2 is true if and only if ZPAM22 is invert-

ible or YSAM22 is invertible, or both.

Corollary 9. Ignoring noise power contributions, we assert

that:

(a) it follows from (a) of Theorem 22 and (b) of Corollary 8

that, if proposition P2 is true, PAAV P2 can be computed

as a function of the variable IS1 using (187);

(b) it follows from (b) of Theorem 22 and (a) of Corollary 8

that, if proposition P2 is true, PAAV P2 can be computed

as a function of the variable VO1 using (190);

(c) it follows from (c) of Theorem 22 and (d) of Corollary 8

that, if proposition P1 is true, PBAV P1 can be computed

as a function of the variable IS2 using (193);

(d) it follows from (d) of Theorem 22 and (c) of Corollary 8

that, if proposition P1 is true, PBAV P1 can be computed

as a function of the variable VO2 using (196).

There exist connections between some conditions used in

Theorem 22 and Corollary 8, which are presented in the

following Lemma.

Lemma 11. We assert that:

(a) YSAM11 and H(Y−1

SAM11
− ZS1) are invertible if and

only if ZPAM11 and H(Z−1

PAM11
−YS1) are invertible;

(b) YSAM22 and H(Y−1

SAM22
− ZS2) are invertible if and

only if ZPAM22 and H(Z−1

PAM22
−YS2) are invertible.

Proof: If ZPAM11 is invertible, port set 1 has an ad-

mittance matrix YT2 = Z−1

PAM11
− YS1 in CA, which

must be such that H(YT2) is positive semidefinite. Thus, if

ZPAM11 and H(Z−1

PAM11
− YS1) are invertible, H(YT2)

is positive definite, so that, by Lemma 1 of Part 1, YT2 is

invertible, port set 1 has an impedance matrix ZT2 = Y−1

T2

and H(ZT2) is positive definite. Thus, by Corollary 2 of

Part 1, YSAM11 is invertible and Y−1

SAM11
= ZT2 + ZS1,

so that H(Y−1

SAM11
− ZS1) = H(ZT2) is invertible.

We have shown that YSAM11 and H(Y−1

SAM11
−ZS1) are

invertible if ZPAM11 and H(Z−1

PAM11
−YS1) are invertible.

It follows from the properties of dual networks that ZPAM11

and H(Z−1

PAM11
− YS1) are invertible if YSAM11 and

H(Y−1

SAM11
−ZS1) are invertible. This proves (a). Assertion

(b) is assertion (a) with a different labeling of port sets.

Copyright © 2023 by Excem 19



EXCEM 

F. Broyde and E. Clavelier: Some Results on Power in Passive Linear Time-Invariant Multiports, Part 3

Lemma 11 allows us to define two propositions which

will be convenient in what follows, especially when we use

Theorem 22 or Corollary 8:

• proposition P3 is true if and only if YSAM11 and

H(Y−1

SAM11
−ZS1) are invertible, or equivalently if and

only if ZPAM11 and H(Z−1

PAM11
−YS1) are invertible;

• proposition P4 is true if and only if YSAM22 and

H(Y−1

SAM22
−ZS2) are invertible, or equivalently if and

only if ZPAM22 and H(Z−1

PAM22
−YS2) are invertible.

VII. POWER TRANSFER RATIOS
A. DEFINITIONS AND BASIC FORMULAE

We introduce the power transfer ratio in CA at port set 1 of

the DUS, given by

tA1 =
PARP1

PAAVG1

, (211)

which by (27) satisfies 0 6 tA1 6 1. We introduce the power

transfer ratio in CA at port set 2 of the DUS, given by

tA2 =
PADP2

PAAV P2

, (212)

which by (28) satisfies 0 6 tA2 6 1. If n = m, we introduce

the power transfer ratio in CA without the DUS, given by

tAW =
PAW

PAAVG1

, (213)

which by (29) satisfies 0 6 tAW 6 1.

We introduce the power transfer ratio in CB at port set 1 of

the DUS, given by

tB1 =
PBDP1

PBAV P1

, (214)

which by (31) satisfies 0 6 tB1 6 1. We introduce the power

transfer ratio in CB at port set 2 of the DUS, given by

tB2 =
PBRP2

PBAVG2

, (215)

which by (30) satisfies 0 6 tB2 6 1. If n = m, we introduce

the power transfer ratio in CB without the DUS, given by

tBW =
PBW

PBAVG2

, (216)

which by (32) satisfies 0 6 tBW 6 1.

We have currently considered 6 power gains (two of them

being insertion power gains, hence valid only if m = n) and

6 power transfer ratios. Some equalities connect the ones that

are defined for a given excitation:

GAT = GAO tA1 and GBT = GBO tB2 ; (217)

and, in the case m = n,

GAT = GAI tAW and GBT = GBI tBW . (218)

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1.

Based on the results of Section III.C and Section III.D, we

find that tA1 is given by

tA1 =
X∗

A NA1 XA

X∗
A DA1 XA

, (219)

where NA1 and DA1 are hermitian matrices of size m by

m, and given in Table 7. We note that NA1 is positive

semidefinite and DA1 is positive definite.

TABLE 7. Variable XA and associated NA1 and DA1.

Variable XA NA1 DA1

VO1 YARP1 YAAV G1

IS1 ZARP1 ZAAV G1

tA1 is given by (219) in the form of a generalized Rayleigh

ratio of NA1 to DA1, in the variable XA. Thus, tA1 depends

on the excitation. Since DA1 is positive definite, tA1 is

defined for any nonzero XA ∈ C
m.

Based on Section III.C, Section III.D and Corollary 9, we

find that, if proposition P2 is true, tA2 is given by

tA2 =
X∗

A NA2 XA

X∗
A DA2 XA

, (220)

where NA2 and DA2 are hermitian matrices of size m by m,

and given in Table 8. We note that NA2 and DA2 are positive

semidefinite.

TABLE 8. Variable XA and associated NA2 and DA2.

Variable XA Applicability NA2 DA2

VO1 proposition P2 is true YADP2 YAAV P2

IS1 proposition P2 is true ZADP2 ZAAV P2

If proposition P2 is true, tA2 is given by (220) in the form

of a generalized Rayleigh ratio of NA2 to DA2, in the vari-

able XA. It follows that tA2 depends on the excitation, and

that, according to the explanations provided in Section II.A,

tA2 is defined for XA ∈ D(DA2), where

D(DA2) = {XA ∈ C
m : XA /∈ kerDA2} . (221)

Based on the results of Section III.C and Section III.D, we

find that, if n = m, then tAW is given by

tAW =
X∗

A NAW XA

X∗
A DAW XA

, (222)

where NAW and DAW are hermitian matrices of size m by

m, and given in Table 9. We note that NAW and DAW are

positive definite.

TABLE 9. Variable XA and associated NAW and DAW .

Variable XA NAW DAW

VO1 YAW YAAV G1

IS1 ZAW ZAAV G1

tAW is given by (222) in the form of a generalized

Rayleigh ratio of NAW to DAW , in the variable XA. Thus,

tAW depends on the excitation. Since DAW is positive

definite, tAW is defined for any nonzero XA ∈ C
m.

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2.
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Based on Section III.C, Section III.D and Corollary 9, we

find that, if proposition P1 is true, tB1 is given by

tB1 =
X∗

B NB1 XB

X∗
B DB1 XB

, (223)

where NB1 and DB1 are hermitian matrices of size n by

n, and given in Table 10. We note that NB1 and DB1 are

positive semidefinite.

TABLE 10. Variable XB and associated NB1 and DB1.

Variable XB Applicability NB1 DB1

VO2 proposition P1 is true YBDP1 YBAV P1

IS2 proposition P1 is true ZBDP1 ZBAV P1

If proposition P1 is true, tB1 is given by (223) in the

form of a generalized Rayleigh ratio of NB1 to DB1, in

the variable XB . Thus, tB1 depends on the excitation and

is defined for XB ∈ D(DB1), where

D(DB1) = {XB ∈ C
n : XB /∈ kerDB1} . (224)

Based on the results of Section III.C and Section III.D, we

find that tB2 is given by

tB2 =
X∗

B NB2 XB

X∗
B DB2 XB

, (225)

where NB2 and DB2 are hermitian matrices of size n by

n, and given in Table 11. We note that NB2 is positive

semidefinite and DB2 is positive definite.

TABLE 11. Variable XB and associated NB2 and DB2.

Variable XB NB2 DB2

VO2 YBRP2 YBAV G2

IS2 ZBRP2 ZBAV G2

tB2 is given by (225) in the form of a generalized Rayleigh

ratio of NB2 to DB2, in the variable XB . Thus, tB2 depends

on the excitation. Since DB2 is positive definite, tB2 is

defined for any nonzero XB ∈ C
n.

Based on the results of Section III.C and Section III.D, we

find that, if n = m, then tBW is given by

tBW =
X∗

B NBW XB

X∗
B DBW XB

, (226)

where NBW and DBW are hermitian matrices of size m by

m, and given in Table 12. We note that NBW and DBW are

positive definite.

TABLE 12. Variable XB and associated NBW and DBW .

Variable XB NBW DBW

VO2 YBW YBAV G2

IS2 ZBW ZBAV G2

tBW is given by (226) in the form of a generalized

Rayleigh ratio of NBW to DBW , in the variable XB . Thus,

tBW depends on the excitation. Since DBW is positive

definite, tBW is defined for any nonzero XB ∈ C
m.

B. BOUNDS OF THE POWER TRANSFER RATIOS

WITHOUT THE DUS

By Observation 7, for m = n, we can assert that: the set

of the values of tAW obtained for all XA ∈ C
m such that

XA 6= 0 is equal to the set of the values of tAW obtained for

all XA ∈ Sm; and the set of the values of tBW obtained for

all XB ∈ C
m such that XB 6= 0 is equal to the set of the

values of tBW obtained for all XB ∈ Sm.

Since IS1 = YS1VO1, where YS1 is invertible, we can

assert that the set of the values of tAW obtained for all

nonzero XA ∈ C
m, or for all XA ∈ Sm, does not depend

on the choice XA = VO1 or XA = IS1.

Likewise, since m = n and IS2 = YS2VO2, where YS2

is invertible, we can assert that the set of the values of tBW

obtained for all nonzero XB ∈ C
m, or for all XB ∈ Sm,

does not depend on the choice XB = VO2 or XB = IS2.

We can now state and prove a reciprocal theorem on the

bounds of the sets of the values of the power transfer ratios

without the DUS in CA and CB.

Theorem 23. We assume n = m. Ignoring noise power

contributions, we can assert that:

(a) the set of the values of the power transfer ratio in CA

without the DUS, obtained for all nonzero VO1 ∈ C
m,

or equivalently for all nonzero IS1 ∈ C
m, has a least

element referred to as “minimum value” and denoted by

tAW MIN , and a greatest element referred to as “maxi-

mum value” and denoted by tAW MAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NAW to DAW , in the

variable XA according to (222) and Table 9, we have

tAW MIN = λmin and tAW MAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NAW to DAW , in the variable XA, an

average value of tAW over m nonzero excitations is

tAW AVR =
trM

m
=

tr
(

NAWD−1

AW

)

m
; (227)

(d) tAW AVR doesn’t depend on the choice of XA, and

0 6 tAW MIN 6 tAW AVR 6 tAW MAX 6 1 ; (228)

(e) the set of the values of the power transfer ratio in CB

without the DUS, obtained for all nonzero VO2 ∈ C
m,

or equivalently for all nonzero IS2 ∈ C
m, has a least

element referred to as “minimum value” and denoted by

tBW MIN , and a greatest element referred to as “maxi-

mum value” and denoted by tBW MAX ;

(f) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NBW to DBW , in the

variable XB according to (226) and Table 12, we have

tBW MIN = λmin and tBW MAX = λmax ;

(g) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NBW to DBW , in the variable XB , an

average value of tBW over m nonzero excitations is

tBW AVR =
trM

m
=

tr
(

NBWD−1

BW

)

m
; (229)
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(h) tBW AVR doesn’t depend on the choice of XB , and

0 6 tBW MIN 6 tBW AVR 6 tBW MAX 6 1 ; (230)

(i) we have

tAW MAX = tBW MAX , (231)

tAW AVR = tBW AVR , (232)

and

tAW MIN = tBW MIN . (233)

Proof: Since DAW and DBW are positive definite, asser-

tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NAWD−1

AW

)

, and the second equality of (227).

By (8), each eigenvector y of M corresponds to a nonzero

excitation XA = D
−1/2
AW y, and to an eigenvalue that is equal

to tAW for this XA. Using Table 9, (48) and (64), we get

rank
(

NAWD−1

AW

)

= rankNAW = m, (234)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is m. Since trM is the sum of the eigenvalues

of M, counting multiplicity, it follows that tAW AVR given

by (227) is an average of tAW over m nonzero excitations.

This proves (c). Assertion (d) follows from (c), (372) of

Appendix C, and 0 6 tAW 6 1.

In (g), by Theorem 12, we have trM = tr
(

NBWD−1

BW

)

,

which allows us to write the second equality of (229). Using

Table 12, (54) and (70), we get

rank
(

NBWD−1

BW

)

= rankNBW = m, (235)

which can be used to prove (g) as we used (234) to prove

(c). Assertion (h) follows from (g), (373) of Appendix C, and

0 6 tBW 6 1.

To prove (i), we can assume XA = IS1 and XB = IS2.

By Theorem 12, we only need to compare the eigenvalues of

L = NAWD−1

AW with the eigenvalues of K = NBWD−1

BW .

It follows from Table 12, (58) and (70) that

K = (YS1 +YS2)
−1∗

× (YS1 +Y∗
S1)(YS1 +YS2)

−1(YS2 +Y∗
S2) , (236)

which is of size m by m.

It follows from Table 9, (56) and (64) that

L = (YS1 +YS2)
−1∗

× (YS2 +Y∗
S2)(YS1 +YS2)

−1(YS1 +Y∗
S1) , (237)

which is of size m by m. It follows from Lemma 3 of Part 2

applied to A = YS1 and B = YS2 that K and L have the

same eigenvalues, counting multiplicity, which leads to the

final assertions of Theorem 23.

Theorem 23 may be viewed as a better version of Theo-

rem 8 of Part 2.

C. BOUNDS OF THE POWER TRANSFER RATIOS AT

PORT SET 1

By Observation 7, the set of the values of tA1 obtained for all

XA ∈ C
m such that XA 6= 0 is equal to the set of the values

of tA1 obtained for all XA ∈ Sm.

If proposition P1 is true, the set of the values of tB1

obtained for all XB ∈ D(DB1) is equal to the set of the

values of tB1 obtained for all XB ∈ D(DB1) ∩ Sn.

Since IS1 = YS1VO1, where YS1 is invertible, we can

assert that the set of the values of tA1 obtained for all nonzero

XA ∈ C
m, or for all XA ∈ Sm, does not depend on the

choice XA = VO1 or XA = IS1.

Since IS2 = YS2VO2, where YS2 is invertible, we can

demonstrate that, if proposition P1 is true, the set of the val-

ues of tB1 obtained for all XB ∈ D(DB1), or equivalently

for all XB ∈ D(DB1) ∩ Sn, is independent of the choice

XB = VO2 or XB = IS2.

We can now state and prove a new reciprocal theorem on

the bounds of the sets of the values of the power transfer

ratios at port set 1 in CA and CB.

Theorem 24. Ignoring noise power contributions, we can

assert that:

(a) the set of the values of the power transfer ratio in

CA at port set 1 of the DUS, obtained for all nonzero

VO1 ∈ C
m, or equivalently for all nonzero IS1 ∈ C

m,

has a least element referred to as “minimum value” and

denoted by tA1MIN , and a greatest element referred to

as “maximum value” and denoted by tA1MAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NA1 to DA1, in the

variable XA according to (219) and Table 7, we have

tA1MIN = λmin and tA1MAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NA1 to DA1, in the variable XA, an

average value of tA1 over m nonzero excitations is

tA1AV R =
trM

m
=

tr
(

NA1D
−1

A1

)

m
; (238)

(d) tA1AV R doesn’t depend on the choice of XA, and

0 6 tA1MIN 6 tA1AV R 6 tA1MAX 6 1 ; (239)

(e) if proposition P1 is true, we have kerDB1 ⊂ kerNB1

so that Theorem 14 can be applied to the generalized

Rayleigh ratio of NB1 to DB1;

(f) if proposition P1 is true, the set of the values of the power

transfer ratio in CB at port set 1 of the DUS, obtained

for all XB ∈ D(DB1), has a least element referred

to as “minimum value” and denoted by tB1MIN , and

a greatest element referred to as “maximum value” and

denoted by tB1MAX ;

(g) if proposition P1 is true, and if κmin and κmax are given

by Theorem 14 applied to the generalized Rayleigh ratio

of NB1 to DB1, in the variable XB according to (223)

and Table 10, then we obtain tB1MIN = κmin and

tB1MAX = κmax ;
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(h) if proposition P1 is true, if d is the nullity of DB1,

and if Q and R are given by Theorem 14 applied

to the generalized Rayleigh ratio of NB1 to DB1, in

the variable XB , then an average value of tB1 over a

number N = min{m,n − d} of nonzero excitations

XB ∈ D(DB1) is

tB1AV R =
trQ

N
=

trR

N
; (240)

(i) if proposition P1 is true, we have

0 6 tB1MIN 6 tB1AV R 6 tB1MAX 6 1 ; (241)

(j) if proposition P1 is true, if DB1 is positive definite (this

is possible only if m > n) and if λmin, λmax and M are

given by Theorem 12 applied to the generalized Rayleigh

ratio of NB1 to DB1, in the variable XB , then

• we have tB1MIN = λmin and tB1MAX = λmax ;

• tB1AV R doesn’t depend on the choice of the vari-

able XB , and we have

tB1AV R =
trM

min{m,n} =
tr
(

NB1D
−1

B1

)

min{m,n} ; (242)

(k) if proposition P3 is true, and if rankYSAM12 = m
and/or rankZPAM12 = m, we have

tA1MAX = tB1MAX , (243)

and
tA1MIN = tB1MIN ; (244)

(ℓ ) if proposition P3 is true, if m = n, and if YSAM12 is

invertible and/or ZPAM12 is invertible, then

tA1AV R = tB1AV R . (245)

Proof: Since DA1 is positive definite, assertions (a) and

(b) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NA1D
−1

A1

)

, and the second equality of (238).

By (8), each eigenvector y of M corresponds to a nonzero

excitation XA = D
−1/2
A1

y, and to an eigenvalue that is equal

to tA1 for this XA. Using Table 7, (44) and (60), we get

rank
(

NA1D
−1

A1

)

= rankNA1 6 m, (246)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is less than or equal to m. Since trM is the sum

of the eigenvalues of M, counting multiplicity, it follows that

tA1AV R given by (238) is an average of tA1 over m nonzero

excitations. This, (372) of Appendix C, and 0 6 tA1 6 1
lead us to (c) and (d).

We have already observed that tB1 6 1. Thus, if proposi-

tion P1 is true, we can apply Corollary 3 to the generalized

Rayleigh ratio of NB1 to DB1 in the variable XB , because

DB1 is positive semidefinite. Thus, kerDB1 ⊂ kerNB1. It

follows that the assumptions of Theorem 14 applied to the

generalized Rayleigh ratio of NB1 to DB1, in the variable

XB , are satisfied. This proves (e), and also (f) and (g), which

directly follow from Theorem 14.

In (h), by Theorem 14 and [8, Sec. 1.3.3], we obtain

trQ = trR, which allows us to write the second equality

of (240). Let L, L and P be given by Theorem 14 applied

to the generalized Rayleigh ratio of NB1 to DB1. By (24),

each eigenvector u of Q corresponds to a nonzero excitation

XB = Pu, and to an eigenvalue that is equal to tB1 for this

XB . We have rankQ 6 n − d, and rankQ 6 rankNB1.

Using Table 10, (52) and (68), we get

rankQ 6 min{m,n− d} , (247)

so that the number of nonzero eigenvalues of Q, counting

multiplicity, is less than or equal to N = min{m,n − d}.

Since trQ is the sum of the eigenvalues of Q, counting

multiplicity, it follows that tB1AV R given by (240) is an

average of tB1 over a number N of nonzero excitations

XB ∈ D(DB1). This and 0 6 tB1 6 1 lead us to (h) and (i).

If DB1 is positive definite, we have d = 0 and L = L, so

that, according to (13), we have PL∗ = PL−1 = D
−1/2
B1

.

Consequently, it follows from (6) and (14) that

LQL−1 = D
−1/2
B1

NB1D
−1/2
B1

= M . (248)

Thus, if DB1 is positive definite, M is similar to Q. It

follows that M and Q have the same eigenvalues, counting

multiplicity, by [8, Sec. 1.3.4]. This, Theorem 12, Theo-

rem 14, and (373) of Appendix C lead us to (j).

If YSAM11 is invertible, port set 1 behaves, in CA, as an

m-port load of impedance matrix ZT2 = Y−1

SAM11
− ZS1.

If follows that H(Y−1

SAM11
− ZS1) is positive semidefinite.

Thus, if YSAM11 and H(Y−1

SAM11
− ZS1) are invertible,

H(ZT2) is positive definite. If YSAM11 is invertible, port

set 1 behaves, in CB, as an m-port generator of internal

impedance matrix ZT2 and rms open-circuit voltage vector

VT2 = −Y−1

SAM11
YSAM12VO2.

If proposition P3 is true and rankYSAM12 = m, then

H(ZT2) is positive definite and VT2 may take on any value

lying in C
m, so that: at port set 1, configuration CA of Theo-

rem 24 is the configuration “CA without the DUS” of Theo-

rem 23 applied to the m-port generator of internal impedance

matrix ZS1 and to an m-port load of impedance matrix ZT2;

and, at port set 1, configuration CB of Theorem 24 is the

configuration “CB without the DUS” of Theorem 23 applied

to an m-port generator of internal impedance matrix ZT2 and

to the m-port load of impedance matrix ZS1.

Thus, if proposition P3 is true and rankYSAM12 = m,

assertion (i) of Theorem 23 leads us to (243)–(244). If

proposition P3 is true and rankZPAM12 = m, a similar

reasoning also allows us to use assertion (i) of Theorem 23 to

obtain (243)–(244). These results lead us to (k).

We now assume that proposition P3 is true, m = n, and

YSAM12 is invertible and/or ZPAM12 is invertible. It follows

from (195), (198), (204) and (206) that DB1 is positive

definite and that YSAM12 and ZPAM12 are invertible. By (d)

and (j), tA1AV R doesn’t depend on the choice of XA, and

tB1AV R doesn’t depend on the choice of XB . Consequently,

to prove (ℓ ), we can assume XA = IS1 and XB = IS2.

By Theorem 12, we only need to compare the eigenvalues of

L = NA1D
−1

A1
with the eigenvalues of J = NB1D

−1

B1
.
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By Table 10, (68) and (195), we have

J = Z∗
PAM12(YS1 +Y∗

S1)ZPAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)

× Z∗
PAM11Z

−1∗
PAM12

. (249)

ZPAM11 being invertible, we find that J is similar to

K = Z∗
PAM11(YS1 +Y∗

S1)ZPAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)

. (250)

By Table 7, (56) and (60), we have

L = Z∗
PAM11

(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)

× ZPAM11(YS1 +Y∗
S1) . (251)

It follows from Lemma 3 of Part 2 applied to A = YS1

and B = Z−1

PAM11
− YS1 that K and L have the same

eigenvalues, counting multiplicity.

This proves (ℓ ).

D. BOUNDS OF THE POWER TRANSFER RATIOS AT

PORT SET 2

By Observation 7, the set of the values of tB2 obtained for all

XB ∈ C
n such that XB 6= 0 is equal to the set of the values

of tB2 obtained for all XB ∈ Sn.

If proposition P2 is true, the set of the values of tA2

obtained for all XA ∈ D(DA2) is equal to the set of the

values of tA2 obtained for all XA ∈ D(DA2) ∩ Sm.

Since IS2 = YS2VO2, where YS2 is invertible, we can

assert that the set of the values of tB2 obtained for all nonzero

XB ∈ C
n, or for all XB ∈ Sn, does not depend on the choice

XB = VO2 or XB = IS2.

Since IS1 = YS1VO1, where YS1 is invertible, we can

demonstrate that, if proposition P2 is true, the set of the

values of tA2 obtained for all XA ∈ D(DA2), or equivalently

for all XA ∈ D(DA2) ∩ Sm, is independent of the choice

XA = VO1 or XA = IS1.

We can now state and prove a new reciprocal theorem on

the bounds of the sets of the values of the power transfer

ratios at port set 2 in CA and CB.

Theorem 25. Ignoring noise power contributions, we can

assert that:

(a) the set of the values of the power transfer ratio in

CB at port set 2 of the DUS, obtained for all nonzero

VO2 ∈ C
n, or equivalently for all nonzero IS2 ∈ C

n,

has a least element referred to as “minimum value” and

denoted by tB2MIN , and a greatest element referred to

as “maximum value” and denoted by tB2MAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NB2 to DB2, in the

variable XB according to (225) and Table 11, we have

tB2MIN = λmin and tB2MAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NB2 to DB2, in the variable XB , an

average value of tB2 over n nonzero excitations is

tB2AV R =
trM

n
=

tr
(

NB2D
−1

B2

)

n
; (252)

(d) tB2AV R doesn’t depend on the choice of XB , and

0 6 tB2MIN 6 tB2AV R 6 tB2MAX 6 1 ; (253)

(e) if proposition P2 is true, we have kerDA2 ⊂ kerNA2

so that Theorem 14 can be applied to the generalized

Rayleigh ratio of NA2 to DA2;

(f) if proposition P2 is true, the set of the values of the power

transfer ratio in CA at port set 2 of the DUS, obtained

for all XA ∈ D(DA2), has a least element referred

to as “minimum value” and denoted by tA2MIN , and

a greatest element referred to as “maximum value” and

denoted by tA2MAX ;

(g) if proposition P2 is true, and if κmin and κmax are

given by Theorem 14 applied to the generalized Rayleigh

ratio of NA2 to DA2, in the variable XA according to

(220) and Table 8, then we obtain tA2MIN = κmin and

tA2MAX = κmax ;

(h) if proposition P2 is true, if d is the nullity of DA2,

and if Q and R are given by Theorem 14 applied

to the generalized Rayleigh ratio of NA2 to DA2, in

the variable XA, then an average value of tA2 over a

number N = min{m − d, n} of nonzero excitations

XA ∈ D(DA2) is

tA2AV R =
trQ

N
=

trR

N
; (254)

(i) if proposition P2 is true, we have

0 6 tA2MIN 6 tA2AV R 6 tA2MAX 6 1 ; (255)

(j) if proposition P2 is true, if DA2 is positive definite (this

is possible only if n > m) and if λmin, λmax and M are

given by Theorem 12 applied to the generalized Rayleigh

ratio of NA2 to DA2, in the variable XA, then

• we have tA2MIN = λmin and tA2MAX = λmax ;

• tA2AV R doesn’t depend on the choice of the variable

XA, and we have

tA2AV R =
trM

min{m,n} =
tr
(

NA2D
−1

A2

)

min{m,n} ; (256)

(k) if proposition P4 is true, and if rankYSAM21 = n
and/or rankZPAM21 = n, we have

tA2MAX = tB2MAX , (257)

and

tA2MIN = tB2MIN ; (258)

(ℓ ) if proposition P4 is true, if m = n, and if YSAM21 is

invertible and/or ZPAM21 is invertible, then

tA2AV R = tB2AV R . (259)

Proof: Theorem 25 corresponds to Theorem 24 with a

different labeling of port sets.
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VIII. AVAILABLE POWER GAINS
We introduce two available power gains [3, Sec. 21-18]: the

available power gain in CA, given by

GAA =
PAAV P2

PAAVG1

, (260)

and the available power gain in CB, given by

GBA =
PBAV P1

PBAVG2

. (261)

It follows from (28) and (31) that we have 0 6 GAA 6 1
and 0 6 GBA 6 1.

Theorem 26. Ignoring noise power contributions, we can

assert that:

(a) for a specified DUS, a specified excitation and a specified

YS1 (or ZS1), GAA does not depend on YS2 (or ZS2);

(b) for a specified DUS, a specified excitation and a specified

YS2 (or ZS2), GBA does not depend on YS1 (or ZS1).

Proof: In CA, PAAVG1 depends on the m-port generator

connected to port set 1, but neither on the DUS nor on the

n-port load connected to port set 2; and PAAV P2 depends on

the m-port generator connected to port set 1 and on the DUS,

but not on the n-port load connected to port set 2. This leads

us to (a).

Likewise, in CB, PBAVG2 depends neither on the DUS

nor on the m-port load connected to port set 1; and in CB,

PBAV P1 does not depend on the m-port load connected to

port set 1. This leads us to (b).

Observation 12. There is a similarity between Theorem 19

and Theorem 26. There are also several noteworthy differ-

ences between them.

We remark that, if tA2 is defined and nonzero, we have

GAA =
GAT

tA2

. (262)

Likewise, if tB1 is defined and nonzero, we have

GBA =
GBT

tB1

. (263)

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1. Based on Section III.C, Section III.D

and Corollary 9, we find that, if proposition P2 is true, GAA

is given by

GAA =
X∗

A NAA XA

X∗
A DAA XA

, (264)

where NAA and DAA are hermitian matrices of size m by

m, and given in Table 13. We note that NAA is positive

semidefinite and DAA is positive definite.

TABLE 13. Variable XA and associated NAA and DAA.

Variable XA Applicability NAA DAA

VO1 proposition P2 is true YAAV P2 YAAV G1

IS1 proposition P2 is true ZAAV P2 ZAAV G1

If proposition P2 is true, GAA is given by (264) in the

form of a generalized Rayleigh ratio of NAA to DAA, in the

variable XA. Thus, GAA depends on the excitation. Since

DAA is positive definite, GAA is defined for any nonzero

XA ∈ C
m.

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2. Based on Section III.C, Section III.D

and Corollary 9, we find that, if proposition P1 is true, GBA

is given by

GBA =
X∗

B NBA XB

X∗
B DBA XB

, (265)

where NBA and DBA are hermitian matrices of size n by

n, and given in Table 14. We note that NBA is positive

semidefinite and DBA is positive definite.

TABLE 14. Variable XB and associated NBA and DBA.

Variable XB Applicability NBA DBA

VO2 proposition P1 is true YBAV P1 YBAV G2

IS2 proposition P1 is true ZBAV P1 ZBAV G2

If proposition P1 is true, GBA is given by (265) in the

form of a generalized Rayleigh ratio of NBA to DBA, in the

variable XB . Thus, GBA depends on the excitation. Since

DBA is positive definite, GBA is defined for any nonzero

XB ∈ C
n.

If proposition P2 is true, the set of the values of GAA

obtained for all nonzero XA ∈ C
m is equal to the set of

the values of GAA obtained for all XA ∈ Sm.

Since IS1 = YS1VO1, where YS1 is invertible, we can

assert that the set of the values of GAA obtained for all

nonzero XA ∈ C
m, or for all XA ∈ Sm, does not depend

on the choice XA = VO1 or XA = IS1.

If proposition P1 is true, the set of the values of GBA

obtained for all nonzero XB ∈ C
n is equal to the set of the

values of GBA obtained for all XB ∈ Sn.

Since IS2 = YS2VO2, where YS2 is invertible, we can

assert that the set of the values of GBA obtained for all

nonzero XB ∈ C
n, or for all XB ∈ Sn, does not depend

on the choice XB = VO2 or XB = IS2.

We can now state and prove two new reciprocal theorems

involving operating power gains and available power gains in

CA and CB.

Theorem 27. We assume that proposition P2 is true. Ignoring

noise power contributions, we can assert that:

(a) the set of the values of the available power gain in CA,

obtained for all nonzero VO1 ∈ C
m, or equivalently

for all nonzero IS1 ∈ C
m, has a least element referred

to as “minimum value” and denoted by GAAMIN , and

a greatest element referred to as “maximum value” and

denoted by GAAMAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NAA to DAA, in the

variable XA according to (264) and Table 13, we have

GAAMIN = λmin and GAAMAX = λmax ;
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(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NAA to DAA, in the variable XA,

an average value of GAA over a number min{m,n} of

nonzero excitations is

GAAAV R =
trM

min{m,n} =
tr
(

NAAD
−1

AA

)

min{m,n} ; (266)

(d) GAAAV R doesn’t depend on the choice of XA, and

0 6 GAAMIN 6 GAAAV R 6 GAAMAX 6 1 ; (267)

(e) if proposition P4 is true, and if the DUS and both loads

are reciprocal devices, we have

GAAMAX = GBOMAX , (268)

GAAAV R = GBOAV R , (269)

(m = n) =⇒ (GAAMIN = GBOMIN ) , (270)

(m > n) =⇒ (GAAMIN = 0) , (271)

and

(m < n) =⇒ (GBOMIN = 0) . (272)

Proof: Since DAA is positive definite, assertions (a) and

(b) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NAAD
−1

AA

)

, and the second equality of (266).

By (8), each eigenvector y of M corresponds to a nonzero

excitation XA = D
−1/2
AA y, and to an eigenvalue that is equal

to GAA for this XA. Using Table 13, (188) and (191), we get

rank
(

NAAD
−1

AA

)

= rankNAA 6 min{m,n} , (273)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is less than or equal to min{m,n}. Since trM
is the sum of the eigenvalues of M, counting multiplicity, it

follows that GAAAV R given by (266) is an average of GAA

over a number min{m,n} of nonzero excitations. This, (372)

of Appendix C, and 0 6 GAA 6 1 lead us to (c) and (d).

To prove (e), by Lemma 11 we can assume that ZPAM22

is invertible, H(Z−1

PAM22
− YS2) is invertible, XA = IS1

and XB = IS2. Using Table 6 and (66), we get

DBO = ZBRP2 =
1

2
Z∗

PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)

× ZPAM22 , (274)

so that DBO = ZBRP2 is invertible, hence positive definite.

Thus, by Theorem 12 and Theorem 18, we only need

to compare the eigenvalues of A = NAAD
−1

AA with the

eigenvalues of B = NBOD
−1

BO. It follows from Table 13,

(56) and (189) that

A = Z∗
PAM21Z

−1∗
PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21 (YS1 +Y∗

S1) . (275)

which is of size m by m. It follows from Table 6, (68) and

(274) that

B = Z∗
PAM12(YS1 +Y∗

S1)ZPAM12Z
−1

PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1∗
PAM22

, (276)

which is of size n by n.

If the DUS and both loads are reciprocal devices, ZPAM ,

YS1 and YS2 are symmetric. Thus, ZPAM22 is symmetric

and the transpose of ZPAM12 is ZPAM21, so that

BT = Z−1∗
PAM22

(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21(YS1 +Y∗

S1)Z
∗
PAM21 . (277)

By [8, Sec. 1.4.1], the eigenvalues of BT are the same as

those of B, counting multiplicity. We note that, if we write

C = Z−1∗
PAM22

(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21(YS1 +Y∗

S1) , (278)

the right hand sides of (275) and (277) are Z∗
PAM21C and

CZ∗
PAM21, respectively. Thus, using [8, Sec. 1.3.22] and the

fact that Z∗
PAM21 is of size m by n, we find that:

• if m = n, then A and B have the same eigenvalues,

counting multiplicity;

• if m > n, then A has the same eigenvalues as B,

counting multiplicity, together with m − n additional

eigenvalues equal to zero; and

• if m < n, then B has the same eigenvalues as A,

counting multiplicity, together with n − m additional

eigenvalues equal to zero.

This leads to (268)–(272).

Theorem 28. We assume that proposition P1 is true. Ignoring

noise power contributions, we can assert that:

(a) the set of the values of the available power gain in CB,

obtained for all nonzero VO2 ∈ C
n, or equivalently for

all nonzero IS2 ∈ C
n, has a least element referred to

as “minimum value” and denoted by GBAMIN , and a

greatest element referred to as “maximum value” and

denoted by GBAMAX ;

(b) if λmin and λmax are given by Theorem 12 applied to

the generalized Rayleigh ratio of NBA to DBA, in the

variable XB according to (265) and Table 14, we have

GBAMIN = λmin and GBAMAX = λmax ;

(c) if M is given by Theorem 12 applied to the generalized

Rayleigh ratio of NBA to DBA, in the variable XB ,

an average value of GBA over a number min{m,n} of

nonzero excitations is

GBAAV R =
trM

min{m,n} =
tr
(

NBAD
−1

BA

)

min{m,n} ; (279)

(d) GBAAV R doesn’t depend on the choice of XB , and

0 6 GBAMIN 6 GBAAV R 6 GBAMAX 6 1 ; (280)
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(e) if proposition P3 is true, and if the DUS and both loads

are reciprocal devices, we have

GBAMAX = GAOMAX , (281)

GBAAV R = GAOAV R , (282)

(m = n) =⇒ (GBAMIN = GAOMIN ) , (283)

(n > m) =⇒ (GBAMIN = 0) , (284)

and

(n < m) =⇒ (GAOMIN = 0) . (285)

Proof: Theorem 28 corresponds to Theorem 27 with a

different labeling of port sets.

IX. UNNAMED POWER GAINS
Unnamed power gains were first introduced in [5, Sec. IV.G],

for a two-port. Here, we introduce the unnamed power gain

in CA, given by

GAU =
PAAV P2

PARP1

, (286)

and the unnamed power gain in CB, given by

GBU =
PBAV P1

PBRP2

. (287)

If they exist, GAU and GBU are nonnegative, but they need

not be less than or equal to one. We have

GAA = GAU tA1 and GAO = GAU tA2 (288)

and

GBA = GBU tB2 and GBO = GBU tB1 , (289)

where each equality in (288)–(289) is valid if and only if both

terms of its right hand side are defined.

To define the excitation in CA, let XA denote one of the

variables VO1 or IS1. Based on Section III.C, Section III.D

and Corollary 9, we find that, if proposition P2 is true, GAU

is given by

GAU =
X∗

A NAU XA

X∗
A DAU XA

, (290)

where NAU and DAU are hermitian matrices of size m by

m, and given in Table 15. We note that NAU and DAU are

positive semidefinite.

TABLE 15. Variable XA and associated NAU and DAU .

Variable XA Applicability NAU DAU

VO1 proposition P2 is true YAAV P2 YARP1

IS1 proposition P2 is true ZAAV P2 ZARP1

GAU is given by (290) in the form of a generalized

Rayleigh ratio of NAU to DAU , in the variable XA. Thus,

GAU depends on the excitation. According to the explana-

tions provided in Section II.A, it is defined if and only if

proposition P2 is true and XA ∈ D(DAU ), where

D(DAU ) = {XA ∈ C
m : XA /∈ kerDAU} . (291)

To define the excitation in CB, let XB denote one of the

variables VO2 or IS2. Based on Section III.C, Section III.D

and Corollary 9, we find that, if proposition P1 is true, GBU

is given by

GBU =
X∗

B NBU XB

X∗
B DBU XB

, (292)

where NBU and DBU are hermitian matrices of size n by

n, and given in Table 16. We note that NBU and DBU are

positive semidefinite.

TABLE 16. Variable XB and associated NBU and DBU .

Variable XB Applicability NBU DBU

VO2 proposition P1 is true YBAV P1 YBRP2

IS2 proposition P1 is true ZBAV P1 ZBRP2

GBU is given by (292) in the form of a generalized

Rayleigh ratio of NBU to DBU , in the variable XB . Thus,

GBU depends on the excitation. According to the explana-

tions provided in Section II.A, it is defined if and only if

proposition P1 is true and XB ∈ D(DBU ), where

D(DBU ) = {XB ∈ C
n : XB /∈ kerDBU} . (293)

By Observation 7, the set of the values of GAU obtained

for all XA ∈ D(DAU ) is equal to the set of the values of

GAU obtained for all XA ∈ D(DAU ) ∩ Sm. Likewise, we

can assert that the set of the values of GBU obtained for all

XB ∈ D(DBU ) is equal to the set of the values of GBU

obtained for all XB ∈ D(DBU ) ∩ Sn.

Since IS1 = YS1VO1, where YS1 is invertible, it is

possible to show that the set of the values of GAU obtained

for all XA ∈ D(DAU ), or for all XA ∈ D(DAU )∩Sm, does

not depend on the choice XA = VO1 or XA = IS1.

Likewise, since IS2 = YS2VO2, where YS2 is invertible,

we can show that the set of the values of GBU obtained for

all XB ∈ D(DBU ), or for all XB ∈ D(DBU ) ∩ Sn, does

not depend on the choice XB = VO2 or XB = IS2.

Observation 13. Since GAU and GBU need not be less

than or equal to one or any other number, we cannot apply

Corollary 3 to the corresponding generalized Rayleigh ratios.

Thus, to compute the bounds of the sets of the values of GAU

and GBU , we cannot use Corollary 3 and Theorem 14 as we

for instance did in Theorem 17 and Theorem 18 to obtain the

bounds of the sets of the values of GAO and GBO.

We are now in a position to state and prove a new recip-

rocal theorem on the bounds of the sets of the values of the

unnamed power gains in CA and CB.

Theorem 29. Ignoring noise power contributions, we can

assert that:

(a) if P2 and P3 are true, DAU is positive definite, and the

set of the values of the unnamed power gain in CA,

obtained for all nonzero VO1 ∈ C
m, or equivalently

for all nonzero IS1 ∈ C
m, has a least element referred

to as “minimum value” and denoted by GAU MIN , and
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a greatest element referred to as “maximum value” and

denoted by GAU MAX ;

(b) if P2 and P3 are true, and if λmin and λmax are given

by Theorem 12 applied to the generalized Rayleigh ratio

of NAU to DAU , in the variable XA according to (290)

and Table 15, we find that GAU MIN = λmin and

GAU MAX = λmax ;

(c) if P2 and P3 are true, and if M is given by Theorem 12

applied to the generalized Rayleigh ratio of NAU to

DAU , in the variable XA, an average value of GAU over

a number min{m,n} of nonzero excitations is

GAU AV R =
trM

min{m,n} =
tr
(

NAUD
−1

AU

)

min{m,n} ; (294)

(d) if P2 and P3 are true, GAU AV R doesn’t depend on the

choice of XA, and

0 6 GAU MIN 6 GAU AV R 6 GAU MAX ; (295)

(e) if P1 and P4 are true, DBU is positive definite, and the

set of the values of the transducer power gain in CB,

obtained for all nonzero VO2 ∈ C
n, or equivalently

for all nonzero IS2 ∈ C
n, has a least element referred

to as “minimum value” and denoted by GBU MIN , and

a greatest element referred to as “maximum value” and

denoted by GBU MAX ;

(f) if P1 and P4 are true, and if λmin and λmax are given by

Theorem 12 applied to the generalized Rayleigh ratio of

NBU to DBU , in the variable XB according to (292)

and Table 16, we find that GBU MIN = λmin and

GBU MAX = λmax ;

(g) if P1 and P4 are true, and if M is given by Theorem 12

applied to the generalized Rayleigh ratio of NBU to

DBU , in the variable XB , an average value of GBU over

a number min{m,n} of nonzero excitations is

GBU AV R =
trM

min{m,n} =
tr
(

NBUD
−1

BU

)

min{m,n} ; (296)

(h) if P1 and P4 are true, GBU AV R doesn’t depend on the

choice of XB , and

0 6 GBU MIN 6 GBU AV R 6 GBU MAX ; (297)

(i) if P3 and P4 are true, and if the DUS and both loads are

reciprocal devices, then

GAU MAX = GBU MAX , (298)

GAU AV R = GBU AV R , (299)

(m = n) =⇒ (GAU MIN = GBU MIN ) , (300)

(m > n) =⇒ (GAU MIN = 0) (301)

and

(m < n) =⇒ (GBU MIN = 0) . (302)

Proof: If P3 is true, by Lemma 11 we can assume that

ZPAM11 is invertible, H(Z−1

PAM11
−YS1) is invertible, and

XA = IS1. Using Table 15 and (60), we get

DAU = ZARP1 =
1

2
Z∗

PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)

× ZPAM11 , (303)

so that DAU = ZARP1 is invertible, hence positive definite.

If P2 and P3 are true, assertions (a) and (b) directly follow

from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain

trM = tr
(

NAUD
−1

AU

)

, and then the second equality of

(294). By (8), each eigenvector y of M corresponds to a

nonzero excitation XA = D
−1/2
AU y, and to an eigenvalue that

is equal to GAU for this XA. Using Table 15, (189) and (192),

we get

rank
(

NAUD
−1

AU

)

= rankNAU 6 min{m,n} , (304)

so that the number of nonzero eigenvalues of M, counting

multiplicity, is less than or equal to min{m,n}. Since trM
is the sum of the eigenvalues of M, counting multiplicity,

it follows that GAU AV R given by (294) is an average of

GAU over a number min{m,n} of nonzero excitations. This

proves (c). Assertion (d) follows from (c) and (372) of

Appendix C.

If P4 is true, by Lemma 11 we can assume that ZPAM22 is

invertible, H(Z−1

PAM22
−YS2) is invertible, and XB = IS2.

Using Table 16 and (66), we get

DBU = ZBRP2 =
1

2
Z∗

PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)

× ZPAM22 , (305)

so that DBU = ZBRP2 is invertible, hence positive definite.

If P1 and P4 are true, assertions (e) and (f) directly follow

from Theorem 12.

In (g), by Theorem 12, we have trM = tr
(

NBUD
−1

BU

)

,

which allows us to write the second equality of (296). Using

Table 16, (195) and (198), we get

rank
(

NBUD
−1

BU

)

= rankNBU 6 min{m,n} , (306)

which can be used to prove (g) as we used (304) to prove (c).

Assertion (h) follows from (g) and (373) of Appendix C.

To prove (i), we can assume XA = IS1 and XB = IS2.

By Theorem 12, we only need to compare the eigenvalues of

A = NAUD
−1

AU with the eigenvalues of B = NBUD
−1

BU . It

follows from Table 15, (189) and (303) that

A = Z∗
PAM21Z

−1∗
PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21Z

−1

PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1∗
PAM11

, (307)

which is of size m by m. It follows from Table 16, (195) and

(305) that
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B = Z∗
PAM12Z

−1∗
PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1

PAM11
ZPAM12Z

−1

PAM22

×
(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1∗
PAM22

, (308)

which is of size n by n. If the DUS and both loads are

reciprocal devices, ZPAM , YS1, YS2 are symmetric and the

transpose of ZPAM12 is ZPAM21, so that

BT = Z−1∗
PAM22

(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21Z

−1

PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1∗
PAM11

Z∗
PAM21 . (309)

By [8, Sec. 1.4.1], the eigenvalues of BT are the same as

those of B, counting multiplicity. We note that, if we write

C = Z−1∗
PAM22

(

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

)−1

× Z−1

PAM22
ZPAM21Z

−1

PAM11

×
(

Z−1

PAM11
+ Z−1∗

PAM11
−YS1 −Y∗

S1

)−1

× Z−1∗
PAM11

, (310)

the right hand sides of (307) and (309) are Z∗
PAM21C and

CZ∗
PAM21, respectively. Thus, using [8, Sec. 1.3.22] and the

fact that Z∗
PAM21 is of size m by n, we find that:

• if m = n, then A and B have the same eigenvalues,

counting multiplicity;

• if m > n, then A has the same eigenvalues as B,

counting multiplicity, together with m − n additional

eigenvalues equal to zero; and

• if m < n, then B has the same eigenvalues as A,

counting multiplicity, together with n − m additional

eigenvalues equal to zero.

This leads to the final assertions of Theorem 29.

X. SOME INEQUALITITES
The following corollary states inequalities which supplement

(k) of Theorem 24 and (k) of Theorem 25.

Corollary 10. Ignoring noise power contributions, we assert

that:

(a) if proposition P3 is true, we have

tA1MAX > tB1MAX , (311)

and

tA1MIN 6 tB1MIN ; (312)

(b) if proposition P4 is true, we have

tA2MAX 6 tB2MAX , (313)

and

tA2MIN > tB2MIN . (314)

Proof: According to the explanations provided above to

prove (k) of Theorem 24, if YSAM11 and H(Y−1

SAM11
−ZS1)

are invertible, then the set of the values of tB1 obtained

for all XB ∈ D(DB1) equals the set of the values of tB1

obtained for all nonzero VT2 ∈ range(Y−1

SAM11
YSAM12).

This set is a subset of the set A of the values of tB1 which

would be obtained if VT2 could take on any value lying in

C
m. Assertion (a) follows from the fact that, by Theorem 23

applied to port set 1, A has a minimum value that is equal to

tA1MIN , and a maximum value that is equal to tA1MAX .

Assertion (b) corresponds to assertion (a) with a different

labeling of port sets.

Some equalities between power ratios lead to inequalities

between their bounds. For instance, since Theorem 15, The-

orem 17, Theorem 18, Theorem 24 and Theorem 25 ensure

that the maximum and minimum values of GAT , GBT , GAO,

GBO, tA1 and tB2 are defined and computable, (217) leads

us to:

GAOMIN tA1MIN 6 GAT MIN 6

min{GAOMIN tA1MAX , GAOMAX tA1MIN} 6

min{GAOMIN , tA1MIN} , (315)

GAOMAX tA1MAX > GAT MAX >

max{GAOMIN tA1MAX , GAOMAX tA1MIN} , (316)

GBOMIN tB2MIN 6 GBT MIN 6

min{GBOMIN tB2MAX , GBOMAX tB2MIN} 6

min{GBOMIN , tB2MIN} , (317)

and

GBOMAX tB2MAX > GBT MAX >

max{GBOMIN tB2MAX , GBOMAX tB2MIN} . (318)

Similar inequalities can be obtained from (218), (262)–

(263) and (288)–(289).

XI. SPECIAL CASE OF A LOSSLESS DUS
The DUS is lossless only if, for any positive definite ZS1 and

ZS2, we have

PADP2 = PARP1 and PBDP1 = PBRP2 . (319)

In this Section XI, we now assume that the DUS is lossless.

It follows from (71)–(72), (211), (215) and (319) that, for

nonzero excitations,

GAT = tA1 and GBT = tB2 . (320)

If PARP1 6= 0 W, it follows from (107) and (319) that we

have

GAO = 1 . (321)

Also, if PBRP2 6= 0 W, it follows from (108) and (319)

that we have

GBO = 1 . (322)
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Theorem 30. We assume that the DUS is lossless, and that

the DUS and both loads are reciprocal devices. Ignoring noise

power contributions, we assert that:

tA1MAX = tB2MAX , (323)

mtA1AV R = n tB2AV R , (324)

(m = n) =⇒ (tA1MIN = tB2MIN ) , (325)

(m > n) =⇒ (tA1MIN = 0) (326)

and
(m < n) =⇒ (tB2MIN = 0) . (327)

Proof: Theorem 15 and (320) allow us to directly obtain

(323), (325), (326) and (327), but not (324).

By Table 1, Table 7 and (319), in the case XA = IS1 and

in the case XA = VO1, for any XA ∈ C
m, we have

X∗
ANATXA = PADP2 = PARP1 = X∗

ANA1XA . (328)

Thus, using (367) of Appendix C, we may conclude that

NAT = NA1. Since, according to Table 1 and Table 7, we

also have DAT = DA1, it follows from (c) of Theorem 15

and (c) of Theorem 24 that

mtA1AV R = min{m,n}GAT AV R . (329)

By Table 2, Table 11 and (319), in the case XB = IS2 and

in the case XB = VO2, for any XB ∈ C
n, we have

X∗
BNBTXB = PBDP1 = PBRP2 = X∗

BNB2XB . (330)

This allows us to conclude that NBT = NB2. Since, ac-

cording to Table 2 and Table 11, we also have DBT = DB2,

it follows from (g) of Theorem 15 and (c) of Theorem 25 that

n tB2AV R = min{m,n}GBT AV R . (331)

Consequently, (324) follows from (j) of Theorem 15.

In Section VIII of Part 2, it was assumed that P3 and

P4 are true, and we defined: tMAX1, tMAX2, tMIN1 and

tMIN2, which correspond to tA1MAX , tB2MAX , tA1MIN

and tB2MIN , respectively. Thus, Theorem 30 may be viewed

as an improved version of Theorem 9 of Part 2.

Theorem 31. We assume that the DUS is lossless, and that

P3 and P4 are true. Ignoring noise power contributions, we

assert that:

(a) if ZPAM12 is of rank m and/or YSAM12 is of rank m,

then, for any nonzero excitation in CA, we have

GAA = 1 and tA1 = tA2 ; (332)

(b) if ZPAM12 is of rank m and/or YSAM12 is of rank m,

then,

tA1MAX = tA2MAX , (333)

tA1AV R = tA2AV R (334)

and
tA1MIN = tA2MIN ; (335)

(c) if ZPAM21 is of rank n and/or YSAM21 is of rank n,

then, for any nonzero excitation in CB, we have

GBA = 1 and tB1 = tB2 ; (336)

(d) if ZPAM21 is of rank n and/or YSAM21 is of rank n,

then,

tB1MAX = tB2MAX , (337)

tB1AV R = tB2AV R (338)

and
tB1MIN = tB2MIN ; (339)

(e) if ZPAM12 is of rank m and/or YSAM12 is of rank m,

and if ZPAM21 is of rank n and/or YSAM21 is of rank n,

then,

GAT MAX = GBT MAX , (340)

GAT MIN = GBT MIN , (341)

GAU MAX = GBU MAX (342)

and
GAU MIN = GBU MIN . (343)

Proof: Since P3 and P4 are assumed to be true, Lemma 11

tells us that YSAM11 and H(Y−1

SAM11
−ZS1) are invertible,

and YSAM22 and H(Y−1

SAM22
− ZS2) are invertible. Thus,

port set 1 behaves, in CA, as an m-port load of impedance

matrix ZT2 = Y−1

SAM11
−ZS1 such that H(ZT2) is positive

definite, and port set 2 behaves, in CB, as an n-port load of

impedance matrix ZT1 = Y−1

SAM22
−ZS2 such that H(ZT1)

is positive definite.

ZPAM22 being invertible by Lemma 11, port set 2 may be

viewed, in CA, as an n-port generator of internal impedance

matrix ZT1 and rms short-circuit current vector

IT1 = Z−1

PAM22
ZPAM21IS1 . (344)

In the proof of Theorem 10 of Part 2, it is shown that, if

rankZPAM12 = m, then

(ZS2 = Z∗
T1) =⇒ (ZS1 = Z∗

T2) . (345)

Let us assume that rankZPAM12 = m. By the maximum

power transfer theorem for multiports [4], [13], for any

excitation IS1 ∈ C
m in CA, the circumstance ZS2 = Z∗

T1

entails: PADP2 = PAAV P2; and PARP1 = PAAVG1 by

(345). It follows from (319) that, for the excitation IS1, we

have PAAV P2 = PAAVG1. This result is independent of the

value of ZS2, because ZS2 has no effect on PAAVG1 and

no effect on PAAV P2. Thus, for any value of ZS2 and any

nonzero excitation IS1 ∈ C
m in CA, we have GAA = 1, and

we have tA1 = tA2 because PADP2 = PARP1 by (319).

If, instead of assuming that rankZPAM12 = m, we

assume that rankYSAM12 = m, we can likewise show that,

for any value of YS2 and any nonzero excitation VO1 ∈ C
m

in CA, we have GAA = 1 and tA1 = tA2.

This leads us to (332), and to (333) and (335) using (a)

of Theorem 24 and (f) of Theorem 25. A different approach

is needed to prove (334). According to Table 7 and Table 8,
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in the case XA = IS1 and in the case XA = VO1, for any

XA ∈ C
m, we have

X∗
ANA1XA = PARP1 = PADP2 = X∗

ANA2XA (346)

by (319), and we have

X∗
ADA1XA = PAAVG1 =

PAAV P2 = X∗
ADA2XA (347)

because GAA = 1.

Thus, utilizing (367) of Appendix C, we may conclude that

NA1 = NA2 and DA1 = DA2. This proves (334).

If, instead of assuming that ZPAM12 or YSAM12 are

of rank m, we assume that rankZPAM21 = n or that

rankYSAM21 = n, we can likewise show that, for any value

of YS1 and any nonzero excitation in CB, we have GBA = 1
and tB1 = tB2, and then obtain (337)–(339).

If we now assume that ZPAM12 or YSAM12 are of rank

m, and that ZPAM21 or YSAM21 are of rank n, we can for

instance use (a) and (e) of Theorem 15, (320), (333), (335)

and (k) of Theorem 25, to obtain (340) and (341).

Since P3 and P4 are assumed to be true, it follows from

Theorem 29 that GAU and GBU are defined, and that DAU

and DBU are positive definite. Thus, (342)–(343) follow

from (288)–(289), (320) and (332)–(341).

Theorem 31 is new. It shows that, in the case of a lossless

DUS, we can obtain reciprocal relations on the bounds of the

sets of the values of the transducer power gains in CA and

CB, if some conditions are satisfied, which do not require

that the DUS and/or the loads are reciprocal devices.

XII. SOME EXAMPLES
A. FIRST EXAMPLE

In a first example, such that m = n = 2 and already used in

Section VI.B of Part 1, we assume that

ZS1 =

(

51 + 39j 19 + 79j

27 + 56j 37 + 61j

)

Ω , (348)

ZS2 =

(

32 + 87j 11 + 41j

23 + 37j 73 + 13j

)

Ω , (349)

and that the DUS has an impedance matrix given by

Z =






89 + 25j 31 + 11j 31 + 5j 17 + 40j

21 + 3j 59 + 35j 3 + 62j 40 + 17j

3 + 21j 41 + 29j 73 + 41j 21 + 49j

33 + 13j 7 + 7j 23 + 42j 49 + 21j






Ω . (350)

ZS1, ZS2 and Z are not symmetric and have each a

positive definite hermitian part. Thus, the DUS and the loads

are passive, not reciprocal and not lossless. ZPAM can be

computed using (35).

The maximum, average and minimum values of the power

ratios defined above have been computed a first time using

Theorem 12, a second time using Theorem 14, and a third

time using an extremum-seeking algorithm (as explained in

Section VI.A of Part 1). The three methods give exactly the

same values, shown in Table 17 to Table 19.

TABLE 17. Maximum values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.786206 0.786206

power transfer ratio at port set 2 of the DUS 0.950923 0.950923

transducer power gain 0.084966 0.171115

operating power gain 0.132830 0.183025

available power gain 0.098264 0.320845

unnamed power gain 0.165136 0.372990

power transfer ratio without the DUS 0.864763 0.864763

insertion power gain 0.126970 0.291078

TABLE 18. Average values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.608507 0.608507

power transfer ratio at port set 2 of the DUS 0.626807 0.626807

transducer power gain 0.049283 0.100428

operating power gain 0.079257 0.139813

available power gain 0.069560 0.183837

unnamed power gain 0.118456 0.256470

power transfer ratio without the DUS 0.539976 0.539976

insertion power gain 0.087939 0.192515

TABLE 19. Minimum values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.430809 0.430809

power transfer ratio at port set 2 of the DUS 0.302691 0.302691

transducer power gain 0.013600 0.029740

operating power gain 0.025685 0.096601

available power gain 0.040856 0.046829

unnamed power gain 0.071777 0.139950

power transfer ratio without the DUS 0.215189 0.215189

insertion power gain 0.048907 0.093953

The computed values are compatible with the reciprocal

power relations stated in (i) of Theorem 23, (k)–(ℓ ) of

Theorem 24 and (k)–(ℓ ) of Theorem 25. We also find that the

reciprocal power relations stated in (i) and (j) of Theorem 15,

(i) of Theorem 16, (e) of Theorem 27, (e) of Theorem 28 and

(i) of Theorem 29 need not be true in a case where the DUS

is not reciprocal and not lossless, and where the loads are not

reciprocal.

B. SECOND EXAMPLE

In a second example, such that m = n = 2 and already used

in Section VI.C of Part 1, we assume that

ZS1 =

(

51 + 39j 23 + 68j

23 + 68j 37 + 61j

)

Ω , (351)

ZS2 =

(

32 + 87j 17 + 39j

17 + 39j 73 + 13j

)

Ω , (352)

and that the DUS has an impedance matrix given by

Z =






89 + 25j 26 + 7j 17 + 13j 25 + 27j

26 + 7j 59 + 35j 22 + 46j 24 + 12j

17 + 13j 22 + 46j 73 + 41j 22 + 46j

25 + 27j 24 + 12j 22 + 46j 49 + 21j






Ω . (353)
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TABLE 20. Maximum values for the second example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.814625 0.814625

power transfer ratio at port set 2 of the DUS 0.984960 0.984960

transducer power gain 0.065234 0.065234

operating power gain 0.118331 0.090104

available power gain 0.090104 0.118331

unnamed power gain 0.189454 0.189454

power transfer ratio without the DUS 0.876240 0.876240

insertion power gain 0.159534 0.141010

TABLE 21. Average values for the second example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.642041 0.642041

power transfer ratio at port set 2 of the DUS 0.643069 0.643069

transducer power gain 0.041627 0.041627

operating power gain 0.072153 0.067040

available power gain 0.067040 0.072153

unnamed power gain 0.122072 0.122072

power transfer ratio without the DUS 0.551352 0.551352

insertion power gain 0.098332 0.091509

TABLE 22. Minimum values for the second example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.469456 0.469456

power transfer ratio at port set 2 of the DUS 0.301177 0.301177

transducer power gain 0.018019 0.018019

operating power gain 0.025975 0.043977

available power gain 0.043977 0.025975

unnamed power gain 0.054690 0.054690

power transfer ratio without the DUS 0.226464 0.226464

insertion power gain 0.037131 0.042008

Here, ZS1, ZS2 and Z are symmetric and have a positive

definite hermitian part. Thus, the DUS and the loads are

passive, reciprocal and not lossless. ZS1 and ZS2 are neither

circulant nor in the form of a complex number times 12.

The maximum, average and minimum values of the power

ratios defined above were computed a first time using Theo-

rem 12, a second time using Theorem 14, and a third time

using an extremum-seeking algorithm. The three methods

give exactly the same values, shown in Table 20 to Table 22.

We find that the computed values are compatible with the

reciprocal power relations stated in (i) and (j) of Theorem 15,

(i) of Theorem 23, (k)–(ℓ ) of Theorem 24, (k)–(ℓ ) of The-

orem 25, (e) of Theorem 27, (e) of Theorem 28 and (i) of

Theorem 29. We also find that the reciprocal power relations

stated in (i) of Theorem 16 need not be true in a case where

we cannot say that ZS1 and ZS2 are each in the form of

a complex number times an identity matrix, and where we

cannot say that ZS1, ZS2 and ZPAM21 are circulant.

C. THIRD EXAMPLE

In a third example, already used in Section VI.D of Part 1,

we assume that

ZS1 = (51 + 39j)

(

1 0

0 1

)

Ω , (354)

TABLE 23. Maximum values for the third example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.785846 0.785846

power transfer ratio at port set 2 of the DUS 0.526631 0.526631

transducer power gain 0.049441 0.049441

operating power gain 0.067408 0.131088

available power gain 0.131088 0.067408

unnamed power gain 0.176905 0.176905

power transfer ratio without the DUS 0.286756 0.286756

insertion power gain 0.172413 0.172413

TABLE 24. Average values for the third example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.754678 0.754678

power transfer ratio at port set 2 of the DUS 0.410713 0.410713

transducer power gain 0.033257 0.033257

operating power gain 0.044716 0.086282

available power gain 0.086282 0.044716

unnamed power gain 0.115480 0.115480

power transfer ratio without the DUS 0.286756 0.286756

insertion power gain 0.115976 0.115976

TABLE 25. Minimum values for the third example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.723510 0.723510

power transfer ratio at port set 2 of the DUS 0.294795 0.294795

transducer power gain 0.017073 0.017073

operating power gain 0.022024 0.041476

available power gain 0.041476 0.022024

unnamed power gain 0.054056 0.054056

power transfer ratio without the DUS 0.286756 0.286756

insertion power gain 0.059538 0.059538

ZS2 = (32 + 87j)

(

1 0

0 1

)

Ω , (355)

and that the DUS has an impedance matrix given by (353).

Here, ZS1, ZS2 and Z are symmetric and have a positive

definite hermitian part. Thus, the DUS and the loads are

passive, reciprocal and not lossless. Also, ZS1 and ZS2 are

each in the form of a complex number times the identity

matrix 12.

The maximum, average and minimum values of the power

ratios defined above were computed a first time using Theo-

rem 12, a second time using Theorem 14, and a third time

using an extremum-seeking algorithm. The three methods

give exactly the same values, shown in Table 23 to Table 25.

These values are compatible with the reciprocal power rela-

tions stated in (i)–(j) of Theorem 15, (i) of Theorem 16, (i) of

Theorem 23, (k)–(ℓ ) of Theorem 24, (k)–(ℓ ) of Theorem 25,

(e) of Theorem 27, (e) of Theorem 28 and (i) of Theorem 29.

D. FOURTH EXAMPLE

In a fourth example, already used in Section VI.E of Part 1,

we assume that

ZS1 =

(

51− 39j 7 + 16j

7 + 16j 51− 39j

)

Ω , (356)

32 Copyright © 2023 by Excem



Excem Research Papers in Electronics and Electromagnetics, no. 7, July 2023

EXCEM 

TABLE 26. Maximum values for the fourth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.994997 0.994997

power transfer ratio at port set 2 of the DUS 0.453406 0.453406

transducer power gain 0.120251 0.120251

operating power gain 0.165995 0.309882

available power gain 0.309882 0.165995

unnamed power gain 0.427761 0.427761

power transfer ratio without the DUS 0.691529 0.691529

insertion power gain 0.215581 0.215581

TABLE 27. Average values for the fourth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.859712 0.859712

power transfer ratio at port set 2 of the DUS 0.420730 0.420730

transducer power gain 0.065159 0.065159

operating power gain 0.088056 0.166041

available power gain 0.166041 0.088056

unnamed power gain 0.225037 0.225037

power transfer ratio without the DUS 0.624666 0.624666

insertion power gain 0.115068 0.115068

TABLE 28. Minimum values for the fourth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.724428 0.724428

power transfer ratio at port set 2 of the DUS 0.388055 0.388055

transducer power gain 0.010066 0.010066

operating power gain 0.010116 0.022200

available power gain 0.022200 0.010116

unnamed power gain 0.022312 0.022312

power transfer ratio without the DUS 0.557803 0.557803

insertion power gain 0.014556 0.014556

ZS2 =

(

32 + 47j 11 + 41j

11 + 41j 32 + 47j

)

Ω , (357)

and that the DUS has an impedance matrix, given by

Z =






54 + 25j 6 + 7j 20 + 13j −10− 5j

6 + 7j 54 + 25j −10− 5j 20 + 13j

20 + 13j −10− 5j 25− 25j 6 + 17j

−10− 5j 20 + 13j 6 + 17j 25− 25j






Ω . (358)

Here, ZS1, ZS2 and Z are symmetric and have a positive

definite hermitian part. Also, ZS1 and ZS2 are circulant, and

Z is a 2-by-2 block matrix, the blocks of which are of size 2

by 2 and circulant. Thus, the DUS and the loads are passive,

reciprocal and not lossless, and it follows from Observation

4 of Part 1 that ZPAM21 is circulant.

The maximum, average and minimum values of the power

ratios defined above were computed a first time using Theo-

rem 12, a second time using Theorem 14, and a third time

using an extremum-seeking algorithm. The three methods

give exactly the same values, shown in Table 26 to Table 28.

These values are compatible with the reciprocal power rela-

tions stated in (i)–(j) of Theorem 15, (i) of Theorem 16, (i) of

Theorem 23, (k)–(ℓ ) of Theorem 24, (k)–(ℓ ) of Theorem 25,

(e) of Theorem 27, (e) of Theorem 28 and (i) of Theorem 29.

TABLE 29. Maximum values for the fifth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.924578 0.924578

power transfer ratio at port set 2 of the DUS 0.924578 0.924578

transducer power gain 0.924578 0.924578

operating power gain 1.000000 1.000000

available power gain 1.000000 1.000000

unnamed power gain 14.48862 14.48862

power transfer ratio without the DUS 0.864763 0.864763

insertion power gain 1.187487 1.238501

TABLE 30. Average values for the fifth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.496799 0.496799

power transfer ratio at port set 2 of the DUS 0.496799 0.496799

transducer power gain 0.496799 0.496799

operating power gain 1.000000 1.000000

available power gain 1.000000 1.000000

unnamed power gain 7.785100 7.785100

power transfer ratio without the DUS 0.539976 0.539976

insertion power gain 0.738134 0.757694

TABLE 31. Minimum values for the fifth example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.069020 0.069020

power transfer ratio at port set 2 of the DUS 0.069020 0.069020

transducer power gain 0.069020 0.069020

operating power gain 1.000000 1.000000

available power gain 1.000000 1.000000

unnamed power gain 1.081575 1.081575

power transfer ratio without the DUS 0.215189 0.215189

insertion power gain 0.288782 0.276887

E. FIFTH EXAMPLE

In a fifth example, the DUS has an impedance matrix

Z =




25j 31 + 11j 31 + 5j 17 + 40j

−31 + 11j 35j 3 + 62j 40 + 17j

−31 + 5j −3 + 62j 41j 21 + 49j

−17 + 40j −40 + 17j −21 + 49j 21j



Ω . (359)

In this fifth example, already used in Section IX.A of

Part 2, ZS1 is given by (348), and ZS2 is given by (349). ZS1,

ZS2 and Z are not symmetric, so that the DUS and the loads

are not reciprocal devices. ZS1 and ZS2 have each a positive

definite hermitian part. We have H(Z) = 0 because Z is

the impedance matrix of a lossless DUT. We have computed

ZPAM and found that rankZPAM12 = rankZPAM21 = 2.

The maximum, average and minimum values of the power

ratios defined above were computed a first time using Theo-

rem 12, a second time using Theorem 14, and a third time

using an extremum-seeking algorithm. The three methods

give exactly the same values, shown in Table 29 to Table 31.

These values are compatible with the reciprocal power rela-

tions stated in Theorem 31.

This example also allows us to observe unnamed power

gains and insertion power gains that are greater than one.
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F. A NOTE ABOUT THE FIVE EXAMPLES

In Table 17 to Table 31, all values could be computed using

Theorem 12 and Theorem 14, and it was possible to use

the simple formulas (189) and (195) to obtain ZAAV P2 and

ZBAV P1, and compute the maximum, average and minimum

values of tA2, tB1, GAA, GBA, GAU and GBU .

In other problems, this need not be possible, especially

when m 6= n.

XIII. ABOUT THE FRIIS TRANSMISSION FORMULA
The original Friis transmission formula is about “a radio

circuit made up of a transmitting antenna and a receiving

antenna in free space” [7]. It is about two single-port an-

tennas, and it assumes that the antennas are polarization

matched, that the distance between the antennas, denoted

by d, is sufficiently large (far-field condition), and that the

transmitting antenna is reciprocal [5, Sec. VII]. The original

Friis transmission formula is:

Pavr

Pt
=

ArAt

d2λ2
, (360)

where: Pavr is the power available at the port of the receiving

antenna; Pt is the power fed into the transmitting antenna at

its port; Ar is the effective area of the receiving antenna, in

the direction of the transmitting antenna; At is the effective

area of the transmitting antenna, in the direction of the

receiving antenna; and λ is the wavelength.

In [5, Sec. VII], we observed that one of the teachings of

(360) is that, if the roles of the antennas are reversed (i.e., the

receiving antenna becomes the transmitting antenna and vice

versa) without moving the antennas, then the unnamed power

gain does not change. In [5, Sec. VII], we also explained that

this teaching can be generalized to two single-port LTI and

reciprocal antennas lying in an LTI and reciprocal medium,

neither assuming polarization-matched antennas, nor a large

value of d, nor an homogeneous free space environment.

We can now propose a broader generalization. To this end,

we now consider the DUS shown in Fig. 2, comprising: a

first multiport antenna array (MAA) denoted by “MAA 1”;

a second MAA denoted by “MAA 2”; and whatever lies

around MAA 1 and MAA 2. Let d be the distance between the

MAAs. We neither assume a large value d, nor a free space

environment, nor any form of polarization-matching between

the MAAs. In CA, MAA 1 is used for emission and MAA 2

for reception. In CB, MAA 2 is used for emission and MAA 1

for reception. If we assume that both MAAs are reciprocal

and that the medium surrounding them is reciprocal [18,

Sec. 13.06], we can use theorem II of [19], known as the

“Rayleigh-Carson reciprocity theorem” and corresponding

to [18, eq. (13-40)], to assert that ZPAM and YSAM are

symmetric. The DUS being in this case reciprocal, (i) of

Theorem 29 on unnamed power gain in CA and CB can be

used if P3 and P4 are true, and if both loads shown in Fig. 2

are reciprocal devices. The wanted generalization of the Friis

transmission formula is (298)–(302) of Theorem 29.

The reciprocal relations (298)–(302) generalize the above-

mentioned teaching of the original Friis transmission formula

(360), according to which the unnamed power gain does not

FIGURE 2. The configurations considered in Section XIII, in which the DUS
comprises: MAA 1 having m antenna ports; and MAA 2 having n antenna ports.

change if the receiving antenna becomes the transmitting

antenna and vice versa. Other reciprocal relations obtained

above for a reciprocal DUS may also be used, such as: (79)–

(83) of Theorem 15; (97)–(99) of Theorem 16 if m = n;

(268)–(272) of Theorem 27; and (281)–(285) of Theorem 28.

Each reciprocal relation is based on the assumptions stated

in the corresponding theorem, the most general being the

reciprocal relations on the transducer power gain, that is

(79)–(83). Note that ionospheric propagation may involve a

significant Faraday rotation, which makes the propagation

medium non-reciprocal [18, Sec. 17.10], [19], [20, Sec. 6.6].

Lossless MAAs operating in a lossless medium do not lead

to a lossless DUS, in the meaning of Section XI, except in

the theoretical case of two lossless MAAs installed inside a

closed lossless enclosure that does not allow radiation outside

its boundary, the enclosure containing only the MAAs and

a lossless medium. Such an enclosure may for instance be

made of a perfect electric conductor (PEC). In this theoretical

case, we note that GAO = GBO = 1, regardless of the

distance between the MAAs (inside the enclosure).

Let us assume that P3 and P4 are true. In CA, PAAV P2

depends on the generator connected to port set 1 and on

the DUS, but not on ZS2. Except in the theoretical case

discussed above, for sufficiently large values of d, the inter-

action between MAA 1 and MAA 2 will typically be very

small, so that PARP1 depends very little on ZS2, and GAU

depends very little on ZS2. Likewise, for sufficiently large

values of d, GBU depends very little on ZS1. It follows

that, in the far field, GAU MAX , GAU AV R and GAU MIN

depend very little on ZS2; and GBU MAX , GBU AV R and

GBU MIN depend very little on ZS1 . Thus, in the far field,

if the DUS and the loads shown in Fig. 2 are reciprocal,

then: GAU MAX = GBU MAX and GAU AV R = GBU AV R

depend very little on ZS1 and ZS2; and, if m = n, then

GAU MIN = GBU MIN depends very little on ZS1 and ZS2.

This is what makes GAU MAX , GBU MAX , GAU AV R,

GBU AV R, GAU MIN and GBU MIN attractive metrics of a

radio link.
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XIV. CONCLUSION
We have improved two reciprocal theorems on the bounds of

the sets of the values of transducer power gains and insertion

power gains for all nonzero excitations, which had been

treated in Part 1. We have established new results about the

computation of the power available at output ports, which

generalize the maximum power transfer theorem for multi-

ports stated in [4] and [13], to a port set having an immittance

matrix whose hermitian part need not be invertible. We have

established new results about the bounds of the sets of the

values of power transfer ratios, operating power gains, avail-

able power gains and unnamed power gains for all relevant

excitations. The new results include five reciprocal theorems

(theorems 24, 25, 27, 28 and 29), two of them (theorems 24

and 25) being fully applicable to a DUS that need not be a

reciprocal device.

We have also established other results about power ratios

and their bounds, including some inequalities and some re-

ciprocal relations applicable to a lossless DUS that need not

be a reciprocal device.

We appreciate that the reciprocal relations and theorems

treated in this article are comparable to, but much more

complex than, the reciprocal relations covered in [5]. This

is why [5] can advantageously be read before this article, as

a prologue.

One of the new reciprocal theorems, relating to unnamed

power gains, was used to generalize the Friis transmission

formula.

This article is applicable to many problems in which

bidirectional transmission may occur in an LTI system having

more than two ports, and particularly relevant to problems in

which the location of XA/||XA||2 on Sm and/or the location

of XB/||XB ||2 on Sn are not constant and/or not known.

Such circumstances for instance happen in the technical areas

of radio communication, wireless power transmission, and

electromagnetic compatibility (EMC).

APPENDIX A
This Appendix A is about corrections to known errors in

Part 1, Part 2 and [5].

The only known error in Part 1 [1] is that the title shown

in the header of even pages (“Some Theorems on Power in

Passive Linear Time-Invariant Multiports, Part 1”) should be

replaced with the correct title (“Some Results on Power in

Passive Linear Time-Invariant Multiports, Part 1”).

In Part 2 [2], page 11 column 2, “IT1 ∈ C
N” should be

replaced with “IT1 ∈ C
n” (2 occurrences), and “IS1 ∈ C

N”

should be replaced with “IS1 ∈ C
m” (2 occurrences).

Several errors have been detected in [5]: in page 5, column

2, in the first sentence of Section IV.E, “operating power

gains is” should be replaced with “operating power gain is”;

in page 6, column 2, in the first sentence of Section V, “is

lossless if and only if” should be replaced with “is lossless

only if”; in page 6, column 2, in Section V, “ZAPP2” should

be replaced with “ZBPP2” (4 occurrences); and in page 10,

column 2, the title of reference [17] should be in italics

instead of between quotation marks.

APPENDIX B
In this Appendix B, we want to show that (189) can be di-

rectly derived from (188). If ZPAM22 is invertible, it follows

from (128) and (129) that

ZE2 = Z∗
PAM22

×
[

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

]

ZPAM22 (361)

and

KE2 = −Z−1∗
PAM22

(ZE2 − ZPAM22) . (362)

In this Appendix B, we now assume that ZPAM22 and

H(Z−1

PAM22
− YS2) are invertible. Thus, it follows from

(361) that ZE2 is invertible, so that Z
†
E2

= Z−1

E2
. By (362),

we have

KE2Z
†
E2

K∗
E2 = Z−1∗

PAM22
(ZE2 − ZPAM22)

× Z−1

E2
(ZE2 − ZPAM22)

∗Z−1

PAM22
=

Z−1∗
PAM22

[

ZE2 − ZPAM22 − Z∗
PAM22

+ ZPAM22Z
−1

E2
Z∗

PAM22

]

Z−1

PAM22
. (363)

Using (128) in (363), we obtain

YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2 =

Z−1∗
PAM22

ZPAM22Z
−1

E2
Z∗

PAM22Z
−1

PAM22
. (364)

Using (361) in (364), we get

YS2 +Y∗
S2 +KE2Z

†
E2

K∗
E2 = Z−1∗

PAM22

×
[

Z−1

PAM22
+ Z−1∗

PAM22
−YS2 −Y∗

S2

]−1

× Z−1

PAM22
. (365)

Using (365) in (188), we obtain (189).

APPENDIX C
Let A and B be hermitian matrices of size ν by ν, where

ν is a positive integer. The hermitian matrix A can be used

to define the hermitian quadratic form α : C
ν → R such

that α(x) = x∗Ax. The hermitian matrix B can be used to

define the hermitian quadratic form β : Cν → R such that

β(x) = x∗Bx.

An important result is

(α = β) ⇐⇒ (A = B) , (366)

that is to say
(

∀x ∈ C
ν , x∗Ax = x∗Bx

)

⇐⇒
(

A = B
)

. (367)

To prove this, we observe that ∀x ∈ C
ν , x∗Ax = x∗Bx

if and only if ∀x ∈ C
ν , x∗(A −B)x = 0. It follows from

Observation 6 that ∀x ∈ C
ν , x∗Ax = x∗Bx if and only if

∀x ∈ C
ν , x ∈ ker(A−B), that is to say A = B.

Other proofs of (366)–(367) exist [8, Sec. 4.1.P6], [9, p.

174 Problem 6], [10, Sec. 3.2.4], but are more complicated.

Let YX1 be an hermitian admittance matrix of size m by

m and ZX1 be an hermitian impedance matrix of size m by

m. If an average power is given by PX1 = V∗
O1YX1VO1 for
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any VO1 ∈ C
m and PX1 = I∗S1ZX1IS1 for any IS1 ∈ C

m,

it follows from IS1 = YS1VO1 and (367) that:

YX1 = Y∗
S1ZX1YS1 (368)

and

ZX1 = Z∗
S1YX1ZS1 . (369)

Likewise, YX2 being an hermitian admittance matrix of

size n by n and ZX2 an hermitian impedance matrix of size

n by n, if an average power is PX2 = V∗
O2YX2VO2 for any

VO2 ∈ C
n and PX2 = I∗S2ZX2IS2 for any IS2 ∈ C

n, then

YX2 = Y∗
S2ZX2YS2 (370)

and

ZX2 = Z∗
S2YX2ZS2 . (371)

It follows that, if a power ratio is defined as a generalized

Rayleigh ratio of YN1 to YD1, in the variable VO1, and as

a generalized Rayleigh ratio of ZN1 to ZD1, in the variable

IS1, then YN1 = Y∗
S1ZN1YS1 and YD1 = Y∗

S1ZD1YS1.

Thus, if YD1 and ZD1 are invertible, YN1Y
−1

D1
and ZN1Z

−1

D1

are similar. It follows that

tr
(

YN1Y
−1

D1

)

= tr
(

ZN1Z
−1

D1

)

. (372)

Likewise, if a power ratio is defined as a generalized

Rayleigh ratio of YN2 to YD2, in the variable VO2, and as

a generalized Rayleigh ratio of ZN2 to ZD2, in the variable

IS2, and if YD2 and ZD2 are invertible, then YN2Y
−1

D2
and

ZN2Z
−1

D2
are similar. It follows that

tr
(

YN2Y
−1

D2

)

= tr
(

ZN2Z
−1

D2

)

. (373)
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