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ABSTRACT We investigate a reciprocal and passive linear time-invariant multiport, having a port set

coupled to a generator and a port set coupled to a load, in the harmonic steady state. Two configurations
are considered, in which the port set at which the generator is connected and the port set at which the load
is connected are exchanged. We improve earlier reciprocal theorems, and establish new results about the
power available at output ports, and the bounds of the sets of the values of power transfer ratios, operating
power gains, available power gains and unnamed power gains for all relevant excitations. The new results
include five reciprocal theorems. One of them is used to generalize the Friis transmission formula.

INDEX TERMS Operating power gain, transducer power gain, available power gain, power transfer ratio,

unnamed power gain, insertion power gain, passive circuits, linear circuits, reciprocity, circuit theory.

I. INTRODUCTION

This article is a sequel of [1] and [2]. In what follows, [1] is
referred to as “Part 17, and [2] as “Part 2. The numbering of
lemmas, theorems, etc, is a continuation of the one used in
Part 1 and Part 2, but no prior knowledge of Part 1 or Part 2
is assumed. Appendix A lists some corrections to Part 2.

As in Part 1, we consider two linear time-invariant (LTT)
circuits, referred to as ‘“configurations”, operating in the
harmonic steady state, at a given frequency. Both comprise
a device under study (DUS), which is a passive LTI multiport
having 2 sets of ports, referred to as port set 1 and port set 2.
Port set 1 consists of m ports numbered from 1 to m, and port
set 2 consists of n ports numbered from 1 to n, where m and
n are integers greater than or equal to 1. When we say that
port set 1 is connected to an m-port device, we assume that
the ports of the m-port device are numbered from 1 to m, and
that, for any integer p € {1,...,m}, its port p is connected
to port p of port set 1 (positive terminal to positive terminal
and negative terminal to negative terminal). Likewise, when
we say that port set 2 is connected to an n-port device, we
assume that the ports of the n-port device are numbered from
1 to n, and that, for any integer ¢ € {1,...,n}, its port ¢ is
connected to port q of port set 2 (positive terminal to positive
terminal and negative terminal to negative terminal).

The two configurations are shown in Fig. 1. In config-
uration A (CA), port set 1 is connected to an LTI m-port
generator of internal impedance matrix Zg;, and port set 2
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FIGURE 1. The two configurations, CA and CB, considered in the article.

is connected to an LTI n-port load of impedance matrix Zgs.
In configuration B (CB), port set 1 is connected to an LTI
m-port load of impedance matrix Zg;, and port set 2 is
connected to an LTI n-port generator of internal impedance
matrix Zgs. As in Part 1, we assume that the hermitian parts
of Zgs1 and Zgs are positive definite.

The average power available from one or more ports,
also referred to as “available power”, is the greatest average
power that can be drawn from these one or more ports by
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an arbitrary LTT and passive load [3, Sec. 3-8], [4]. Ignoring
noise power contributions, we consider 8 average powers:
* Pjavc is the average power available from the gener-
ator connected to port set 1, in CA;
* Pirpi means the average power received by port set 1,
in CA;
* Pjavpo means the average power available from port
set 2, in CA;
* P4 pp2 means the average power delivered by port set 2,
in CA;
* Ppavae is the average power available from the gener-
ator connected to port set 2, in CB;
* Pprpo means the average power received by port set 2,
in CB;
* Ppayp1 means the average power available from port
set 1, in CB; and
* Pppp1 means the average power delivered by port set 1,
in CB.
In [5], it was shown that, in the case m = n = 1, these
average powers satisfy

Papp2Ppavae = Paavp2PBrp2 (1)

PpppiPaavet = PpavpiParpi s (2)

and, if the DUS is a reciprocal device,

PappaPpavas = Paavp2PBrP2
= PpppiPaavgt = PpavpriParpi- (3)

In [5], it was also shown that (1)—(3) can be used to obtain
6 reciprocal relations between 6 power ratios related to CA
and 6 power ratios related to CB, these power ratios including
2 transducer power gains, 4 power transfer ratios, 2 operating
power gains, 2 available power gains, and 2 unnamed power
gains. Broadly speaking, the purpose of the present article
is the extension of these 6 reciprocal relations to the general
case m > 1 and n > 1. Appendix A lists corrections to [5].

The present work rests on results about generalized
Rayleigh ratios originally presented in [6], an article on
antenna theory. To avoid repeated references to [6], they are
stated in a slightly revised form and proven in Section II.
Section III is about our assumptions and simple or known
results. In Section IV, we improve the reciprocal theorems
about the transducer power gains and insertion power gains
in CA and CB previously disclosed in Part 1.

Section V provides new results on operating power gains.
Section VI discloses a new computation of P44y p2 and
Ppavpi. Section VII is about power transfer ratios, and
presents two new reciprocal theorems about them. Sec-
tion VIII is about available power gains, and presents two
new reciprocal theorems involving operating power gains and
available power gains. Section IX is about unnamed power
gains, and presents a new reciprocal theorem on them.

Section X treats some inequalitites involving power ratios.
In Section XI, we derive relations applicable to a lossless
DUS, among which several new results. Examples are pro-
vided in Section XII. Unnamed power gains are used in
Section XIII to generalize the Friis transmission formula [7].

Il. GENERALIZED RAYLEIGH RATIO

A. WHAT IS A GENERALIZED RAYLEIGH RATIO?

Let v be a positive integer. The vector space of the complex
column vectors of size v is denoted by C”. For any £ C C¥,
we use E* to denote the orthogonal complement of F, that is
the set of all vectors in C” that are orthogonal to every vector
lying in E.

We use 1, to denote the identity matrix of size v by v. For
a positive integer (i, the null matrix of size p by v is denoted
by 0,,, or by 0 when no confusion may arise. We use
diag,(a1,...,a,) to denote the diagonal matrix of diagonal
entries a11 = ai to a,, = a,. Let M be a complex matrix.
We use ker M to denote the nullspace of M, rank M the rank
of M, M7 the transpose of M, and M* the hermitian adjoint
of M. If M is square, tr M denotes the trace of M.

Let A be a positive semidefinite matrix. We know [8,
Sec. 7.2.6] that there exists a unique positive semidefinite
matrix B such that B> = A. The matrix B is referred to
as the unique positive semidefinite square root of A, and is
denoted by A'/2If A is positive definite, A~ and A'/? are
positive definite, and (A/2)~1 = (A~1)/2, 50 that we can
write A~1/2 = (A1/2)~1 = (A~1)1/2,

Observation 6. Let A be a positive semidefinite matrix of
size v by v. For any x € C", x* Ax = 0 if and only if
x € ker A.

Proof: If x € ker A2 we have Ax = AV2A/2x =
A'/20 = 0, so that x € ker A. Conversely, let x € ker A.
Since by [8, Sec. 7.2.6] there is a polynomial p with real
coefficients such that A'/2 = p(A), we have A'/?x =
p(A)x = 0, so that x € ker A'/2,

We have proven that ker A'/2 = ker A..

For any x € C", we have x* Ax = 0 if and only if
x* AY2AY? x = 0if and only if (A2 x)*(A'/2x) = 0 if
and only if A'/2x = 0 if and only if x € ker A'/2.

Thus, x* A x = 0 if and only if x € ker A. |

Note that there are other proofs of this well-known result
[8, Sec. 7.1.6].

Let A be an hermitian matrix of size v by v. The expres-
sion x*Ax/x*x, where x € C¥, is known as a Rayleigh
ratio, or Rayleigh-Ritz ratio, or Rayleigh quotient [8, Sec.
4.2], [9, Sec. 4.2]. In this article, this concept is extended as
follows. Let N and D be hermitian matrices of size v by
v, D being positive semidefinite. The generalized Rayleigh
ratio of N to D is a real-valued function r : C¥ — R such
that, for any x € C¥ satisfying x*Dx # 0, we have

x*Nx
r(x) = D

The generalized Rayleigh ratio » may be viewed as a ratio
of two hermitian quadratic forms [10, Sec. 3.2.4], [11, Sec.
10.1] (also called “hermitian forms” [12, Ch. X]) in the
variable x: the hermitian quadratic form fx : C¥ — R
such that fy(x) = x*Nx and the positive definite hermitian
quadratic form fp : C¥ — R such that fp(x) = x*Dx.

By Observation 6, the domain of definition of r, denoted
by D, , is

“4)

D, ={xeC":x¢kerD}, (5)
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where the colon means “such that”. Let d = dimker D be
the nullity of D. By Observation 6, D is positive definite if
and only if d = 0, that is to say if and only if ker D = {0}.
Observation 7. Let ||x||2 = v/x*x be the euclidian vector
norm of an arbitrary complex column vector x. We use S, to
denote the hypersphere of the unit vectors of C”. It follows
from (4) that, for x # 0 and a fixed x/||x||2, if r(x) is
defined, it does not depend on ||x||2. Thus, the set of the
values of r(x) such that x € D, is equal to the set of the
values of r(x) such thatx € D, NS,,.

Observation 8. If N is positive semidefinite, for any x € D,
we have r(x) > 0.

B. BOUNDS OF GENERALIZED RAYLEIGH RATIOS

To investigate the bounds of generalized Rayleigh ratios, we
will first cover the special case where D is positive definite.
Afterwards, we will address the general case, which is more
involved.

Theorem 12. Let N and D be hermitian matrices of size v
by v. We assume that D is positive definite. Let r be the
generalized Rayleigh ratio of N to D. Since D is positive
definite, D, = {x € C” : x # 0} and we can define

M =D Y2ND /2. (6)

M is of size v by v, and hermitian. Thus, its eigenvalues
are real. Let A\« be the largest eigenvalue of M and A,y
the smallest eigenvalue of M. For any x € C¥ satisfying
x # 0, we have

*M
= mi \T(x)é)\maxzmaxy A
y£0 y*y y#0 y'y

Moreover,

(7

e the equality 7(x) = Apax is satisfied if and only if
x = D~/2y, where y is an eigenvector of M asso-
ciated with A ax;

o the equality 7(x) = A is satisfied if and only if
x = D~/2y, where y is an eigenvector of M asso-
ciated with \,i,; and

e M and ND~! are similar, so that the eigenvalues of
ND ! are real, A ax 18 the largest eigenvalue of ND !
and A\, is the smallest eigenvalue of ND ..

Proof: Forany x € C¥, lety = D'/2x. Since D is positive
definite, x # 0 if and only if y # 0, we have x = D~1/%y
and, for y # 0, we get

(D1/2X)*M(D1/2X) y*My

r(x) = (D1/2x)*(D1/2x) T Tyty ®)

Using Rayleigh’s theorem [8, Sec. 4.2.2], we obtain (7).
The other assertions of Theorem 12 relating to the equalities
r(X) = Amax and r(x) = Apin result from Rayleigh’s
theorem and the definition of y. Moreover, we observe that

ND ' =DY2MD /2, 9)
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so that M is similar to ND~!. It follows that Ml and ND !
have the same eigenvalues, counting multiplicity, by [8, Sec.
1.3.4]. O
Observation 9. If D is positive definite and N is positive
semidefinite, then M defined in Theorem 12 is positive
semidefinite, so that A;, > 0.

Theorem 13. Let N and D be hermitian matrices of size v
by v, D being positive semidefinite. Let r be the generalized
Rayleigh ratio of N to D, and let D, be the domain of
definition of r. Let r(D,) be the image of D, under r. If
D, # @ and if there exists x € ker D such that x*Nx # 0,
then r(D,.) is not bounded.

Proof: We assume that D,. # &. It follows that there exists
y € D,. We have y* Dy # 0. If there exists x € ker D such
that x*Nx # 0, we observe that for any A € R,

(x+Ay)"D(x+Ay) = \’y* Dy, (10)

so that x + Ay € kerD if and only if A = 0. It follows
that we can define ¢ : R — R such that for any A # 0,
g(A\) = |r(x + Ay)|. For any nonzero A € R, we have

_ x*Nx + A(y*Nx + x*Ny) + \2y*Ny

A 11
which becomes arbitrarily large as A approaches 0, because
x*Nx # 0. Thus, r(D,) is not bounded. O

Corollary 3. Let N and D be positive semidefinite matrices
of size v by v. Let r be the generalized Rayleigh ratio of N
to D, and let D,. be the domain of definition of r. If D,. # &
and if (D)) is bounded, then ker D C ker N.

Proof: We assume that D, # & and r(D,.) is bounded.
By Theorem 13, there is no x € ker D such that x*Nx # 0.
Since N is positive semidefinite, we can use Observation 6 to
conclude that there is no x € ker D such that x ¢ ker N. [J

Theorem 14. Let N and D be hermitian matrices of size v
by v, D being positive semidefinite. Let r be the generalized
Rayleigh ratio of N to D, let D,. be the domain of definition
of r, and let d be the nullity of D. We assume that D,. # &
and ker D C ker N.

D being positive semidefinite, it has v eigenvalues, count-
ing multiplicity, and these values are real and nonnegative by
[8, Sec. 7.2.1]. Let us label these eigenvalues according to a
non-decreasing order fi1, ..., i,. Since D, # &, we have
d<v—1,s0othat 0 < pgy1 < ... < p,. For any positive
integer ¢ such that ¢ < d, we have p; = 0. D being hermitian,
by [8, Sec. 2.5.6] there exists a unitary matrix L of size v by
v such that

D= Ldiagu(lu’lw"nufu) L* (12)

Forany i € {1,...,v}, let the i-th column vector of L be
denoted by L<¢>. Let £ be the submatrix of L, of size v by
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v — d, whose column vectors are L<4+1>__ TL<Y> in this
order. Let
1 1
P = £ diag,_ ( ) (13)
“\ VPar N

and
Q=P*NP. (14)

The matrix P is of size v by v — d. The matrix Q is clearly
hermitian, of size v — d by v — d. Thus, its eigenvalues are
real. Let kyax be the largest eigenvalue of Q and ki, the
smallest eigenvalue of Q. For any x € D,, we have

* *
Fzatm = ?;]3 uuglu £ (57 € e = o uuglu . (15)
Moreover,
* we have r(X) = Kmax if x = Pu, where u is an
eigenvector of Q associated with Ky ax;
e we have 7(Xx) = Kpin if x = Pu, where u is an
eigenvector of Q associated with ky,;y,; and
e Q is similar to
. 1 1
R = £L*N/Ldiag,_, ( ey ) , (16)
Hd+1 M

so that the eigenvalues of R are real, £, is the largest
eigenvalue of R and ki, the smallest eigenvalue of R.

Proof: Since DL = Ldiag,, (1, ..., i), we know that,
for any i € {1,...,v}, L<% is an eigenvector of D asso-
ciated with the eigenvalue s;. It follows that L<!'> to L<9>
are vectors of ker D. L being unitary, (L<!>,... L<">) is
an orthonormal basis of C¥. Thus, (L<¢1> ... L<">)is
an orthonormal basis of (ker D)=.

For any x € CY, there is a unique p;(x) € kerD, and
a unique p2(x) € (ker D)+ such that x = p;(x) + pa(x).
We have x* Dx = po(x)* D pa(x). Thus, if x € D,., then
pa(x) # 0. Since we assume that ker D C ker N, we also
have x* N x = po(x)* N pa(x). Thus, we can assert that, if
x € D,, then

_p®)"Np(x)
It follows that
r(D,) = r((ker D)1). (18)

Letx € D, and z = po(x). Let (441, . .., (, be the coor-
dinates of z in the basis (L<9t> ... L<">) of (ker D)*.
We introduce a column vector of size v — d, given by

Cd+1
i=| (19)
G

The product L 3 is a column vector of size v. Using the rule

for the multiplication of block matrices, we find

L3= Z L<"( =1z. (20)

i=d+1

Using (17) and (20), we get

LN L
= 21
) = D 1)
and (12) leads us to
LN L
r(x) = - . 22)
() 3*L* Ldiag, (u1,..., ) L* L3 (
L*L is of size v by v — d. Since L is unitary, we find that
L*L is given by
L*L = (Od’”—d> : (23)
1V—d
Using (22) and (23), we obtain
* Px N *
r(z) = — FLNL; :u?“, 24)
3 dlagu—d(/’cd-‘rh s 7“1’)3 uu

where u = diag, ;(ftar1,-- -, ) '/?3, so that we have

L 3 = Pu. Since 3 is the column vector of the coordinates of
z in the basis (L<¢1> .. L<¥>) of (ker D)%, it follows
from (18) that r(D,) is the set of all r(z) given by (24)
when 3 takes on any nonzero value in C*~%. Thus, using
Theorem 12, we obtain (15), and
e we have 7(X) = Kmax if we have x = L3’ in which
i = diag, 4(as1,---, )" /%0, where u is an
eigenvector of Q associated with Kpax;
e we have 7(x) = Kpin if we have x = L3 in which
i = diag, 4(ias1,---, ) /?u, where u is an
eigenvector of QQ associated with ky,;,; and
* Q is similar to R given by (16), so that the eigenvalues
of R are real, k. 1S the largest eigenvalue of R and
Kmin the smallest eigenvalue of R.
This leads to the final results of Theorem 14. O
In the case d = 0, we can use Theorem 12 and Theo-
rem 14, the latter giving the same results as the former.

Corollary 4. Let N and D be positive semidefinite matrices
of size v by v. Let r be the generalized Rayleigh ratio of
N to D, and let D, be the domain of definition of r. We
assume that D, # &. Then r(D,.) is bounded if and only if
ker D C ker N.

Proof: This is a direct consequence of Corollary 3 and
Theorem 14. O

C. RELATED RESULTS THAT DO NOT USE A RATIO

Corollary 5. Let N and D be hermitian matrices of size v
by v. We assume that D is positive definite, so that we can
define M = D~'/2ND~!/2, The matrix M is of size v by
v, and hermitian. Thus, its eigenvalues are real. Let A\y,.x be
the largest eigenvalue of M and \.,;,, the smallest eigenvalue
of M. For any x € C¥, we have

Amin X' Dx < x"Nx < Apax X'Dx. (25)

Moreover,
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+ we have X*NxX = Ao x*Dx if x = D~1/2y, where
y is an eigenvector of M associated with Ay ax;

» we have x*Nx = A\ x*Dx if x = D~1/2y, where
y is an eigenvector of M associated with A, ; and

e M and ND~! are similar, so that the eigenvalues of
ND ! are real, Amax 18 the largest eigenvalue of ND !
and A, the smallest eigenvalue of ND 1.

Proof: This is a direct consequence of Theorem 12. [

Corollary 6. Let N and D be hermitian matrices of size v by
v, D being positive semidefinite. Let d be the nullity of D.
We assume that D # 0 and ker D C ker N.

D being positive semidefinite, it has v eigenvalues, count-
ing multiplicity, and these values are real and nonnegative.
Let us label these eigenvalues according to a non-decreasing
order fi1,...,u,. Since D # 0, we have d < v — 1, so
that 0 < pg+1 < ... < p,. For any positive integer 4
such that ¢ < d, we have p; = 0. D being hermitian,
there exists a unitary matrix L of size v by v such that
D = Ldiag,, (41, - - - , it )L™

For any ¢ € {1,...,v}, let the i-th column vector of L
be denoted by L<?>. Let £ be the submatrix of L, of size
v by v — d, whose column vectors are L<¢*1> L<">,
in this order. Let P = Ediagl,_d(ugif, e ,u;1/2) and
Q = P* NP. The matrix Q is hermitian, of size ¥ — d by
v — d. Thus, its eigenvalues are real. Let x,,x be the largest
eigenvalue of Q and ki, the smallest eigenvalue of Q. For
any x € C”, we have

Fmin X Dx < X"NxX < Kmax X Dx . (26)

Moreover,

e we have X*NX = K. X"Dx if x = Pu, where u is
an eigenvector of Q associated with Ky ax;

e we have x*Nx = Kpin X*Dx if x = Pu, where u is
an eigenvector of Q associated with r,;,; and

* Qs similar to R = £*NLdiag, (gl .- 1y 0),
so that the eigenvalues of R are real, k. 1S the largest
eigenvalue of R and k,,;, the smallest eigenvalue of R.

Proof: This is a direct consequence of Theorem 14. O

D. LAST REMARKS

Theorem 12 is a consequence of the results on pencils of
quadratic forms and pencils of hermitian forms presented in
sections 7 and 9 of [12, Ch. X]). Special cases of Corollary 5
were obtained in Theorem 3 and Theorem 5 of Part 1,
and in Theorem 7 of Part 2. It seems that results similar
to Theorem 13, Theorem 14, Corollary 3, Corollary 4 and
Corollary 6 were first stated and proven in [6, Sec. II].

Examples of generalized Rayleigh ratios, together with
different methods of computing the least upper bound and
greatest lower bound of r(x) for x € D,, were provided in
[6, Sec. III] and are not repeated here.
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lll. ASSUMPTIONS, MISCELLANEOUS RESULTS AND
SIMPLE FORMULAE ON AVERAGE POWERS

A. NOTATIONS, ASSUMPTIONS AND BASIC RESULTS
In the special case where m = n, in addition to the powers
defined in Section I, we can consider two additional average
powers:

e Paw is the average power which would be received by
the load connected at port set 2 in CA, if the DUS was
not present and this load was directly connected to the
generator connected at port set 1 in CA; and

e Ppyw is the average power which would be received by
the load connected at port set 1 in CB, if the DUS was
not present and this load was directly connected to the
generator connected at port set 2 in CB.

Let M be a square complex matrix. We use H (M) to
denote the hermitian part of M. As said above, we assume
that the DUS is LTT and passive, that the generators and the
loads are LTI, and that H(Zg;) and H(Zg2) are positive
definite. As explained in Section IV of Part 1, this ensures
that the loads are passive and that P4 4y 1 and Ppayge are
defined. The DUS being a passive (m + n)-port, it follows
that:

0 < Papp2 < Parp1 < Paavar: 27

Pa av po 1s defined and satisfies

0 < Papp2 < Paavps < Paavar; (28)
0 < Paw < Paaver; (29)
0< Pgpp1 < Perp2 < Pavas; (30

Pp v p1 is defined and satisfies

0 < Pppp1 < Ppavri < Ppavaz; 3D

and
0 < Ppw < Ppavaz- (32)

By Lemma 1 of Part 1, we can assert that:

e we can define Yg1 = Zgll and Ygo = Z§21;

* H(Ys1)and H(Y g2) are positive definite; and

¢ instead of assuming that Z g1 and Z g5 exist and are such
that H(Z g1 ) and H(Zg2) are positive definite, we could
equivalently have assumed that Y g7 and Y g5 exist and
are such that H (Y g1) and H (Y g2) are positive definite.

We use Vo1 and Is; = Y51V, to denote the column
vectors of the rms open-circuit voltages and of the rms short-
circuit currents, respectively, of the m-port generator con-
nected to port set 1 in CA. We use Vo and Igo = Y52 Voo
to denote the column vectors of the rms open-circuit voltages
and of the rms short-circuit currents, respectively, of the n-
port generator connected to port set 2 in CB. We use V; and
I, to denote the column vectors of the rms voltages across
port set 1 and of the rms currents flowing into port set 1,
respectively, in a specified configuration. We use V, and
I, to denote the column vectors of the rms voltages across
port set 2 and of the rms currents flowing into port set 2,
respectively, in a specified configuration.
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B. AUGMENTED MULTIPORTS

As in Section IV of Part 1, we consider the ports of the DUS
in the following order: ports 1 to m of port set 1, and then
ports 1 to n of port set 2.

We introduce a parallel-augmented multiport, as defined
in Section II of Part 1, composed of the DUS (as original
multiport), of an m-port load of admittance matrix Y g1
connected in parallel with port set 1, and of an n-port load of
admittance matrix Y go connected in parallel with port set 2.
Here, the admittance matrix of the added multiport is

Y 0
Yapp = < o Ys2> : (33)

H(Ys1) and H(Y g2) being positive definite, H(Y app)
is positive definite. By Theorem 1 of Part 1, the parallel-
augmented multiport has an impedance matrix Zp ;. The
matrix Zpaps is of size (m + n) by (m + n) and it may
be partitioned into four submatrices, Zp 4511 of size m by
m, Zipanrie of size m by n, Zpapro1 of size n by m and
Z p Apr22 of size n by n, which are such that

Zpavii Zpani2
Zpan = . 34
pAM (ZPAM21 Zp a2z 4

By Theorem 1 of Part 1, if Yg; and Y go are symmetric
and the original multiport is a reciprocal device, then Zp 4 s
is symmetric. By Corollary 1 of Part 1, in the special case
where the DUS has an admittance matrix Y, then: Zp s is
invertible;

Zoyy =Y +Yapp; (35)

and, if Y spp is symmetric, Z p 47 is symmetric if and only
if Y is symmetric.

We also introduce a series-augmented multiport, as defined
in Section II of Part 1, composed of the DUS (as original
multiport), of an m-port load of impedance matrix Zg;
connected in series with port set 1, and of an n-port load of
impedance matrix Zgs connected in series with port set 2.
Here, the impedance matrix of the added multiport is

Zs1 O _
Zapp = < o ZS2> =Y.k, (36)

H(Zgs1) and H(Zg2) being positive definite, H(Zapp)
is positive definite. By Theorem 2 of Part 1, the series-
augmented multiport has an admittance matrix Y g 4as. The
matrix Ygaps is of size (m + n) by (m + n) and it may
be partitioned into four submatrices, Y gaas11 of size m by
m, Ysaniz of size m by n, Yganro of size n by m and
Y 5422 of size n by n, which are such that

Ysam1n Ysamiz
Y = . 37
SAM <YSAMQ1 Ysam22 37

By Theorem 2 of Part 1, if Zg; and Zgo are symmetric
and the original multiport is a reciprocal device, then Y g s
is symmetric. By Corollary 2 of Part 1, in the special case
where the DUS has an impedance matrix Z, then: Ygas is
invertible;

Yoiy=2Z+Zapp; (38)

and, if Z opp is symmetric, Y g 47 is symmetric if and only
if Z is symmetric.

C. FORMULAS USING THE OPEN-CIRCUIT VOLTAGES
We want to compute some of the above-defined average pow-
ers, using the open-circuit voltages of the generators to define
the excitations, and Y g 457 to define the DUS. Ignoring noise
power contributions, and using the fact that, H(Zg;) and
H(Zg2) being positive definite, they are invertible, we get
(4], [13]:

Pasver = Vo1 YaaverVor s (39
where the admittance matrix
1 -
Yaaver = 3 (Zs1 +Z%5,) " (40)

is positive definite; and

Ppavae = VHeYpava2Voo, (41

where the admittance matrix
1 .
Ypavaz = B (Zs2 +Z%,) ! (42)

is positive definite.
By inspection, ignoring noise power contributions, we
find:

Parp1 = V51 YarpiVor, (43)
where the admittance matrix

YSAMll + Y;'AMll
2

N Zs + 77
_YSAMllil 5 Y gann  (44)

is positive semidefinite because the DUS and the n-port load
connected to port set 2 in CA are passive, and because V o1
can take on any value lying in C"™;

Papp2 =V51YappaVor, (45)

where the admittance matrix

Y ArP1 =

o Zg 4 7
Yapr2 = Yo %YSAMM (46)

is positive semidefinite because the DUS and the n-port load
connected to port set 2 in CA are passive, and because Vo
can take on any value lying in C"™;

Paw =V5,.YawVor, 47
where the admittance matrix
Yaw = (Zs1 + Zga2) M

« ZSQ + ZEQ

5 (Zs1 +Zso)™t (48)

is positive definite;
Pgrp2 = V52 YBrPr2 Vo2, (49)
where the admittance matrix

YSAMQQ + Y;’ANIQQ

Y prp2 =

. Zsa 7
= Ygsane 282 S Y G anan (50)

Copyright ©2023 by Excem



Excem Research Papers in Electronics and Electromagnetics, no. 7, July 2023

is positive semidefinite because the DUS and the m-port load
connected to port set 1 in CB are passive, and because V pq
can take on any value lying in C";

Pepp1 = V5, Yepr1 Voo, (51)

where the admittance matrix
y Zg1 + 7%
Yeprt = Yo %YSAAHQ (52)

is positive semidefinite because the DUS and the m-port load
connected to port set 1 in CB are passive, and because Vo
can take on any value lying in C"; and

Pew =V5,Yew Voo, (53)
where the admittance matrix
Ypw = (Zs1 + Zs2) ™

« ZSl + Zgl

5 (Zs1 +Zg2)™" (54

is positive definite.

D. FORMULAS USING THE SHORT-CIRCUIT CURRENTS
We now wish to compute the same average powers as in
(39)—(54), using the short-circuit currents of the generators
to define the excitations, and Zpaps to define the DUS.
Ignoring noise power contributions, and using the fact that
H(Ygs1) and H(Y g2) are invertible, we obtain:

Paaver =Tg1ZaaverIs, (55)

where the impedance matrix

1 .

Zaaver =5 (Ys1+Yi) ! (56)
is positive definite; and

Ppavar =T53Zpavalss, (57)

where the impedance matrix

1 .
Zpaver =5 (Yoo +Y5)) ! (58)

is positive definite.
By inspection, ignoring noise power contributions, we get:

Parp1 =151ZarpiIst, (59)
where the impedance matrix
Zpavn +Zpapn
2

. Yo + Y
- PAM11712 17 pani1 (60)

is positive semidefinite because the DUS and the n-port load
connected to port set 2 in CA are passive, and because Ig;
can take on any value lying in C"™;

ZArp1 =

Pappas =T1¢Zapp21st, (61)

where the impedance matrix

. Yo dtY:
Zapp2 = ZPAM21¥ZPAM21 (62)
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is positive semidefinite because the DUS and the n-port load
connected to port set 2 in CA are passive, and because Ig;
can take on any value lying in C™;

Paw =15, Zawls, (63)
where the impedance matrix
Zaw = (Ys1+ Yg)

X W(Y& +Yg) ! (64)
is positive definite;
Pprpa =I5Zprpalsa, (65)
where the impedance matrix
Zpanoz +Zp 4090
2

. YstY:
- 19141\422732 5 527 parraz  (66)

is positive semidefinite because the DUS and the m-port load
connected to port set 1 in CB are passive, and because I
can take on any value lying in C";

Zprpy =

Pgpp1 =15Zeppilse, (67)

where the impedance matrix

L Y +Y:
Zppp1 = ZPAM12¥ZPAM12 (68)

is positive semidefinite because the DUS and the m-port load
connected to port set 1 in CB are passive, and because Igo
can take on any value lying in C™; and

Ppw =I5Zpwlss, (69)

where the impedance matrix

Zpw = (Ys1+Ygo) 1"
Ys1 + Y% _
X %(Ysl + YSQ) 1 (70)

is positive definite.

E. REMARKS

Additional results can be obtained by applying (368)—(371)
of Appendix C to the impedance and admittance matrices
defined above in Section III.C and Section III.D. Also, these
two sections do not cover the computation of P44y po and
Ppav p1, which is complicated and treated in Section V1.

IV. TWO IMPROVED RECIPROCAL THEOREMS

A. THEOREM ON THE TRANSDUCER POWER GAINS
As in Part 1, we consider two transducer power gains: the
transducer power gain in CA, given by

P
Gar = PAﬂ (71)
AAVG1

and the transducer power gain in CB, given by

P,
Gpr = - BDP1 (72)

Ppaveaa
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It follows from (27) and (30) that we have 0 < Ga7 < 1
and 0 < GBT < 1.

To define the excitation in CA, let X 4 denote one of the
variables V1 or Ig1. Based on the results of Section III.C
and Section III.D, we find that G 4 is given by

X4 Nar X,

GAT T ™ v 0
X% Dar X4

(73)
where N 47 and D 47 are hermitian matrices of size m by
m, and given in Table 1. We note that N 47 is positive

semidefinite, and D 47 positive definite.

TABLE 1. Variable X 4 and associated N 47 and D 4.

Variable X 4 Nar Dar
Voi Yapp2 Yaavael
Isy ZApp2 Zaavet

G a7 is given by (73) in the form of a generalized Rayleigh
ratio of N7 to Dyp, in the variable X 4. Thus, Gar
depends on the excitation. Since D 41 is positive definite,
G 4 is defined for any nonzero X 4 € C™.

To define the excitation in CB, let X g denote one of the
variables Vg or Igo. Based on the results of Section III.C
and Section II1.D, we find that G' g is given by

X3 Npr Xp

Gpr = or——"<—>
BT X%, Dpr Xp

(714)
where Np7 and Dpr are hermitian matrices of size n by
n, and given in Table 2. We note that Npp is positive

semidefinite, and D g7 positive definite.

TABLE 2. Variable X 5 and associated Nz and Dp .

Variable XB NBT DBT
Voo YBDP1 YBgavae
Iso Zppp1 Zpava

G pr is given by (74) in the form of a generalized Rayleigh
ratio of Ngr to Dpy, in the variable Xg. Thus, Ggr
depends on the excitation. Since D pr is positive definite,
G pr is defined for any nonzero X € C".

By Observation 7, the set of the values of G 47 obtained
for all X4 € C™ such that X4 # 0 is equal to the set of
the values of G 47 obtained for all X4 € S,,; and the set
of the values of GG obtained for all Xz € C"™ such that
Xp # 0is equal to the set of the values of GG g1 obtained for
all Xp €S,

Since Is1 = Y51 Vo1, where Y g is invertible, we can
assert that the set of the values of GG obtained for all
nonzero X4 € C™, or for all X4 € S,,, does not depend
on the choice X4 = Vpj or X4 = Ig;.

Likewise, since Iso = Y 59V 09, where Y g5 is invertible,
we can assert that the set of the values of G g1 obtained for
all nonzero Xp € C", or for all Xp € S,,, does not depend
on the choice Xp = Vs or Xg = Igo.

We can now state and prove a reciprocal theorem on the
bounds of the sets of the values of the transducer power gains

in CA and CB, which is an improved version of Theorem 4
of Part 1.

Theorem 15. Ignoring noise power contributions, we can

assert that:

(a) the set of the values of the transducer power gain in CA,
obtained for all nonzero Vo1 € C™, or equivalently
for all nonzero Is; € C™, has a least element referred
to as “minimum value” and denoted by G o7 pr7n, and
a greatest element referred to as “maximum value” and
denoted by G a1 prax;

(b) if Amin and A ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of N 47 to D 47, in the
variable X 4 according to (73) and Table 1, we have
GAT MIN = Amin a0d GAT M AX = Amax

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N g7 to D47, in the variable X 4,
an average value of G4 over a number min{m,n} of
nonzero excitations is

trM  tr (NarDyyp)
min{m,n}

GAT AVR = ;o (75)

min{m, n}

(d) Gar avg doesn’t depend on the choice of X 4, and

0< Garmin € Garavr < Garpmax <1; (76)

(e) the set of the values of the transducer power gain in CB,
obtained for all nonzero Vo € C”, or equivalently for
all nonzero Iso € C™, has a least element referred to
as “minimum value” and denoted by G a7, and a
greatest element referred to as “maximum value” and
denoted by Gpr aprax;

(f) if Amin and Apax are given by Theorem 12 applied to
the generalized Rayleigh ratio of Npr to Dpr, in the
variable X p according to (74) and Table 2, we have
GBT MIN = Amin and GBT MAX = Amax

(g) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of Npr to Dpyp, in the variable Xp,
an average value of G over a number min{m,n} of
nonzero excitations is

tr M _ tr (NBTDEg%)

min{m,n}

GBrAVR = ;0 (77)

min{m, n}
(h) Gpr av g doesn’t depend on the choice of X g, and
0<Gprmin <Gpraver < Gprumax <1; (78)

(i) if the DUS and both loads are reciprocal devices, then

Garmax = Germax (79)

and
Gar avr = GBT AVR; (80)

(j) if the DUS and both loads are reciprocal devices, then

(m=n) = (Garmin = GerMmIN) , (81)
(m >n) = (Garmin =0) (82)

and
(m <n) = (Gprmin =0) . (83)
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Proof: Since D o7 and D 7 are positive definite, asser-
tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain
tr M = tr (NATDZ%F), and then the second equality of (75).
By (8), each eigenvector y of M corresponds to a nonzero

. . —1/2 . .

excitation X4 = D 4,/ "y, and to an eigenvalue that is equal
to G a7 for this X 4. Using Table 1, (46) and (62), we get

rank (NATDE}) =rankN 7 < min{m,n}, (84)

so that the number of nonzero eigenvalues of M, counting
multiplicity, is less than or equal to min{m, n}. Since tr M is
the sum of the eigenvalues of M, counting multiplicity, it fol-
lows that G a7 av g given by (75) is an average of GG 41 over
anumber min{m, n} of nonzero excitations. This proves (c).
Assertion (d) follows from (c), (372) of Appendix C, and the
fact that, as said above, we have 0 < G 41 < 1.

In (g), by Theorem 12, we have tr M = tr (NprD57),
which allows us to write the second equality of (77). Using
Table 2, (52) and (68), we get

rank (NprDpr) = rankNpr < min{m,n},  (85)

which can be used to prove (g) as we used (84) to prove (c).
Assertion (h) follows from (g), (373) of Appendix C, and the
factthat 0 < Gpr < 1.

To prove (i) and (j), we can assume X4 = Ig; and
Xp = Igy. By Theorem 12, we only need to compare
the eigenvalues of A = N ATDX% with the eigenvalues of
B=N BTD;T. It follows from Table 1, (56) and (62) that

A =Zpan(Ys2+ Y5)Zpana(Ys1 + YY), (86)

which is of size m by m. It follows from Table 2, (58) and
(68) that

B=Zpa0n12(Ys1 +Y5)Zpani2(Ys2+Y5y), (87)

which is of size n by n. If the DUS and both loads are
reciprocal devices, Zpay, Zs1 and Zgo are symmetric.
Thus, Yg; and Ygo are symmetric and the transpose of
Zpani2 s Zpano, so that

B” = (Yg2 + Y}y)
X Zpan21(Ys1 +Y51)Zpanor - (88)

By [8, Sec. 1.4.1], the eigenvalues of B” are the same
as those of B, counting multiplicity. We note that, if we
write C = (Y2 + Y55)Zpan21(Ys1 + Y§,), the right
hand sides of (86) and (88) are Z} 45,9, C and CZ% 45,915
respectively. Thus, using [8, Sec. 1.3.22] and the fact that
72 4 nro1 18 Of size m by n, we find that:

e if m = n, then A and B have the same eigenvalues,
counting multiplicity;

e if m > n, then A has the same eigenvalues as B,
counting multiplicity, together with m — n additional
eigenvalues equal to zero; and

e if m < n, then B has the same eigenvalues as A,
counting multiplicity, together with n — m additional
eigenvalues equal to zero.

This leads to the final assertions of Theorem 15. O
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B. THEOREM ON THE INSERTION POWER GAINS

As in Part 1, we consider two insertion power gains in the
special case where n = m: the insertion power gain in CA,
given by

P
Gar = ;D” , (89)
AW

and the insertion power gain in CB, given by

Gy = 1227 00)
BW
G 4 and G gy are nonnegative, but they need not be less
than or equal to one.
To define the excitation in CA, let X 4 denote one of the
variables V1 or Ig;. Based on the results of Section III.C
and Section III.D, we find that G 47 is given by

X% Nar Xy
X% Dar X4’
where N 47 and D 4; are hermitian matrices of size m by

m, and given in Table 3. We note that N 4; is positive
semidefinite, and D 4 positive definite.

Gar oD

TABLE 3. Variable X 4 and associated N 7y and D 4;.

Variable X 4 Nar Dar
Vo1 Y app2 Y aw
Isq ZADppP2 Zaw

G a7 is given by (91) in the form of a generalized Rayleigh
ratio of N 47 to D 47, in the variable X 4. Thus, G 47 depends
on the excitation. Since D 4; is positive definite, G 45 is
defined for any nonzero X4 € C™.

To define the excitation in CB, let X g denote one of the
variables Voo or Igo. Based on the results of Section III.C
and Section III.D, we find that G g is given by

_ X% Npr Xp
X% Dpr X’
where Np;r and Dp; are hermitian matrices of size m by

m, and given in Table 4. We note that Np; is positive
semidefinite, and D p; positive definite.

Gpr 92)

TABLE 4. Variable X 5 and associated Ng; and Dp;.

Variable XB NBI DBI
Voo Ygepp1 Yew
Iso Zppp1 Zpw

G 1 is given by (92) in the form of a generalized Rayleigh
ratio of N to D gy, in the variable X g. Thus, G g depends
on the excitation. Since Dpg; is positive definite, Gy is
defined for any nonzero Xp € C™.

By Observation 7, the set of the values of G 4; obtained
for all X4 € C™ such that X4 # 0 is equal to the set of
the values of GG 4; obtained for all X4 € S,,; and the set
of the values of Gy obtained for all X5 € C™ such that
Xp # 0is equal to the set of the values of G g obtained for
all Xg € S,,.
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Since Is1 = Y51 Vo1, where Y g is invertible, we can
assert that the set of the values of (G4; obtained for all
nonzero X4 € C™, or for all X4 € S,,, does not depend
on the choice X4 = Vpj or X4 = Ig;.

Likewise, since Iso = Y g2V o, where Y g5 is invertible,
we can assert that the set of the values of G obtained for
all nonzero X € C™, or for all X5 € S,,, does not depend
on the choice X = Vo or X = Igo.

We can now state and prove a reciprocal theorem on the
bounds of the sets of the values of G' 47 and G gy, which is a
better version of Theorem 6 of Part 1.

Theorem 16. If m = n, ignoring noise power contributions,

we can assert that:

(a) the set of the values of the insertion power gain in CA,
obtained for all nonzero Vo1 € C™, or equivalently
for all nonzero Is; € C™, has a least element referred
to as “minimum value” and denoted by G A7 7N, and
a greatest element referred to as “maximum value” and
denoted by Gas prax;

(b) if Amin and Apax are given by Theorem 12 applied to
the generalized Rayleigh ratio of N 47 to D 47, in the
variable X 4 according to (91) and Table 3, we have
GAr MIN = Amin a0d GA7 MAX = Amax

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N 47 to D 47, in the variable X 4, an
average value of GG 4; over m nonzero excitations is

trM  tr (Na/D5;)

Garave = : (93)
m m

(d) Gar avr doesn’t depend on the choice of X 4, and

0< Garmin < Garave < Garmax; 94)

(e) the set of the values of the transducer power gain in CB,
obtained for all nonzero Voo € C™, or equivalently
for all nonzero Igo € C™, has a least element referred
to as “minimum value” and denoted by G as7n, and
a greatest element referred to as “maximum value” and
denoted by GBI MAX:

(®) if Apin and Ay« are given by Theorem 12 applied to
the generalized Rayleigh ratio of Np; to Dpy, in the
variable X p according to (92) and Table 4, we have
GBI MIN = Amin a0d GBr M AX = Amax

(g) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of Npg; to Dpy, in the variable X5, an
average value of G gy over m nonzero excitations is

tr M tr (NBIDB})

GBrave = 5 (95)
m m

(h) Gpravr doesn’t depend on the choice of X g, and

0 < Germiv < Garavre < Grmax; (96)

(1) assuming that the DUS and both loads are reciprocal
devices, if there exist two complex numbers Zg; and
Zg9 such that Zgy = Zg11,, and Zgo = Zgol,,, or
if Zpanio1, Zis1 and Zgs are circulant, then

10

Garmax = GBrvmax 97
Garavr = GBravr (98)

and
Garmin = GBrmin - (99)

Proof: Since D 4; and Dp; are positive definite, asser-
tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain
tr M = tr (N 4/D7;), and then the second equality of (93).
By (8), each eigenvector y of M corresponds to a nonzero

. . — 1/2 . .

excitation X4 = D ;" "y, and to an eigenvalue that is equal
to G 47 for this X 4. Using Table 3, (46) and (62), we get

rank (N 4/D5;) = rankNa; < m, (100)

so that the number of nonzero eigenvalues of M, counting
multiplicity, is less than or equal to m. Since tr M is the sum
of the eigenvalues of M, counting multiplicity, it follows that
G a1 avr given by (93) is an average of G 47 over m nonzero
excitations. This proves (c). Assertion (d) follows from (c),
(372) of Appendix C, and G 47 > 0.

In (g), by Theorem 12, we have tr M = tr (NBIDB}),
which allows us to write the second equality of (95). Using
Table 4, (52) and (68), we get

rank (NBIDE,}) =rankNpg; < m, (101)

which can be used to prove (g) as we used (100) to prove (c).
This, (373) of Appendix C, and Gp; > 0 lead us to (h).

To prove (i), we can assume X4 = Ig; and Xp = Igo.
By Theorem 12, we only need to compare the eigenvalues of
A = NAIDZ} with the eigenvalues of B = NBIDE;}. It
follows from Table 3, (62) and (64) that

A = Z?:A]le(YSQ + YZ‘Q)ZPAMQI
X (Ys1+Ys2)(Yso+ Yig) 1 (Ys1 + Ys2)*, (102)

which is of size m by m. It follows from Table 4, (68) and
(70) that

B =Zpann2(Ys1 +Y51)Zpane
X (Ys1+Ys2)(Ys1+Y5) (Ys1+ Ys2)*, (103)

which is of size m by m. If the DUS and both loads are
reciprocal devices, Zpay, Zs1 and Zgo are symmetric.
Thus, Yg; and Ygo are symmetric and the transpose of
Zpanri2 18 Zpanrai, so that

BT = (Ys1 + Ys2)" (Ys1 + Y5
X (Ys1+Ys2)Zpama1(Ys1 +Y51)Zpangon -

We need an additional assumption, suitable to allow us to
remove: (Ygo + Y%,) and (Ysa + Y5,) ! from (102); and
(Ys1+Y%)and (Yg1 + Y% )~ ! from (104). A first possi-
bility is that we assume that there exist two complex numbers
Zg1 and Zgg such that Zgy = Zg11,, and Zgy = Zgo1,,.
A second possibility is that we assume that Zp 421, Zs1

(104)
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and Zg- are circulant, because: circulant matrices commute;
linear combinations of circulant matrices are circulant; and
the inverse of an invertible circulant matrix is circulant [8,
Sec. 0.9.6]. Using either assumption, we obtain

A=ZpanZpran21(Ys1+Ys2)(Ys1+Ys2)", (105)
and

B" = Zpanan (Y1 + Ys2) (Y1 + Ys2) Zhansa -
(106)
By [8, Sec. 1.4.1], the eigenvalues of B” are the same as
those of B, counting multiplicity. We then observe that, if we
write C = ZPAA121(Y51 + Ygg)(Y51 + Ysg)*, the right
hand sides of (105) and (106) are Z}> 4 5,5; C and C Z% 4 5791
respectively. Thus, using [8, Sec. 1.3.22], we find that A and
B have the same eigenvalues, counting multiplicity, which
leads to the final assertions of Theorem 16. O

V. OPERATING POWER GAINS

An operating power gain is sometimes called “power gain”
[14, Sec. 3.2]. It could also be called “efficiency” since we
are considering a passive DUS. We consider two operating
power gains: the operating power gain in CA, given by

P
Gao = 2222 (107)
Parp1
and the operating power gain in CB, given by
P,
Gpo = —22EL (108)
Pprpo

It follows from (27) and (30) that we have 0 < Gap < 1
and 0 < Ggo < 1.

To define the excitation in CA, let X 4 denote one of the
variables V1 or Ig;. Based on the results of Section III.C
and Section III.D, we find that G 40 is given by

_ X% Nao X4
X% Dao X4’
where N 40 and D 40 are hermitian matrices of size m by

m, and given in Table 5. We note that N 4o and D 40 are
positive semidefinite.

Gao (109)

TABLE 5. Variable X 4 and associated N 4o and D 4.

where N o and Do are hermitian matrices of size n by
n, and given in Table 6. We note that Npo and Dpo are
positive semidefinite.

TABLE 6. Variable X 5 and associated Ngo and Dgo.

Variable X Ngo Dgo
Voo YBpP1 Y BRrP2
Iso Zppp1 ZpBRrp2

Variable X 4 Nao Do
Vo1 Y app2 Y ArP1
Isy ZApp2 Z ArpP1

G ao is given by (109) in the form of a generalized
Rayleigh ratio of N 40 to D 40, in the variable X 4. It fol-
lows that G 4 depends on the excitation, and that, according
to the explanations provided in Section II.A, G 40 is defined
for X4 € D(Dap), where

D(DAo):{XA E(Cm:XA ¢kerDAo}. (110)

To define the excitation in CB, let X g denote one of the
variables Vo or Igo. Based on the results of Section III.C
and Section II1.D, we find that G g is given by

X3 Npo Xp

== (111)
X5 Do Xp

Ggo
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Gpo is given by (111) in the form of a generalized
Rayleigh ratio of Npp to Dpp, in the variable Xp. It
follows that G o depends on the excitation, and is defined
for Xp € D(Dpo), where

D(Dpo) ={Xp eC": Xp ¢ kerDpo}.  (112)

By Observation 7, the set of the values of G40 obtained
for all X4 € D(Dyo) is equal to the set of the values of
G 40 obtained for all X4 € D(Daop) N Sy, Likewise, we
can assert that the set of the values of Gz obtained for all
Xp € D(Dpp) is equal to the set of the values of Gpo
obtained for all X5 € D(Dpgp) N'S,.

Since Is1 = Yg¢1 Vo1, where Ygq is invertible, it is
possible to show that the set of the values of G 40 obtained
forall X4 € D(Dag),orforall X4 € D(Dao)NS,,, does
not depend on the choice X4 = Vo or X4 = Ig;.

Likewise, since Iso = Y 59V 09, where Y g5 is invertible,
we can show that the set of the values of GG o obtained for
all Xp € D(Dpp), or forall Xg € D(Dpgp) NS, does
not depend on the choice Xp = Vo or Xp = Igs.

We can now state and prove two new theorems on the
operating power gains.

Theorem 17. We assume that we have D(D 40) # @, since
otherwise studying G 40 is not interesting. Ignoring noise
power contributions, we can assert that:

(a) we have kerD 4o C ker N 40 so that Theorem 14 can
be applied to the generalized Rayleigh ratio of N 40 to
Do

(b) the set of the values of the operating power gain in CA,
obtained for all X4 € D(D40), has a least element re-
ferred to as “minimum value” and denoted by G 40 p1n,
and a greatest element referred to as “maximum value”
and denoted by G40 max;

(¢) if Kmin and kyax are given by Theorem 14 applied to
the generalized Rayleigh ratio of N 4o to D 40, in the
variable X 4 according to (109) and Table 5, we have
G40 MIN = Kmin a0d GA0 MAX = Fmax

(d) if d is the nullity of D 40, and if Q and R are given by
Theorem 14 applied to the generalized Rayleigh ratio of
N o to D40, in the variable X 4, an average value of
G a0 over a number N = min{m — d,n} of nonzero
excitations X4 € D(D40) is

trQ trR

=M Do, 113
G40 AVR N N (113)

11
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(e) we have

0< Gaomin € Gaoave < Gaomax <1; (114)

(f) if Do is positive definite and if A, and Apax are
given by Theorem 12 applied to the generalized Rayleigh
ratio of N 4o to D40, in the variable X 4 according
to (109) and Table 5, we have G A0 1N = Amin and
GAO MAX — /\max 5

(g) if D 40 is positive definite and if M is given by Theo-
rem 12 applied to the generalized Rayleigh ratio of N 40
to D 40, then G 40 av g doesn’t depend on the choice of
the variable X 4, and we have

tr M _ tr (NAnglo)
min{m,n}  min{m,n}

G40 AVR = (115)

Proof: We have already observed that power conservation
entails G40 < 1. Since D 40 is positive semidefinite, we
can apply Corollary 3 to the generalized Rayleigh ratio of
N 4o to Dyo. It follows that ker D 40 C ker N 40. Thus,
the assumptions of Theorem 14 applied to the generalized
Rayleigh ratio of N 4o to D 4 are satisfied. This proves (a),
and also (b) and (c), which directly follow from Theorem 14.

In (d), by Theorem 14 and [8, Sec. 1.3.3], we obtain
tr Q = tr R, which allows us to write the second equality
of (113). Let L, £ and P be given by Theorem 14 applied
to the generalized Rayleigh ratio of N 4o to D 4p. By (24),
each eigenvector u of Q corresponds to a nonzero excitation
X 4 = Pu, and to an eigenvalue that is equal to G 4 for this
X 4. We have rank Q < m — d, and rank Q < rank N 40.
Using Table 5, (46) and (62), we get

rankQ < min{m — d,n}, (116)

so that the number of nonzero eigenvalues of Q, counting
multiplicity, is less than or equal to N = min{m — d,n}.
Since tr Q is the sum of the eigenvalues of Q, counting
multiplicity, it follows that G40 avr given by (113) is an
average of G 4o over a number N of nonzero excitations
X4 € D(D o). This leads us to (d) and (e).

If D 4o is positive definite, we have d = 0 and £ = L,
so that, according to (13), we have PL* = PL ! = Dzlo/Q.
Consequently, it follows from (6) and (14) that

LQL ' =D, /*N,4oD > =M. (117)

Thus, if D 40 is positive definite, M is similar to Q. It

follows that M and Q have the same eigenvalues, counting

multiplicity, by [8, Sec. 1.3.4]. This, Theorem 12, Theo-
rem 14 and (372) of Appendix C lead us to (f) and (g). O

Theorem 18. We assume that we have D(Dpgp) # @, since

otherwise studying Gpo is not interesting. Ignoring noise

power contributions, we can assert that:

(a) we have ker Do C ker Npo so that Theorem 14 can
be applied to the generalized Rayleigh ratio of Nz to
Dgo;

12

(b) the set of the values of the operating power gain in CB,
obtained for all X5 € D(Dpo), has a least element re-
ferred to as “minimum value” and denoted by Ggo 1w,
and a greatest element referred to as “maximum value”
and denoted by Gpo prax;

(c) if Kmin and Kyax are given by Theorem 14 applied to
the generalized Rayleigh ratio of Npo to Dpo, in the
variable X p according to (111) and Table 6, we have
GBO MIN = Kmin a1d GBO MAX = Kmax >

(d) if d is the nullity of D, and if Q and R are given by
Theorem 14 applied to the generalized Rayleigh ratio of
Ngo to Dpo, in the variable X g, an average value of
Gpo over a number N = min{m,n — d} of nonzero
excitations X5 € D(Dpo) is

trQ trR
GBo AvR = N - N

(118)
(e) we have

0< Gpomin < Gpoavr < Gpomax < 1;
(119)
(f) if Dpo is positive definite and if A, and Apax are
given by Theorem 12 applied to the generalized Rayleigh
ratio of Npp to Dpgp, in the variable X g according
to (111) and Table 6, we have Ggo prrv = Amin and
GBO MAX — )\max 5
(g) if Dpo is positive definite and if M is given by Theo-
rem 12 applied to the generalized Rayleigh ratio of N 5o
to Do, then Gpo 4y r doesn’t depend on the choice of
the variable X g, and we have

trM  tr(NpoDjgp)
min{m,n}  min{m,n}

GBo AVR = (120)

Proof: Theorem 18 is Theorem 17 with a different labeling
of the ports. O

Neither Theorem 17 nor Theorem 18 qualifies as a recip-
rocal theorem about the bounds of the sets of the values of
the operating power gains in CA and CB. This comment also
applies to the following new theorem.

Theorem 19. We assume D(D 40) # @ and D(Dpo) # 2.
Ignoring noise power contributions, we can assert that:

(a) if Zpapsi1 is invertible, for a specified DUS and a
specified Y g2, Gao amrn and Gao prax do not depend
on Ysi;

(b) if Ygsanr1 is invertible, for a specified DUS and a
specified Zgss, G a0 prny and G 40 prax do not depend
on Zs1;

(c) if Zpapsoo is invertible, for a specified DUS and a
specified Y g1, Ggo mrnv and Gpo prax do not depend
on Y go; and

(d) if Ysaa1 is invertible, for a specified DUS and a
specified Zgs1, Gpo prn and Gpo prax do not depend
on Zgo.
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Proof: In CA, if Zpapr11 is invertible, then port set 1 of
the DUS has an admittance matrix

Yapp1 = Z;D}quu —Ys1. (121)

Accordingly, the vector V; may lie anywhere in C™, we
have I = Yapp1 V1 for any Vi € C™, and Yapp; is
positive semidefinite because Pyrp1 > 0 forany V; € C™.
Of course, Y 4pp1 does not depend on Yg;.

In CA, if Zp a1 is invertible, for a specified DUS and
a specified Ygo, it follows that Py4ppo and Parpi are
completely determined by V1, so that any change in Y g1 can
be compensated by a change inIs;1 = (Yapp1+Ys1)Vito
obtain the same V' and the same I, hence the same Pspp2
and the same P4 grp1, sothat Gaonrny and G 40 a4 x do not
depend on Y g1. This proves (a).

In CA, if Y gaps11 is invertible, then port set 1 of the DUS
has an impedance matrix

Zarrr = Ygann — Zst - (122)

Accordingly, the vector I; may lie anywhere in C™, we
have Vi = ZyppiIj for any I; € C™, and Zappy is
positive semidefinite because Pyrp; > 0 for any I; € C™.
Of course, Z 4 pp1 does not depend on Zg; .

In CA, if Ygann1 is invertible, for a specified DUS
and a specified Zgo, it follows that Pyppo and Psrp; are
completely determined by I, so that any change in Zg; can
be compensated by a change in Vo1 = (Zapp1 +Zs1)I; to
obtain the same I; and the same V1, hence the same P4 ppo
and the same P4 rp1, S0 that Gaonrny and G 40 a4 x do not
depend on Z g, . This proves (b).

Regarding (c) and (d), they correspond to (a) and (b),
respectively, with a different labeling of the port sets. O

VI. AVAILABLE POWERS AT OUTPUT PORTS

A. PLAN

To investigate more power ratios, we need to compute the
available powers at the output ports of the DUS, that is to say
PAAVP2 in CA and PBAVPl in CB.

We will study two new configurations, using short-circuit
currents in Section VI-B, and using open-circuit voltages
in Section VI-C. The theorems covering the computation of
P av po and Pp Ay p1 will be obtained in Section VI-D.

B. SOME RESULTS USING SHORT-CIRCUIT CURRENTS
We consider the parallel-augmented multiport defined in
Section III-B. Port set 1 of the parallel-augmented multiport
corresponds to port set 1 of the DUS connected to an m-port
load of admittance matrix Y g;. Port set 2 of the parallel-
augmented multiport corresponds to port set 2 of the DUS
connected to an m-port load of admittance matrix Y go.

We will use the equivalent circuit of the DUS defined in
Corollary 1 of Part 1, composed of: the parallel-augmented
multiport defined in Section III-B; an m-port circuit of ad-
mittance matrix —Y g connected in parallel with port set 1
of the parallel-augmented multiport; and an n-port circuit of
admittance matrix —Y g9 connected in parallel with port set 2
of the parallel-augmented multiport.

Copyright ©2023 by Excem

In a configuration C (CC), port set 1 of the DUS is
connected to an LTI m-port generator of internal admittance
matrix Yg; and rms short-circuit current vector Igq, as in
CA, and port set 2 of the DUS is connected to an LTI n-port
device, which need neither be passive nor have an admittance
matrix. We see that an equivalent circuit of CC comprises: the
parallel-augmented multiport, of impedance matrix Zp 4ps;
an m-port current source delivering Is; connected in parallel
with port set 1 of the parallel-augmented multiport; an n-port
circuit of admittance matrix —Y go connected in parallel with
port set 2 of the parallel-augmented multiport; and said LTI
n-port device also connected in parallel with port set 2 of the
parallel-augmented multiport. It follows that, in CC, we have

Vo =Zpamalsi +Zpapoo(Io + Y2 Va).  (123)

In a configuration D (CD), port set 2 of the DUS is
connected to an LTI n-port generator of internal admittance
matrix Y go and rms short-circuit current vector Igo, as in
CB, and port set 1 of the DUS is connected to an LTI m-port
device, which need neither be passive nor have an admittance
matrix. We find that, in CD, we have

Vi =Zpamialsa +Zpapi(Ii + Ys1Vi) . (124)
Let I o2 be the column vector of size n given by
Ico =T+ Ys52Va, (125)
and Ip; be the column vector of size m given by
Ipi=I1 +Ys1Vy. (126)

Lemma 4. In CC, the LTI n-port device connected to port
set 2 of the DUS produces a relationship between V5 and
I, but if we leave this relationship undetermined, that is to
say if this LTI n-port device is not specified, then the vector
Ico = Is + Y2 Vo may lie anywhere in C™.

Likewise, in CD, the LTI m-port device connected to port
set 1 of the DUS produces a relationship between V; and
I, but if we leave this relationship undetermined, that is to
say if this LTT m-port device is not specified, then the vector
Ip1 =1 + Y51 Vi may lie anywhere in C™.

Proof: In CC, Ig; is the vector of the rms currents
flowing in port set 1 of the parallel-augmented multiport,
and Ioo = I + Y59V is the vector of the rms currents
flowing in port set 2 of the parallel-augmented multiport.
The fact that Z p 4 s exists entails that the parallel-augmented
multiport creates no constraint on Ig; and Ioo, sothat Zp 4,
can be measured by injecting arbitrary currents in the ports
of the parallel-augmented multiport. Thus, in CC, if the n-
port device connected to port set 2 is not specified, I may
lie anywhere in C™. In practice, we can decide that the LTI
n-port device is an n-port generator of internal admittance
matrix Y go and rms short-circuit current Igo, as in CB. In
this case, Igo = I-2, which may lie anywhere in C™.

The argument is similar for CD. O

13
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Observation 10. In contrast, since the DUS need not have an
impedance matrix, I, may be constrained to lie in a proper
subspace of C™ and I, may be constrained to lie in a proper
subspace of C™.

Lemma 5. In CC, let Poppo be the average power delivered
by port set 2. Ignoring noise power contributions, we find

2Pcpp2 =T Zp apso1 (Ys2 + Y59)Zpanailst

—ItoZpoles + 2Re (Is1Zp g p21 Kpalo2) ,  (127)

where Re(z) denotes the real part of z € C, where the
impedance matrix Zpg- is of size n by n and given by

Zgs =Zpanaz + Zpanoo

—Zpana2(Ys2+Y5o)Zpanaa, (128)

and where the dimensionless matrix Kgo is of size n by n
and given by

Kpo = (Ys2 +Y5)Zpanaz — 1 (129)

In CD, let Pppp1 be the average power delivered by port
set 1. Ignoring noise power contributions, we find

2Ppppr1 = X925 pnr12(Ys1 + Y51)ZpanriaIse

- I*Dle‘lIDl = 2Re (I§2Z*PAM12KE11D1) 9 (130)

where the impedance matrix Z g is of size m by m and given

by

ZEl = ZPAMll T Z}i—’AMll

—Zpar1(Ys1+Ys1)Zpamn, (131)

and where the dimensionless matrix K g is of size m by m
and given by

Krpi=(Ys1 +Y51)Zparin — 1o (132)
Proof: In CC, Pcpps is given by
1 * *
Pcppa = —5(V212 +I5Vs). (133)

so that, using (123) and (125), we get (134) shown at the
bottom of this page. We then get (135) shown at the bottom
of this page, which leads us to (127)-(129).

The proof for CD corresponds to the proof for CC, with a
different labeling of the port sets. O

Lemma 6. Z 5 and Z g, are positive semidefinite.

Proof: By (128), Zgo is hermitian. Let \,;, be the
smallest eigenvalue of Z 5. Since, by Lemma 4, I oo can be
any complex column vector of size n, we can assume that
Ico = pJ, where J is an eigenvector of Z g5 associated with
the eigenvalue Api,, and where p is an arbitrary complex
number. In this case, we have:

I50Zpoloo = Amin|p|?T*T . (136)

Since J*J > 0 and |u| can be arbitrarily large, it follows
from (127) and (136) that Pcp po could be arbitrarily large if
Amin Was negative. But this is impossible because, the DUS
being passive, Poppe must be less than Paaygi. We may
conclude that A, is nonnegative, so that Zpgo is positive
semidefinite by [8, Sec. 7.2.1].

The proof for Z g, corresponds to the proof for Z go, with
a different labeling of the port sets. O

Lemma 7. We have

ker Zps C ker (Zp 4 a1 KE2) (137)

and

ker Zpy C ker (Zp p12KE1) - (138)

Proof: Let Im(z) denote the imaginary part of z € C.
For any J € ker Zp», since, by Lemma 4, Ioo can be any
complex column vector of size n, we can posit Ico = pJ,
where p is an arbitrary complex number. We get:

2Pcppe = 15120 g 301 (Ys2 + YSo) Zpanailst
+ 2Re(p)Re (I Zp 4 pr21 KE2d)
— 2Tm() 0 (T, Zip g1 K )

Since Popps must be less than Py 4y 1 for any value of
w1 in C, it follows that

I§1Z*PAJ\421KE2~] =0.

(139)

(140)

Since Zpapr21 and Kpgo are independent of Igq, since
Z 5 is independent of Ig; so that J is independent of Igq,
and since (140) is applicable to any Is; € C™, it follows that
J € ker(Z%} 45721 K E2). We have proven (137).

The proof for (138) corresponds to the proof for (137),
with a different labeling of the port sets. O

2Pcpp2 = —(Zpamalst + Zpanasles) [Iea — Yso(Zpamailst + Zpanazles)]

— [Te2 — Ysa(ZpamaIst + Zpanzeleo)] (Zpanzilst + Zpanzelcs). (134)

2Pcpp2 = 151 Zp o1 (Ys2 + Ys2)Zpana1Is

+ X0 [Zhansos(Ys2Zpanroz — 10) + (Zpans20Y &2 — 1) Zpanzz]|Ico
+ X1 Zp anson [(Ys2 + Yeo)Zpanoz — 1 |Too + 160 [Zhanson(Ys2 + Y52) — 1] ZpanaiIs . (135)

14
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Lemma 8. We have

range (K70Z pano1) C range Zgs (141)
and
range (K71 Zpani2) C range Zg, (142)
Proof: By Lemma 7, for any J € C", we have
(Zp2J =0) = (Zp 21 KE2J =0) (143)
so that, since Z g is hermitian,
(J*Zp2 =0) = (J*K52Zpapo1 =0) . (144)

We use the standard scalar product of C” to define orthog-
onality [8, Sec. 0.6]. In (144), J*Z > = 0 means that J is
orthogonal to each column vector of Z g9, or equivalently that
J is orthogonal to range Z go. In (144), J*K55Z papror = 0
means that J is orthogonal to range(K 5 Zpanr21)-

If Zg- is invertible, there is nothing to prove to obtain
(141). In the opposite case, using g to denote rank Zpgs,
where ¢ < n, and using a Gram-Schmidt orthonormaliza-
tion process, we can build an orthonormal basis Jq,...,J,
of C", such that Jy,...,J, is an orthonormal basis of
range Zgo. Here, for any k € {q + 1,...,n}, Ji is or-
thogonal to range Z g, so that, by (144), J; is orthogonal
to range(K*E2 Zijugl).

Let V be an arbitrary element of C”, of coordinates
V1,...,U, in the basis Jq,...,J,. Forany k € {1,...,n},
we have vy, = J;V. Thus, if V € range(K}5Zpan21),
then vg41 = ... = v, = 0,s0that V € range Zg,. We have
proven (141).

The proof for (142) corresponds to the proof for (141),
with a different labeling of the port sets. O

Lemma 9. Let A be an arbitrary complex matrix. We use
At to denote the Moore-Penrose generalized inverse of A.
We assert that: ZTE2 and ZEl are positive semidefinite;

X = Z1,KppZpana st (145)
is a solution of the equation

ZpX = KpgsZpam2ls: (146)
in the variable X € C™; and

X = 2}, KinZpannols (147)
is a solution of the equation

Z; X =Kgi1Zpamials2 (148)

in the variable X € C™.

Proof: Let p be a positive integer. If A is of size p by p and
positive semidefinite, there exist a unitary matrix U and a real
diagonal matrix A = diag, (A1, ..., ;) such that we have
Al > ...2 ), > 0and A = UAU". Here, A = UAU"
is a diagonalization of A and a singular value decomposition

Copyright ©2023 by Excem

of A. If A is invertible, since A~ = AT, it follows from [8,
Sec. 7.2.1] that AT is positive definite. If A is not invertible,
we write 7 = rank A, and by [8, Sec. 7.3.P7] we get

f— Udiag, [~ ... L1
A" = Udiag, </\1,...,/\T,
which is hermitian and positive semidefinite according to [8,
Sec. 7.2.1].

Thus, AT is positive semidefinite if A is positive semidefi-
nite. It follows from Lemma 6 that Z‘LE2 and me are positive
semidefinite

By Lemma 8, (146) has at least one solution, and (148) has
at least one solution. Consequently, by [15, Sec. 4.3] or [16,
Sec. 5.7 to 5.8] or [8, Sec. 7.3.P9], we find that: (145) is a
solution of the equation (146); and (147) is a solution of the
equation (148). O

0,...70) U*,  (149)

Theorem 20. In CC, for any Ig; € C™, if we study Pcppo
as a function of I2, which by Lemma 4 may lie anywhere
in C", we find that Pcpps has a maximum, denoted by
Pc ppamax and given by

PCDP2 max — IE1ZCDP2 max151 ) (150)
where the impedance matrix
ZcppP2max = Lpanon
Yoo + Y5, + KpoZ K*
x 2t 8 TREEmI 7 (151)

is positive semidefinite. Thus, Popp2max 1S Nonnegative.

In CD, for any Iso € C™, if we study Ppppi as a function
of Ipy, which by Lemma 4 may lie anywhere in C™, we
find that Pp p p1 has a maximum, denoted by Ppp p1 max and
given by

PDDPl max — IEQZDDpl maxIS2 ) (152)
where the impedance matrix
ZDDPl max — Z*PAM12
Yo+ Y5 + KpZi K
x —H TSI 7 (153)

2
is positive semidefinite. Thus, Pppp1 max 1S Nonnegative.

Proof: According to Lemma 5, we have

2Pcpp2 = 16120 g 001 (Ys2 + Y59) Zpaniailsa
—I55Zpolco
+ I Zp g o1 Kuoloo + 15K Zpapols . (154)

A variation Algo in Iy entails a variation APgzpps in
Pcppa, where APapps is given by

1
APcpps = 3 [ALE (KioZpanialsy — Zpaleos)

+ (T51Zp api21 KE2 — L0 Zp2) Al
— ATy ZpaAles] . (155)

15
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Using Landau’s little-o notation and the fact that Z g is
hermitian, we obtain

APcpp2 = o(||Alcsl|2)
+ Re<AIE’2(K*EQZPAM21151 - ZEQICQ)) .
A stationary point of Popps exists if and only if, for any

Algo, we have APopps = o(||Ales||2), that is if and only
if we have

(156)

Re(AIfo)Re(KEoZpanoilst — ZpaIcs)
— Im(AI*Cg)Im(KE‘QZPAM21151 — ZEQIC2) = ()7
(157)

for any Also. Consequently, Ioo is a stationary point of
Pcppo if and only if

Zpolos = KpoZpanails: (158)

Since, according to Lemma 9, (158) has a solution given
by (145), it follows that a stationary point of Pcppo exists.
Using (154), (158), and the fact that Z g, is hermitian, we
find that, at any of the stationary points, the stationary value
is

[121 pano1(Ys2 +Y5)Zpanails
+ I5oZEaIes] . (159)

[N

Pcppa =

If I is a stationary point of Poppe, (157) is satisfied, so
that, according to (155), we have

1
APoppy = —5 AT, Zpa Al (160)

Thus, the single stationary value of Pop po is a maximum,
since Zpgo is positive semidefinite by Lemma 6. Let us use
Pcpp2 max to denote this maximum, which is given by (159)
where I is any solution of (158). Using Lemma 9, we get

1 * * *
Poppamax = 3 L5 Z 5 anso1 (Y2 + Y59)Zpanailst

+ IglZ;AMQlKEQZTEQZE2ZJJFE‘QK*EQZPAMQIISJ .
(161)

By [15, Sec. 4.3] or [8, Sec. 7.3.P7], Z}fm satisfies

VAN AN YA (162)

so that (161) leads us to (150)-(151). Moreover, the
impedance matrix defined by (151) is positive semidefinite
because Y g2 + Y5, is positive definite and ZEQ is positive
semidefinite according to Lemma 9.

The proof for (152)—(153) corresponds to the proof for
(150)—(151), with a different labeling of the port sets. O

C. SOME RESULTS USING OPEN-CIRCUIT VOLTAGES

To use open-circuit voltages, we need to define: the admit-
tance matrix Y po given by

Yro=Ysam2 + Y5an99

—YSanoe(Zso +Z55)Ysanae, (163)
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which is of size n by n; the dimensionless matrix Ko given
by

Kro = (Zso+Z5)Ysamae — 1, (164)

which is of size n by n; the admittance matrix Y 71 given by

Yri=Ysamin + Ysan

—YSar1(Zs1 +Z5)Ysan1, (165)

which is of size m by m; and the dimensionless matrix Kz
given by

Kri = (Zs1 +Z51)Ysamu — 1y, (166)
which is of size m by m.
Let V9 be the column vector of size n given by
Voo = Vo +Zgols, (167)
and V p; be the column vector of size m given by
Vp1 =V +Zgl,. (168)

Theorem 21. In CC, for any Vo1 € C™, if we study Pcppa
as a function of Vo, which may lie anywhere in C”, we
find that P p p2 has a maximum, denoted by Pc p p2 max and
given by

Pcppomax = Vo1 YoDP2max Vo1 (169)
where the admittance matrix
YCDP2 max — YZ‘AMQI
Zss+ Z%, + Kpa Y1, K
x R B Y (170)

2

is positive semidefinite. Thus, Poppo max 1S nonnegative.

In CD, for any Voo € C", if we study Pppp1 as a
function of V p;, which may lie anywhere in C™, we find
that Ppopp; has a maximum, denoted by Ppppimax and
given by

PpppPimax = Vo2 Y DDP1max Vo2, (171)
where the admittance matrix
YDDPI max — YZ‘AMlQ
Zs1+ 2% + Km Y K3
x 2O T A DML Y anne  (172)

2
is positive semidefinite. Thus, Ppppi max 1S Nonnegative.

Proof: Theorem 21 follows from Theorem 20 and the
properties of dual networks [17, Ch. 10]. |

Corollary 7. In CC, the value of Poppo max given by The-
orem 20 for a given Ig; € C™ is equal to the value of
Pc pp2max given by Theorem 21 for Vo = Zg11s;.
Likewise, in CD, the value of Ppppimax given by The-
orem 20 for a given Igo € C" is equal to the value of
Pcpp2max given by Theorem 21 for Voo = Zigolgo.
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Proof: By (125) and (167), Voo = ZgoIos, so that,
since Zgo is invertible, a maximum of Pgpps for Ioo lying
anywhere in C” means the same thing as a maximum of
Pcppo for Voo lying anywhere in C™.

Likewise, by (126) and (168), Vp1 = Zg11Ip1, so that,
since Zg; is invertible, a maximum of Pppp; for Ip; lying
anywhere in C” means the same thing as a maximum of
Ppppi for Vp; lying anywhere in C™. O

D. COMPUTATION OF THE AVAILABLE POWERS AT
THE OUTPUT PORTS

Recall that an available power is defined in Section I as the
greatest average power that can be drawn from one or more
ports by an arbitrary LTI and passive load.

Observation 11. Neither Theorem 20 nor Theorem 21 prove
that Poppamax can be reached using an LTI n-port device
connected to port set 2 in CC, this n-port device being
passive. Thus, at this stage, Pocppamax Need not be the
available power at port set 2. Likewise, neither Theorem 20
nor Theorem 21 prove that Pppp1max can be reached using
an LTI m-port device connected to port set 1 in CD, this
m-port device being passive. Thus, at this stage, Pppp1 max
need not be the available power at port set 1.

Lemma 10. We assert that:

(a) apassive LTI n-port device, having an admittance matrix
Yo, is such that Popps = Poppamax When it is
connected to port set 2 in CC, if and only if there exists
T2 max € C™ such that

Zpan21ls1 + Zpano2loo max

€ker (ZpapoaYr2+ Y] —1,) (173)

and

Zpolcomax = KgoZpanailsi; (174)

(b) apassive LTI n-port device, having an impedance matrix
Zio, is such that Pocpps = Poppamax When it is
connected to port set 2 in CC, if and only if there exists
V2 max € C™ such that

Ysam21Vor + Ysanm22 Voo max

€ ker (YoapoolZio + 725, —1,) (175)

and

Yr2Veomax = K}QYSAMmVOl ; (176)

(c) a passive LTI m-port device, having an admittance ma-
trix Y 11, is such that Popp1 = Ppppimax When it is
connected to port set 1 in CD, if and only if there exists
Ip1max € C™ such that

Zpaniolso +ZpaniiIpi max

€ker (Zpap1[ Y1+ Y5 — 1) (A77)

and

Z51I1pimax = Kgi1Zpaniolse; (178)
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(d) apassive LTI m-port device, having an impedance matrix
Z11, is such that Pobppi = PppPimax When it is
connected to port set 1 in CD, if and only if there exists
V D1 max € C™ such that

Ysanmi12Voz + Ysanmi11 VD1 max

€ ker (YZ'AMU[ZLl 4= 221] — lm) (179)

and

YriVoimax = Ky Ysanmi2Voo (180)

Proof: 1Tt follows from (123) and (125) that we have

Vo =Zpapalsi +Zpanrazlcs. (181)

Ico is a stationary point of Poppo if and only if the
condition (158) is satisfied. Using (181) in (158), we obtain

ZpoXoo =Kpy (Vo — Zpanaoles) . (182)

If a passive LTI n-port device having an admittance matrix
Yo is connected to port set 2, we have Iy = —Y12Voa.
Thus, it follows from (125) that

Ico = (Ys2—Y2)Vs. (183)

The n-port device of admittance matrix Y 5 is such that
Peppe = Poppamax When it is connected to port set 2
in CC, if and only if we can simultaneously satisfy: (181),
which represents the characteristics of port set 2 of the
DUS; (182), which expresses that I is a stationary point;
and (183) which represents the characteristics of the n-port
device of admittance matrix Y 5.

Combining (182) and (183), we obtain

[(Zp2 + KioZpana)(Yse — Yio) — Kip| Ve = 0.
(184)
It follows from (128) and (129) that

(Zp2 + KpoZpanae)(Ys2 — Yio) — Kiy
=Zpanm22(Ys2 = Yr2) = Zpapaa(Ysa+Ygo) + 1,

= —Zparro(Yro+Y5,) +1,. (185)
Combining (184) and (185), we get
[Z5 aproo(Yiz + Yi) — 1,] Vo =0. (186)

Taking into account (185), we can easily check that (181),
(182) and (183) are simultaneously satisfied if and only if
(158), (181) and (186) are simultaneously satisfied.

We can also eliminate V5 from (181) and (186) and note
that the DUS enforces (181). It follows that the n-port device
of admittance matrix Y 75 is such that Poppo = Poppomax
when it is connected to port set 2 in CC, if and only if we can
simultaneously satisfy (173) and (174).

We have proven assertion (a). Assertion (b) follows from
assertion (a) and the properties of dual networks. Assertion
(c) corresponds to assertion (a) with a different labeling of
port sets. Assertion (d) corresponds to assertion (b) with a
different labeling of port sets. O
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Theorem 22. Ignoring noise power contributions, we have:
(a) if Z p apro0 1s invertible, then Yo = Z]_D}4*M22 - Y5, is
such that any solution of (174) satisfies (173), and

Pasvpr =T Zaavpals, (187)

where the impedance matrix

Z};AMQI
o Ys2t+ Yo+ Kp2Zh,
2

is positive semidefinite. Moreover, if H(ZpY /00— Ys2)
is invertible, then

Zaavpr =

K*
B2 7 panor  (188)

1 *
_ —1x
Zyavpr = §ZPAM21 Zp o
—1

—1 —1x *
X (Zpanae + Zparaz — Yoz — Y5,)
X Zp Y e Zpanial (189)
(b) if Y sano0 is invertible, then Zj o = YSAM22 73, is
such that any solution of (176) satisfies (175), and
Paavp2 =V5,Yaavp2Vor, (190)
where the admittance matrix
YAAVP2 = Y;*AM21
Zs +Z, + Kp YLK
P Y auen (191)

is positive semidefinite. Moreover, if H (Y g 4 00— Zs2)
is invertible, then

YSAM21YSAM22

X (YSAM22 + Y5 ihee — Zsz — Z,)

Yaavp: =
—1

X YgAjuggYSAMm 5 (192)
(c) if Zpanm is invertible, then Y, = Z 5,1, — Y&, is

such that any solution of (178) satisfies (177), and
Ppavpr =I5Zpavpilsa, (193)

where the impedance matrix
Zpavpi = Zparno
Y +Y: + K Zh K

T B Zp gy (194)

is positive semidefinite. Moreover, if H(Z 5,1, —Ys1)
is invertible, then

* —1x
§ZPAM12ZPAM11

=1 —1x
X (Zpanm + Zpar — Ysu

Zpavpl =

-Y5)

X ZpapZpamiz; (195)

(d) if Ygapr11 1s invertible, then Zj, = Y;iﬁvfn — 73, is
such that any solution of (180) satisfies (179), and

Ppavrpi = V5o YpavriVoz, (196)

18

where the admittance matrix

Ypavpr = YZ‘AJVHQ
Z 7t + K YL K®
x FEES TR M Y vy (197)

is positive semidefinite. Moreover, if H (Y g4 ,1; —Zs1)
is invertible, then

YSAMlZYSAJVlll

ZSl - Zg'1)

X YSAM11YSAM12 :

Ypavpl =
—1

(YS'AMll Yol —
(198)

Proof: Zp anra2 being invertible, Y10 = Z 54 100 — Yy
is such that Z} 3 00(Y 2 +Y$,) —1,, = 0, so that (173) is
satisfied for any solution of (174), which exists by Lemma 9.
Thus, (187)-(188) follow from Theorem 20 and Lemma 10.

Port set 2 may be viewed as an n-port generator of internal
admittance matrix Y1 = Z;}q Mma2 — Y g2 and rms short-
circuit current vector ZIS}4 maolipanr21lsy in CA, and as
a load of admittance matrix Yr; in CB. Thus, H(Y 1) is
positive semidefinite. By [8, Sec. 7.2.1], it is positive definite
if it is invertible. Thus, (189) follows from the maximum
power transfer theorem for multiports [4], [13]. Appendix B
shows that (189) can be alternatively derived from (188).

We have proven assertion (a). Assertion (b) follows from
assertion (a) and the properties of dual networks. Assertions
(c) and (d) correspond to assertions (a) and (b), respectively,
with a different labeling of port sets. O

Corollary 8. Ignoring noise power contributions, we assert

that:

(a) if Zpaproo is invertible, it follows from (a) of Theo-
rem 22 and Is; = Y51 Vo1 that Py 4y po is also given
by (190), where the admittance matrix

Yaavpe = Yz‘l *PAM21
YS2 + YS2 + KE2ZE2K
2

is positive semidefinite. Moreover, if H(Z 5 1790 — Y s2)
is invertible, then

B2 ZpannYs1  (199)

_ * * —1x
YAAVP2 - 7YSl ZPAJV[Zl ZPA]\/122

—Y5)

=1l .
X Lipansanlipam21Y st

—1x
(ZPAM22 +Zparros — Ys2
(200)
(b) if Y ganroo is invertible, it follows from (b) of Theo-

rem 22 and Vo1 = Zg11g; that Py gy po is also given
by (187), where the impedance matrix

Zaavrr =Z5H Y500
Z + 7% + K Y K*
2 > P2 P2 F2 YoamnZs: (201)

Copyright ©2023 by Excem



Excem Research Papers in Electronics and Electromagnetics, no. 7, July 2023

is positive semidefinite. Moreover, if H (Y g 4 700 — Zs2)
is invertible, then
1
Zyavpr = §Z§1Y§AM21YSA7\/122
—1 —1x% * -1
X (Yganrao + Ysanree — Zs2 — Zs)

X YganaeYsamaZsy;  (202)

(c) if Zpapa is invertible, it follows from (c) of Theo-
rem 22 and Iso = Y g2 Vo that Pp sy p1 is also given
by (196), where the admittance matrix

Yavrei = YgoZpansio
Ys1+ Y% +KeiZh K3
x —2L 51 5 FI2EV 2B 7 0 apn12 Y s2
-1

is positive semidefinite. Moreover, if H(Zp 4,11 — Y s1)
is invertible, then

(203)

1 * *
_ —1x
Ypavpr = §Y52ZPAM12ZPAM11
=i —1x x \—1
X (Zpanr + Zpary — Ys1— Y1)

x Lot ZparnaYso; (204)

(d) if Ygans11 is invertible, it follows from (d) of Theo-
rem 22 and Voo = Zgolgo that Pp gy p; is also given
by (193), where the impedance matrix

Zpavr1 = Z53Y S ann2
Zs1 +Z5 + K YL K
X ! =k 5 0 Ysanri2Zso

is positive semidefinite. Moreover, if (Y g 4,1, —Zs1)
is invertible, then

(205)

1 * * —1x%
Zpavpr = §ZSQYSAM12YSAM11

=l — 1% 3 —
X (Ysann + Ysanm — Zs1 — Z%)

—1
X Ygan1 YsamizZisa .

1

(206)

Proof: If Zpapoo is invertible, it follows from (a) of
Theorem 22 and Is; = Y51V that P44y po is also given
by

PAAVP2 = V61Y14AVP2V01 5 (207)
where the admittance matrix
YAAVPQ = Y§1 *PAM21
Yoo + Y, + KpoZ K*
x 22 252 T APRREY 2 7 s Y1 (208)

2
is positive semidefinite. Moreover, if H(Z 51,90 — Ys2) is
invertible, then

1
! _ * * —1%
YAAVP2 - §YS1 PAJ\IZIZPAJ\/IQQ

-1 — 1% x \—1
X (Zpansas + Zpavias — Ys2 — Y§s)

X ZI;}41L[22ZPA]\121Y5'1 . (209)
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It follows from (190) and (207) that, if Zpap92 and
Y s.4n00 are invertible, then, for any Vo1 € C™, we have
Vo1 Yaavr2Vor = Vo, Yy paVor - (210)

Thus, using (367) of Appendix C, we may conclude that

Y’ avpas = Yaavpe. This is what allows us to obtain
(199)—(200) from (208)—(209). Similar reasonings can be
used to obtain (201)—(206). O

We now define two convenient propositions:

e proposition P; is true if and only if Zp4ps11 1s invert-
ible or Y g4as11 18 invertible, or both;

e proposition Ps is true if and only if Zp 4ps90 is invert-
ible or Y g 47929 is invertible, or both.

Corollary 9. Ignoring noise power contributions, we assert

that:

(a) it follows from (a) of Theorem 22 and (b) of Corollary 8
that, if proposition P is true, P4 4y p2 can be computed
as a function of the variable Is; using (187);

(b) it follows from (b) of Theorem 22 and (a) of Corollary 8
that, if proposition Py is true, P4 4y po can be computed
as a function of the variable Vo1 using (190);

(c) it follows from (c) of Theorem 22 and (d) of Corollary 8
that, if proposition P; is true, Pp 4y p1 can be computed
as a function of the variable I g5 using (193);

(d) it follows from (d) of Theorem 22 and (c) of Corollary 8
that, if proposition P; is true, Ppay p1 can be computed
as a function of the variable V o5 using (196).

There exist connections between some conditions used in
Theorem 22 and Corollary 8, which are presented in the
following Lemma.

Lemma 11. We assert that:

(@) Ysanri1 and H(YEAMH — Zg1) are invertible if and
only if Zpaari1 and H(Zpy 1,1, — Y1) are invertible;

(b) Ysanree and H (ng1 w22 — Zgs2) are invertible if and
only if Zp Apr22 and H(Z;}4M22 — Y o) are invertible.

Proof: If Zpapr1 is invertible, port set 1 has an ad-
mittance matrix Y7o = Z3Y,;1; — Ys1 in CA, which
must be such that H(Yrs2) is positive semidefinite. Thus, if
Zpar and H(ZpY 1, — Ys1) are invertible, H(Y79)
is positive definite, so that, by Lemma 1 of Part 1, Yo is
invertible, port set 1 has an impedance matrix Zpy = Y;21
and H(Zp) is positive definite. Thus, by Corollary 2 of
Part 1, Ygaas11 is invertible and nglMll = 27y + Zs,
so that H(Y g A1 — Zs1) = H(Zr2) is invertible.

We have shown that Y g 4711 and H(Y;an —Zgy) are
invertible if Zp apr11 and H(ZpY 5,1, — Y1) are invertible.
It follows from the properties of dual networks that Zp ons11
and H(Z;ZMH — Y1) are invertible if Ygapsi1 and
H(Y g 411 — Zs1) are invertible. This proves (a). Assertion
(b) is assertion (a) with a different labeling of port sets. [
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Lemma 11 allows us to define two propositions which
will be convenient in what follows, especially when we use
Theorem 22 or Corollary 8:

e proposition Ps is true if and only if Ygap/11 and
H(Y ghp11 —Zs1) are invertible, or equivalently if and
only if Zpaps11 and H(ZIZ}L‘M11 — Y1) are invertible;

e proposition P, is true if and only if Ygapeo and
H(Y g 090 — Zs2) are invertible, or equivalently if and

only if Z p 45400 and H(Z;,}L‘M22 —Ygo) are invertible.

VIl. POWER TRANSFER RATIOS

A. DEFINITIONS AND BASIC FORMULAE

We introduce the power transfer ratio in CA at port set 1 of
the DUS, given by

Parp1

tar = @211)

"~ Paavar’
which by (27) satisfies 0 < t47 < 1. We introduce the power
transfer ratio in CA at port set 2 of the DUS, given by

Pappo

taz = (212)

Paavpz’
which by (28) satisfies 0 < 42 < 1. If n = m, we introduce
the power transfer ratio in CA without the DUS, given by

_ _Paw
Paaver’
which by (29) satisfies 0 < t 4y < 1.

We introduce the power transfer ratio in CB at port set 1 of
the DUS, given by

taw 213)

Pppp1

tB1 (214)

"~ Ppavpr’
which by (31) satisfies 0 < tp1 < 1. We introduce the power
transfer ratio in CB at port set 2 of the DUS, given by

P,
tpo = L BRP2 , (215)
Ppavas
which by (30) satisfies 0 < tpo < 1. If n = m, we introduce

the power transfer ratio in CB without the DUS, given by

Ppw

tBw (216)

Pgavaa’
which by (32) satisfies 0 < tpw < 1.

We have currently considered 6 power gains (two of them
being insertion power gains, hence valid only if m = n) and
6 power transfer ratios. Some equalities connect the ones that
are defined for a given excitation:

Gar = Gaotar and Gpr = Gpotpa; 217
and, in the case m = n,
Gar =Gartaw and Gpr = Gpripw . (218)

To define the excitation in CA, let X 4 denote one of the
variables Vo or Ig.

Based on the results of Section III.C and Section III.D, we
find that £ 41 is given by

X% N X4

_ 24 Na R4 219
X', Da; Xa 19)

ta1

20

where N 4; and D 4; are hermitian matrices of size m by
m, and given in Table 7. We note that N 4; is positive
semidefinite and D 4; is positive definite.

TABLE 7. Variable X 4 and associated N 41 and D 4.

Variable X 4 Naq Daq
Vo1 Y arpP1 Yaaval
Is1 Z ARrP1 Zaavael

ta1 is given by (219) in the form of a generalized Rayleigh
ratio of N 41 to D 41, in the variable X 4. Thus, ¢ 41 depends
on the excitation. Since D 4; is positive definite, ¢ 47 is
defined for any nonzero X 4 € C™.

Based on Section III.C, Section III.D and Corollary 9, we
find that, if proposition Ps is true, ¢ 42 is given by

X% Nyp Xy

=i (220)
X% Dax Xy

t a2

where N 40 and D 45 are hermitian matrices of size m by m,
and given in Table 8. We note that N 45 and D 45 are positive
semidefinite.

TABLE 8. Variable X 4 and associated N 4> and D 4.

Variable X 4 Applicability Nao D 4o
Vo1 proposition Peistrue | Yappa | Yaavps
Is1 proposition Paistrue | Zapp2 | Zaavpe

If proposition Ps is true, ¢ 42 is given by (220) in the form
of a generalized Rayleigh ratio of N 45 to D 49, in the vari-
able X 4. It follows that t 4o depends on the excitation, and
that, according to the explanations provided in Section IL.A,
t 42 is defined for X 4 € D(D 42), where

D(Dys) ={X4€C™: X4 ¢ kerDas}. (221)

Based on the results of Section III.C and Section III.D, we
find that, if n = m, then t 4y is given by

X% Naw X

=D % (222)
X% Daw X4

taw
where N 417 and D 41 are hermitian matrices of size m by
m, and given in Table 9. We note that N 4y and D 4y are

positive definite.

TABLE 9. Variable X 4 and associated N oy and D 4w .

Variable X 4 Naw Daw
Voi Y aw Yaaval
Is1 Zaw Zaava

taw 1is given by (222) in the form of a generalized
Rayleigh ratio of N 417 to D 41y, in the variable X 4. Thus,
taw depends on the excitation. Since D 4y is positive
definite, ¢ oy is defined for any nonzero X 4 € C™.

To define the excitation in CB, let X g denote one of the
variables V oo or Igs.
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Based on Section III.C, Section III.D and Corollary 9, we
find that, if proposition P; is true, ¢ g1 is given by
_ X5 N1 Xp

X5 D1 Xp ’
where Np; and Dp; are hermitian matrices of size n by

n, and given in Table 10. We note that Np; and Dp; are
positive semidefinite.

tp (223)

TABLE 10. Variable X 5 and associated Nz; and D ;.

Variable X g Applicability NpB1 Dpy
Voo proposition Py istrue | Ygpp1 | YBAvPl
Igo proposition P1 istrue | Zgpp1 Zpavpi

If proposition P; is true, tp; is given by (223) in the
form of a generalized Rayleigh ratio of Np; to Dpy, in
the variable X . Thus, tp; depends on the excitation and
is defined for X5 € D(Dpy), where

D(DBI):{XB ceC":Xp ¢keI‘D31}. (224)

Based on the results of Section III.C and Section III.D, we
find that £ g5 is given by
_ X5 Np2 Xp
X5 Dpe X'
where N s and Do are hermitian matrices of size n by

n, and given in Table 11. We note that Nps is positive
semidefinite and D g5 is positive definite.

tpo (225)

TABLE 11. Variable X 5 and associated N g2 and D 55.

Variable X Ngo2 Dpo
Voo YBRP2 YBavaz
Igo ZBRrP2 Zpavaz

t o 1s given by (225) in the form of a generalized Rayleigh
ratio of N g5 to D po, in the variable X 5. Thus, ¢ g2 depends
on the excitation. Since Dpy is positive definite, o is
defined for any nonzero Xp € C".

Based on the results of Section III.C and Section II1.D, we
find that, if n = m, then tgyy is given by

X% Npw Xp
X5 Dpw X'
where N gy and D gy are hermitian matrices of size m by

m, and given in Table 12. We note that N gy and D gy are
positive definite.

tpw (226)

TABLE 12. Variable X 5 and associated N gy and Dy .

Variable X g Npw Dpw
Vo2 Yew Ypavae
Is2 Zpw Zpavaz

tpw 1is given by (226) in the form of a generalized
Rayleigh ratio of N gy to Dy, in the variable X . Thus,
tpw depends on the excitation. Since Dpgyy is positive
definite, t gy is defined for any nonzero Xp € C™.
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B. BOUNDS OF THE POWER TRANSFER RATIOS
WITHOUT THE DUS

By Observation 7, for m = n, we can assert that: the set
of the values of t 4y1r obtained for all X4 € C™ such that
X 4 # 0 is equal to the set of the values of ¢ 417 obtained for
all X4 € S,,; and the set of the values of ¢ gy obtained for
all Xp € C™ such that X5 # 0 is equal to the set of the
values of ¢t gy obtained for all X5 € S,,.

Since Is1 = Y51 Vo1, where Y g is invertible, we can
assert that the set of the values of ¢4y obtained for all
nonzero X4 € C™, or for all X4 € S,,, does not depend
on the choice X4 = V1 or X4 = Ig7.

Likewise, since m = n and Iss = Y55V o, where Yoo
is invertible, we can assert that the set of the values of tgy
obtained for all nonzero X € C™, or for all Xg € S,,,
does not depend on the choice Xp = Vg or X5 = Igo.

We can now state and prove a reciprocal theorem on the
bounds of the sets of the values of the power transfer ratios
without the DUS in CA and CB.

Theorem 23. We assume n = m. Ignoring noise power
contributions, we can assert that:

(a) the set of the values of the power transfer ratio in CA
without the DUS, obtained for all nonzero Vo € C™,
or equivalently for all nonzero Is; € C™, has a least
element referred to as “minimum value” and denoted by
taw mIN, and a greatest element referred to as “maxi-
mum value” and denoted by t oy arax;

(b) if Apin and A\ ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of N 41 to D 4yy, in the
variable X 4 according to (222) and Table 9, we have
taw MIN = Amin a0d tAw M AX = Amax s

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N 4y to D 4y, in the variable X 4, an
average value of ¢ 4y over m nonzero excitations is

trM  tr (NawDyyy)

taw AVR = ;
m m

(227)
(d) taw avr doesn’t depend on the choice of X 4, and

0<tawmin <taw avr <tawmax <1; (228)

(e) the set of the values of the power transfer ratio in CB
without the DUS, obtained for all nonzero Vo € C™,
or equivalently for all nonzero Igo € C™, has a least
element referred to as “minimum value” and denoted by
tepw mIN, and a greatest element referred to as “maxi-
mum value” and denoted by t gy arax;

(®) if Amin and A ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of Ny to Dy, in the
variable X 5 according to (226) and Table 12, we have
tBW MIN = Amin a0d 3w M AX = Amax

(g) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N gy to D gy, in the variable X g, an
average value of gy over m nonzero excitations is

tr M _ tr (NBWDé%/V) ]

tBw AVR = ;
m m

(229)
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(h) tpw av g doesn’t depend on the choice of X 5, and

0<tpwmIiN <tBwavr <tpwmax <1; (230)

(i) we have
taw MAX = tBW MAX » (231)
tAaw AVR = tBW AVR (232)
and
taw MIN = tBW MIN - (233)

Proof: Since D 4y and D gy are positive definite, asser-
tions (a), (b), (e) and (f) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain
tr M = tr (NawDy; ), and the second equality of (227).
By (8), each eigenvector y of M corresponds to a nonzero

. —1/2 . .

excitation X4 = D /"y, and to an eigenvalue that is equal
to t 4y for this X 4. Using Table 9, (48) and (64), we get

rank (NAWDZ%,V) =rankNw =m, (234)
so that the number of nonzero eigenvalues of MM, counting
multiplicity, is m. Since tr M is the sum of the eigenvalues
of M, counting multiplicity, it follows that t sy 4y r given
by (227) is an average of t 4y over m nonzero excitations.
This proves (c). Assertion (d) follows from (c), (372) of
Appendix C, and 0 < 4 < 1.

In (g), by Theorem 12, we have tr M = tr (NBWDE;%,V),
which allows us to write the second equality of (229). Using
Table 12, (54) and (70), we get

rank (NBWDE%,V) =rankNpgw = m, (235)
which can be used to prove (g) as we used (234) to prove
(c). Assertion (h) follows from (g), (373) of Appendix C, and
0<tpw < 1.

To prove (i), we can assume X4 = Ig; and Xp = Igo.
By Theorem 12, we only need to compare the eigenvalues of
L= NAWDZ‘I/V with the eigenvalues of K = NBWDEHl,V.
It follows from Table 12, (58) and (70) that

K= (Ys1+Ys2) ™
X (Ys1+Y5)(Ys1+Ys2) (Ya2 + Y5), (236)

which is of size m by m.
It follows from Table 9, (56) and (64) that

L=(Ys1+Ys) ™
X (Yoo + Y5) (Y1 + Yo2) ' (Yo1 +YE), (237)

which is of size m by m. It follows from Lemma 3 of Part 2
applied to A = Yg; and B = Y5 that K and L have the
same eigenvalues, counting multiplicity, which leads to the
final assertions of Theorem 23. O

Theorem 23 may be viewed as a better version of Theo-
rem 8 of Part 2.

22

C. BOUNDS OF THE POWER TRANSFER RATIOS AT
PORT SET 1

By Observation 7, the set of the values of ¢ 41 obtained for all
X 4 € C™ such that X 4 # 0 is equal to the set of the values
of t 41 obtained for all X4 € S,,.

If proposition P; is true, the set of the values of tp;
obtained for all Xp € D(Dpy) is equal to the set of the
values of ¢ 51 obtained for all X5 € D(Dp1) NS,,.

Since Is1 = Y51 Vo1, where Y g is invertible, we can
assert that the set of the values of ¢ 41 obtained for all nonzero
X4 € C™, or for all X4 € S,,, does not depend on the
choice X4 = Vpj or X4 = Ig5.

Since Iso = Ys2Vos, where Y g5 is invertible, we can
demonstrate that, if proposition P; is true, the set of the val-
ues of ¢tp; obtained for all Xg € D(Dp;), or equivalently
for all Xp € D(Dp1) NS, is independent of the choice
XB = Vog or XB = ISQ.

We can now state and prove a new reciprocal theorem on
the bounds of the sets of the values of the power transfer
ratios at port set 1 in CA and CB.

Theorem 24. Ignoring noise power contributions, we can
assert that:

(a) the set of the values of the power transfer ratio in
CA at port set 1 of the DUS, obtained for all nonzero
Vo1 € C™, or equivalently for all nonzero Is; € C™,
has a least element referred to as “minimum value” and
denoted by ta1 a7, and a greatest element referred to
as “maximum value” and denoted by ¢ 41 (4 x;

(b) if Amin and Ay ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of N 4; to Dy, in the
variable X 4 according to (219) and Table 7, we have
tA1 MIN = Amin a0d T41 M AX = Amax

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N 4; to D 45, in the variable X 4, an
average value of ¢ 41 over m nonzero excitations is

trM tr (NAlD:&) .

tA1AVR = = : (238)
m m
(d) ta1 avr doesn’t depend on the choice of X 4, and
0<tarmin Staravr <taimax <1;  (239)

(e) if proposition Py is true, we have ker Dp; C ker N
so that Theorem 14 can be applied to the generalized
Rayleigh ratio of Np; to Dpy;

(f) if proposition P is true, the set of the values of the power
transfer ratio in CB at port set 1 of the DUS, obtained
for all Xp € D(Dpy), has a least element referred
to as “minimum value” and denoted by tp1 pr7n, and
a greatest element referred to as “maximum value” and
denoted by t51 prax;

(g) if proposition P is true, and if Kyi, and Ky ax are given
by Theorem 14 applied to the generalized Rayleigh ratio
of N1 to Dp1, in the variable X 5 according to (223)
and Table 10, then we obtain tg1 /7N = HKmin and
1Bl MAX = Kmax
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(h) if proposition P; is true, if d is the nullity of Dpy,
and if Q and R are given by Theorem 14 applied
to the generalized Rayleigh ratio of Np; to Dpq, in
the variable X g, then an average value of ¢p; over a
number N = min{m,n — d} of nonzero excitations
XpeD (D Bl) is

trQ trR
t = = ; 240
B1AVR N N (240)
(1) if proposition P; is true, we have
0<tpimIin <tpiravr <tpimax <1; (241)

(j) if proposition P is true, if D p; is positive definite (this
is possible only if m > n) and if A\,in, Amax and M are
given by Theorem 12 applied to the generalized Rayleigh
ratio of N g1 to D g1, in the variable X g, then

* we have tg1 p7v = Amin and t31 rAX = Amax s
* tp1 avr doesn’t depend on the choice of the vari-
able X g, and we have

tr M tr (Ng; D%}
lB1AVR = — = ( 5) ; (242)
min{m, n} min{m, n}
(k) if proposition P3 is true, and if rank Ygapio = m
and/or rank Z p o712 = m, we have
talMAx = tB1 MAX , (243)
and
tai MIN =tB1MIN; (244)

(¢) if proposition Pj3 is true, if m = n, and if Ygaps12 is
invertible and/or Z p 45712 is invertible, then

ta1 AVR = tB1AVR - (245)

Proof: Since D 4; is positive definite, assertions (a) and
(b) directly follow from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain
trM = tr (NAlDﬁ), and the second equality of (238).
By (8), each eigenvector y of M corresponds to a nonzero

o —1/2 . .
excitation X4 = D 4;’ "y, and to an eigenvalue that is equal
to t 41 for this X 4. Using Table 7, (44) and (60), we get

rank (N4;D7;) = rankN 43 < m, (246)

so that the number of nonzero eigenvalues of M, counting
multiplicity, is less than or equal to m. Since tr M is the sum
of the eigenvalues of IM, counting multiplicity, it follows that
ta1 Av R given by (238) is an average of ¢ 41 over m nonzero
excitations. This, (372) of Appendix C, and 0 < t4; < 1
lead us to (¢) and (d).

We have already observed that ¢5; < 1. Thus, if proposi-
tion P; is true, we can apply Corollary 3 to the generalized
Rayleigh ratio of Np; to Dp; in the variable X g, because
D1 is positive semidefinite. Thus, ker Dy C ker Npq. It
follows that the assumptions of Theorem 14 applied to the
generalized Rayleigh ratio of Npg; to Dy, in the variable
X, are satisfied. This proves (e), and also (f) and (g), which
directly follow from Theorem 14.

Copyright ©2023 by Excem

In (h), by Theorem 14 and [8, Sec. 1.3.3], we obtain
tr Q = tr R, which allows us to write the second equality
of (240). Let L, £ and P be given by Theorem 14 applied
to the generalized Rayleigh ratio of Np; to Dp;. By (24),
each eigenvector u of Q corresponds to a nonzero excitation
X p = Pu, and to an eigenvalue that is equal to ¢ for this
X p. We have rank Q < n — d, and rank Q < rank Np;.
Using Table 10, (52) and (68), we get

rankQ < min{m,n — d}, (247)

so that the number of nonzero eigenvalues of Q, counting
multiplicity, is less than or equal to N = min{m,n — d}.
Since tr Q is the sum of the eigenvalues of Q, counting
multiplicity, it follows that tp1 oy g given by (240) is an
average of tp; over a number N of nonzero excitations
Xp € D(Dpy). Thisand 0 < tp; < 1lead us to (h) and (i).
If Dp; is positive definite, we have d = 0 and £ = L, so
that, according to (13), we have PL* = PL-! = D;/z.
Consequently, it follows from (6) and (14) that

LQL ' =D, /°Np D> =M.  (248)

Thus, if Dp; is positive definite, M is similar to Q. It
follows that M and Q have the same eigenvalues, counting
multiplicity, by [8, Sec. 1.3.4]. This, Theorem 12, Theo-
rem 14, and (373) of Appendix C lead us to (j).

If Ysansi1 is invertible, port set 1 behaves, in CA, as an
m-port load of impedance matrix Zpo = Y;\ i — ZLs1.
If follows that H (Y g4,1; — Zs1) is positive semidefinite.
Thus, if Ysann1 and H(Y g, — Zs1) are invertible,
H(Zr2) is positive definite. If Ygapr11 is invertible, port
set 1 behaves, in CB, as an m-port generator of internal
impedance matrix Zp o and rms open-circuit voltage vector
Vro=~Ygin Ysarmi2Voo.

If proposition Ps is true and rank Ygapr12 = m, then
H(Zr2) is positive definite and V5 may take on any value
lying in C™, so that: at port set 1, configuration CA of Theo-
rem 24 is the configuration “CA without the DUS” of Theo-
rem 23 applied to the m-port generator of internal impedance
matrix Zg; and to an m-port load of impedance matrix Zps;
and, at port set 1, configuration CB of Theorem 24 is the
configuration “CB without the DUS” of Theorem 23 applied
to an m-port generator of internal impedance matrix Zzs and
to the m-port load of impedance matrix Zg; .

Thus, if proposition P is true and rank Y gapr12 = m,
assertion (i) of Theorem 23 leads us to (243)—(244). If
proposition Ps is true and rankZpapr12 = m, a similar
reasoning also allows us to use assertion (i) of Theorem 23 to
obtain (243)—(244). These results lead us to (k).

We now assume that proposition Ps is true, m = n, and
Y sanr12 is invertible and/or Z p 4 712 18 invertible. It follows
from (195), (198), (204) and (206) that Dpg; is positive
definite and that Y s4ar12 and Z p 4 pr12 are invertible. By (d)
and (j), ta1 avr doesn’t depend on the choice of X 4, and
tp1 Av r doesn’t depend on the choice of X 5. Consequently,
to prove (¢), we can assume X4 = Ig; and Xp = Igo.
By Theorem 12, we only need to compare the eigenvalues of
L = N4, D with the eigenvalues of J = Nz;Dj51.
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By Table 10, (68) and (195), we have

J=Zparn12(Ys1+Y51)Zpamn
—1 —1x% *
< (Zparrs + Zpavn — Y1 — Y§)
X ZpanriZpais - (249)

Zp Apr11 being invertible, we find that J is similar to

K=Zpsn11(Ys1+Y51)Zpan

X (Zpanms + Zpav — Ys1— Y5) . (250)
By Table 7, (56) and (60), we have
L= Z};AMH (Z;',latMu + Z1;114*A~111 — Yo — Ygl)

X Zpan1(Ys1+Yg). (251)

It follows from Lemma 3 of Part 2 applied to A = Y1
and B = Z1_3114M11 — Yy that K and L have the same
eigenvalues, counting multiplicity.

This proves (¢). O

D. BOUNDS OF THE POWER TRANSFER RATIOS AT
PORT SET 2

By Observation 7, the set of the values of ¢ g obtained for all
Xp € C" such that X 5 # 0 is equal to the set of the values
of tgo obtained for all X5 € S,,.

If proposition Py is true, the set of the values of 45
obtained for all X4 € D(Dg2) is equal to the set of the
values of ¢ 45 obtained for all X4 € D(D 42) N'S,,,.

Since Iso = Y59Voa, where Y g5 is invertible, we can
assert that the set of the values of ¢ g> obtained for all nonzero
Xp € C™ orforall Xz € S,,, does not depend on the choice
XB = Vog or XB = ISQ.

Since Is1 = Y51 Vo1, where Y g is invertible, we can
demonstrate that, if proposition P is true, the set of the
values of ¢ 45 obtained forall X 4 € D(D 42), or equivalently
for all X4 € D(Das) N S,y, is independent of the choice
XA = V01 OI“XA = ISl~

We can now state and prove a new reciprocal theorem on
the bounds of the sets of the values of the power transfer
ratios at port set 2 in CA and CB.

Theorem 25. Ignoring noise power contributions, we can

assert that:

(a) the set of the values of the power transfer ratio in
CB at port set 2 of the DUS, obtained for all nonzero
Vo2 € C™, or equivalently for all nonzero Ig, € C”,
has a least element referred to as “minimum value” and
denoted by tp2 a7, and a greatest element referred to
as “maximum value” and denoted by g2 a4 x;

(b) if Amin and Apax are given by Theorem 12 applied to
the generalized Rayleigh ratio of Ny to Dps, in the
variable X p according to (225) and Table 11, we have
tB2 MIN = Amin and tB2 M AX = Amax 5

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N g5 to Dpo, in the variable X, an
average value of tpo over n nonzero excitations is

24

trM _ tr (Np2Dg3)

B2 AVR = : (252)
n n
(d) tp2 av g doesn’t depend on the choice of X 5, and
0<tpomin <tpaavr <lpamax <1; (253)

(e) if proposition P5 is true, we have ker D 4o C ker N 49
so that Theorem 14 can be applied to the generalized
Rayleigh ratio of N 45 to D 49;

(f) if proposition P is true, the set of the values of the power
transfer ratio in CA at port set 2 of the DUS, obtained
for all X4 € D(Dj2), has a least element referred
to as “minimum value” and denoted by tao 7N, and
a greatest element referred to as “maximum value” and
denoted by t 42 prax;

(g) if proposition Po is true, and if Kpi, and K.y are
given by Theorem 14 applied to the generalized Rayleigh
ratio of N 49 to D 49, in the variable X 4 according to
(220) and Table 8, then we obtain £ g5 pyfN = Kmin and
tA2 MAX = Kmax ;

(h) if proposition Pq is true, if d is the nullity of D 49,
and if Q and R are given by Theorem 14 applied
to the generalized Rayleigh ratio of N 4o to Do, in
the variable X 4, then an average value of ¢ 42 over a
number N = min{m — d,n} of nonzero excitations
Xa € D(Dys)is

trQ trR
t == 254
A2 AVR N N (254)
(i) if proposition Ps is true, we have
0<tasmrn <tazaver <tazmax <1;  (255)

(j) if proposition P is true, if D 45 is positive definite (this
is possible only if n > m) and if A\, Amax and M are
given by Theorem 12 applied to the generalized Rayleigh
ratio of IN 45 to D 49, in the variable X 4, then

* we have t 42 (7N = Amin and t42 rax = Amax;
* ta2 Av g doesn’t depend on the choice of the variable
X 4, and we have

tr M tr (N 40D 752
ta2avR = — = (. 2) ; (256)
min{m,n} min{m,n}
(k) if proposition P, is true, and if rank Ygapo1 = n
and/or rank Z p 45721 = 1, we have
tao MAX =tB2MAX , (257)
and
ta2 MIN =tB2MIN ; (258)

(¢) if proposition Py is true, if m = n, and if Ygapso1 is
invertible and/or Z p 4521 is invertible, then

tA2AVR = tB2AVR - (259)

Proof: Theorem 25 corresponds to Theorem 24 with a
different labeling of port sets. O
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VIil. AVAILABLE POWER GAINS
We introduce two available power gains [3, Sec. 21-18]: the
available power gain in CA, given by

Paavpo
Gap = ———=

= ; (260)
Pyaver
and the available power gain in CB, given by
P
Gpy = BAVPL 261)
Ppavas

It follows from (28) and (31) that we have 0 < Ga4 < 1
and 0 g GBA < 1.

Theorem 26. Ignoring noise power contributions, we can
assert that:

(a) for aspecified DUS, a specified excitation and a specified
Y51 (or Zgy), Gaa does not depend on Y g5 (or Zgo);

(b) for aspecified DUS, a specified excitation and a specified
Y 5o (or Zgs), G does not depend on Y g1 (or Zgq).

Proof: In CA, Pyavg1 depends on the m-port generator
connected to port set 1, but neither on the DUS nor on the
n-port load connected to port set 2; and P4y po depends on
the m-port generator connected to port set 1 and on the DUS,
but not on the n-port load connected to port set 2. This leads
us to (a).

Likewise, in CB, Ppay g2 depends neither on the DUS
nor on the m-port load connected to port set 1; and in CB,
Ppavp1 does not depend on the m-port load connected to
port set 1. This leads us to (b). O
Observation 12. There is a similarity between Theorem 19
and Theorem 26. There are also several noteworthy differ-
ences between them.

We remark that, if ¢ 45 is defined and nonzero, we have

Gar

Gaa = (262)
tao
Likewise, if t 31 is defined and nonzero, we have
G
Gpa = 2L (263)
tB1

To define the excitation in CA, let X 4 denote one of the
variables Vi or Ig;. Based on Section III.C, Section III.D
and Corollary 9, we find that, if proposition Ps is true, G4 4
is given by
X% Naa Xy

= > (264)
X% Daa Xy

Gaa
where N 44 and D 44 are hermitian matrices of size m by
m, and given in Table 13. We note that IN 44 is positive

semidefinite and D 4 4 is positive definite.

TABLE 13. Variable X 4 and associated N4 4 and D g 4.

Variable X 4 Applicability Naa Daa
Vo1 proposition P istrue | Yaavpe | Yaaval
Isq1 proposition Pg is true | Z Ay po Zaave

Copyright ©2023 by Excem

If proposition P is true, Ga4 is given by (264) in the
form of a generalized Rayleigh ratio of N 4 4 to D 4 4, in the
variable X 4. Thus, G4 depends on the excitation. Since
D4 is positive definite, G4 4 is defined for any nonzero
X eCm,

To define the excitation in CB, let X g denote one of the
variables Vs or Ig9. Based on Section III.C, Section III.D
and Corollary 9, we find that, if proposition P is true, Gpga
is given by
~ X% Npa Xp

X% Dpa X'’

where Np4 and Dp4 are hermitian matrices of size n by
n, and given in Table 14. We note that N4 is positive
semidefinite and D g 4 is positive definite.

Gpa (265)

TABLE 14. Variable X 5 and associated Np4 and D 4.

Variable X p Applicability Npa Dpa
Voo proposition Py istrue | Ypavpr | YBAVG2
Igo proposition Py is true | Zpaypi ZBavae

If proposition P; is true, G4 is given by (265) in the
form of a generalized Rayleigh ratio of Ng 4 to Dp 4, in the
variable X . Thus, G4 depends on the excitation. Since
Dp4 is positive definite, Gp4 is defined for any nonzero
XpeCm

If proposition P is true, the set of the values of G4 4
obtained for all nonzero X4 € C™ is equal to the set of
the values of G 4 4 obtained for all X 4 € S,,,.

Since Is1 = Y51 Vo1, where Y g; is invertible, we can
assert that the set of the values of (G44 obtained for all
nonzero X4 € C™, or for all X4 € S,,, does not depend
on the choice X4 = Vo1 or X4 = Ig7.

If proposition P; is true, the set of the values of Gpa
obtained for all nonzero Xp € C" is equal to the set of the
values of G g4 obtained forall X5 € S,,.

Since Iso = Ys2Vo2, where Y g5 is invertible, we can
assert that the set of the values of GGp4 obtained for all
nonzero Xp € C", or for all X5 € §,,, does not depend
on the choice Xg = Vo or Xg = Igs.

We can now state and prove two new reciprocal theorems
involving operating power gains and available power gains in
CA and CB.

Theorem 27. We assume that proposition Ps is true. Ignoring

noise power contributions, we can assert that:

(a) the set of the values of the available power gain in CA,
obtained for all nonzero Vo1 € C™, or equivalently
for all nonzero Ig; € C™, has a least element referred
to as “minimum value” and denoted by G 44 pr7n, and
a greatest element referred to as “maximum value” and
denoted by G a4 prax;

(b) if Amin and A ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of N g4 to D 44, in the
variable X 4 according to (264) and Table 13, we have
GAAMIN = Amin a0d GAA M AX = Amax s
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(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N 44 to D 44, in the variable X 4,
an average value of G 44 over a number min{m,n} of
nonzero excitations is

tr M . tr (NAAD.Z;)
min{m,n}  min{m,n}

GaaavR = ;i (266)

(d) Gaa avr doesn’t depend on the choice of X 4, and

0< Gaamin Gaaavr < Gaamax < 1; (267)

(e) if proposition Py is true, and if the DUS and both loads
are reciprocal devices, we have

Gaamax = Gpomax, (268)
Gaaavr =GBoAavR, (269)
(m=n) = (Gaamin = Gpomin), (270)
(m>n) = (Gaamin =0), (271)

and
(m<n) = (Gromin=0). (72

Proof: Since D 44 is positive definite, assertions (a) and
(b) directly follow from Theorem 12.

In (c¢), by Theorem 12 and [8, Sec. 1.3.3], we obtain
trM = tr (NAAD;&;)’ and the second equality of (266).
By (8), each eigenvector y of M corresponds to a nonzero

. —1/2 . .
excitation X4 = D , /"y, and to an eigenvalue that is equal
to G 44 for this X 4. Using Table 13, (188) and (191), we get

rank (NAADX}L‘) =rankNg4 < min{m,n}, (273)

so that the number of nonzero eigenvalues of MM, counting
multiplicity, is less than or equal to min{m,n}. Since tr M
is the sum of the eigenvalues of M, counting multiplicity, it
follows that G 4 oy g given by (266) is an average of G4 4
over a number min{m, n} of nonzero excitations. This, (372)
of Appendix C, and 0 < G 44 < 1lead us to (c) and (d).

To prove (e), by Lemma 11 we can assume that Zp 4 pr90
is invertible, H(Z;i‘M22 — Ygo) is invertible, X4 = Ig;
and X p = Ig,. Using Table 6 and (66), we get

1
Dpo = Zprp2 = §Z*PAM22
—1 — 1% *
X (Zpanrzz + Zpanre — Ysz2 = Y5

X Zipanr2z (274)

so that Dpo = Zpgpo is invertible, hence positive definite.

Thus, by Theorem 12 and Theorem 18, we only need
to compare the eigenvalues of A = Ny ADZ}L‘ with the
eigenvalues of B = N BODE%). It follows from Table 13,
(56) and (189) that

_ * —1x*
A =ZpsmnLparon
-1 1 % )1
X (Zpanraa + Zpanas — Ys2 — Y5o)

X ZpynranZpama (Ys1+Y5) . (275)
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which is of size m by m. It follows from Table 6, (68) and
(274) that
B=Zpan12(Ys1+ Y5 ZparioZph oo
-1 —1x « \—
X (Zpanias + Lpunee — Ys2 — Yio)

—1x
X ZLip sz s

1
(276)

which is of size n by n.

If the DUS and both loads are reciprocal devices, Zpans,
Y1 and Ygo are symmetric. Thus, Zp 4720 is symmetric
and the transpose of Zp Apr12 18 Zpanso1, SO that

T _pls 1 1 . \—1
B =Zp oo (Zpanize + Zpinae — Ys2 — Y5)

X ZpharaZranva (Ys1 + Y5 Zparor - (277

By [8, Sec. 1.4.1], the eigenvalues of BT are the same as
those of B, counting multiplicity. We note that, if we write

—1x -1 —1x « \—1
C =Zp vz (Zpanree + Zpae — Ys2 — Y
X ZpnnmnZpana(Ys1 +Y%), (278)

the right hand sides of (275) and (277) are Z% 4,4, C and
C Z% 4591, respectively. Thus, using [8, Sec. 1.3.22] and the
fact that Z% 4 5,9 18 of size m by n, we find that:

e if m = n, then A and B have the same eigenvalues,
counting multiplicity;

e if m > n, then A has the same eigenvalues as B,
counting multiplicity, together with m — n additional
eigenvalues equal to zero; and

e if m < n, then B has the same eigenvalues as A,
counting multiplicity, together with n — m additional
eigenvalues equal to zero.

This leads to (268)—(272). |

Theorem 28. We assume that proposition P; is true. Ignoring
noise power contributions, we can assert that:

(a) the set of the values of the available power gain in CB,
obtained for all nonzero Vo € C", or equivalently for
all nonzero Iso € C™, has a least element referred to
as “minimum value” and denoted by Gpa r7n, and a
greatest element referred to as “maximum value” and
denoted by Gpa prax;

(b) if Apin and Ay ax are given by Theorem 12 applied to
the generalized Rayleigh ratio of Np4 to Dpy4, in the
variable X p according to (265) and Table 14, we have
GBAMIN = Amin a0d GBA MAX = Amax

(c) if M is given by Theorem 12 applied to the generalized
Rayleigh ratio of N4 to Dp4, in the variable Xp,
an average value of Gp4 over a number min{m,n} of
nonzero excitations is

tr M tr (NpaDjp.
M (NoaDpi) - o,
min{m, n} min{m, n}

GpAAvR =

(d) Gpa avr doesn’t depend on the choice of X g, and

0< GpamiNn <Gpaavr < Gpamax <1; (280)
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(e) if proposition Ps is true, and if the DUS and both loads
are reciprocal devices, we have

Gpamax = Gaomax , (281)
GpaavrR =Ga0AVR, (282)
(m=n) = (Gpamin =Gaomin), (283)
(n>m) = (Gpamin =0), (284)

and
(n<m) = (Gaomin =0) . (285)

Proof: Theorem 28 corresponds to Theorem 27 with a
different labeling of port sets. O

IX. UNNAMED POWER GAINS

Unnamed power gains were first introduced in [5, Sec. IV.G],
for a two-port. Here, we introduce the unnamed power gain
in CA, given by

P
Gy = AAVP2 (286)
Parp1
and the unnamed power gain in CB, given by
P
Gpu = s BavVPL (287)
Pprp2

If they exist, G oy and G gy are nonnegative, but they need
not be less than or equal to one. We have

Gaa=Gavtar and Gao = Gavtas (288)

and
(289)

where each equality in (288)—(289) is valid if and only if both
terms of its right hand side are defined.

To define the excitation in CA, let X 4 denote one of the
variables V1 or Ig1. Based on Section III.C, Section III1.D
and Corollary 9, we find that, if proposition P is true, G oy
is given by

Gpa=Gputps and Gpo = Gpu tpl,

X% Nay Xa
B X% Day X4’
where N 47 and D 41y are hermitian matrices of size m by

m, and given in Table 15. We note that N 4y and D 4y are
positive semidefinite.

Gavu (290)

TABLE 15. Variable X 4 and associated N 4y and D 4¢.

Variable X 4 Applicability Nav Dy
Vo1 proposition Py istrue | Yaavpe | YArP1
Is1 proposition Py is true | Z A Ay po ZArpP1

G ay is given by (290) in the form of a generalized
Rayleigh ratio of N 47 to D 4¢7, in the variable X 4. Thus,
G 4y depends on the excitation. According to the explana-
tions provided in Section IL.A, it is defined if and only if
proposition Ps is true and X 4 € D(D 4r7), where

D(DAU) = {XA eC™: Xy ¢ kel"DAU}. (291)
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To define the excitation in CB, let X g denote one of the
variables Vs or Ig9. Based on Section III.C, Section II1.D
and Corollary 9, we find that, if proposition P; is true, Gpy
is given by
X3 Ny Xp

Gpy = 2P0
PY T X1 Dpy X5

(292)
where Npy and Dy are hermitian matrices of size n by
n, and given in Table 16. We note that Ny and Dy are

positive semidefinite.

TABLE 16. Variable X 5 and associated Nz and Dy .

Variable X g Applicability Npu Dpu
Voo proposition Py istrue | Ypavpi Y Brp2
Igo proposition P is true Zpavpi ZBRrp2

Gpy is given by (292) in the form of a generalized
Rayleigh ratio of Ny to Dpy, in the variable X 5. Thus,
Gpu depends on the excitation. According to the explana-
tions provided in Section IL.A, it is defined if and only if
proposition Py is true and X5 € D(Dpgy ), where

D(DBU) = {XB eC": Xp ¢ kerDBU} . (293)

By Observation 7, the set of the values of G4y obtained
for all X4 € D(Dyy) is equal to the set of the values of
G ap obtained for all X4 € D(Day) N'S,,. Likewise, we
can assert that the set of the values of Gy obtained for all
Xp € D(Dpyp) is equal to the set of the values of Gy
obtained for all X5 € D(Dpy) NS,.

Since Is1 = Ygs1 Vo1, where Yg; is invertible, it is
possible to show that the set of the values of G 4y obtained
forall X4 € D(Dy),orforall X4 € D(D 4y ) NSy, does
not depend on the choice X4 = Vpp or X4 = Ig;.

Likewise, since Iso = Y g2V oo, where Y g is invertible,
we can show that the set of the values of GGy obtained for
all Xp € D(Dpy), or forall X € D(Dpgy) NS, does
not depend on the choice Xp = Vs or Xp = Igs.
Observation 13. Since Gy and Gy need not be less
than or equal to one or any other number, we cannot apply
Corollary 3 to the corresponding generalized Rayleigh ratios.
Thus, to compute the bounds of the sets of the values of G 41/
and G gy, we cannot use Corollary 3 and Theorem 14 as we
for instance did in Theorem 17 and Theorem 18 to obtain the
bounds of the sets of the values of G40 and G go.

We are now in a position to state and prove a new recip-
rocal theorem on the bounds of the sets of the values of the
unnamed power gains in CA and CB.

Theorem 29. Ignoring noise power contributions, we can

assert that:

(a) if Py and Ps are true, D 41/ is positive definite, and the
set of the values of the unnamed power gain in CA,
obtained for all nonzero Vo; € C™, or equivalently
for all nonzero Ig; € C™, has a least element referred
to as “minimum value” and denoted by G oy a7, and
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a greatest element referred to as “maximum value” and
denoted by G Ay pmrax;

(b) if P and P3 are true, and if A\, and Ay .y are given
by Theorem 12 applied to the generalized Rayleigh ratio
of N 4y to D 4y, in the variable X 4 according to (290)
and Table 15, we find that G oy prry = Amin and
GAU MAX = Amax

(c) if Py and Ps are true, and if M is given by Theorem 12
applied to the generalized Rayleigh ratio of N 4y to
D 4y, in the variable X 4, an average value of G4y over
a number min{m, n} of nonzero excitations is

trM  tr(NagDyy)
min{m,n}  min{m,n}

GAv AVR = ;o (294)
(d) if Py and Pj are true, G 4y ayv g doesn’t depend on the
choice of X 4, and

<Gavmin £ Gavavr < Gavmax;  (295)

(e) if Py and Py are true, D s is positive definite, and the
set of the values of the transducer power gain in CB,
obtained for all nonzero Voo € C", or equivalently
for all nonzero Iso € C™, has a least element referred
to as “minimum value” and denoted by Gy a7, and
a greatest element referred to as “maximum value” and
denoted by GBU MAX;

(f) if P, and P4 are true, and if \,;, and Ay .« are given by
Theorem 12 applied to the generalized Rayleigh ratio of
Npy to Dy, in the variable X5 according to (292)
and Table 16, we find that Ggy piy = Amin and
GBU MAX = Amax ;

(g) if P1 and Py are true, and if M is given by Theorem 12
applied to the generalized Rayleigh ratio of Ny to
Dpy, in the variable X 5, an average value of G gy over
a number min{m, n} of nonzero excitations is

trM . tr (NBUDE%])

min{m,n}  min{m,n}

GBU AVR = 7 (296)

(h) if P; and P, are true, Gy oy g doesn’t depend on the
choice of X g, and

< Gpuavr < (297)

(1) if Ps and P, are true, and if the DUS and both loads are
reciprocal devices, then

< Gpumin < < GBUMAX ;

Gavmax = Gpumax, (298)
Gavavr = GBUAVR, (299)
(m=n) = (Gav min = Gpumin) ,  (300)
(m>n) = (Gaymin =0) (301)

and
(m<n) = (Gpumin =0) . (302)

Proof: If Ps is true, by Lemma 11 we can assume that
Z p anr11 18 invertible, H(ZPAM11 Y 51) is invertible, and
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XA = Ig;. Using Table 15 and (60), we get

1 *
Dav = Zarp1 = §ZPAM11
-1 —1% *
X (Zpann + Zpav — Ys1 - Y1)
X Zpamit (303)

so that D 4y = Z AR p1 is invertible, hence positive definite.
If Py and Ps are true, assertions (a) and (b) directly follow
from Theorem 12.

In (c), by Theorem 12 and [8, Sec. 1.3.3], we obtain
trM = tr (N AUD:HlJ), and then the second equality of
(294). By (8), each eigenvector y of M corresponds to a
nonzero excitation X 4 = D;ul]/ 2y, and to an eigenvalue that
is equal to G 4y for this X 4. Using Table 15, (189) and (192),
we get

rank (NAUD;%J) =rankN sy < min{m,n}, (304)

so that the number of nonzero eigenvalues of M, counting
multiplicity, is less than or equal to min{m,n}. Since tr M
is the sum of the eigenvalues of M, counting multiplicity,
it follows that G 4y av g given by (294) is an average of
G v over a number min{m, n} of nonzero excitations. This
proves (c). Assertion (d) follows from (c) and (372) of
Appendix C.

If Py is true, by Lemma 11 we can assume that Z p 499 1S
invertible, H(ZpY 1700 — Ys2) is invertible, and X p = Igo.
Using Table 16 and (66), we get

1 *
§ZPAM22

x (ZPAM22 +Zpihan — Ys2

X Zipam2z

Dy = Zpgrp2 =

- Y5,)
(305)

so that Dy = Zpprpo is invertible, hence positive definite.
If P; and P, are true, assertions (e) and (f) directly follow
from Theorem 12.

In (g), by Theorem 12, we have tr M = tr (NBUDE%,),
which allows us to write the second equality of (296). Using
Table 16, (195) and (198), we get

rank (NBUDBU) =rankNpy < min{m,n}, (306)

which can be used to prove (g) as we used (304) to prove (c).
Assertion (h) follows from (g) and (373) of Appendix C.

To prove (i), we can assume X 4 = Ig; and Xp = Igo.
By Theorem 12, we only need to compare the eigenvalues of
A= NAUD;Hl] with the eigenvalues of B = NBUD;U. It
follows from Table 15, (189) and (303) that

_ * — 1%
A =ZpsmnZp s
1
"
-Y5,)
1
X ZPAM22ZPAM21ZPAM11

- Y5)

— 1%
(ZPAMz2 + ZPAM22 —Yso

-1
(ZPAMll + ZPAMll Y1
X Zpanin (307)

which is of size m by m. It follows from Table 16, (195) and
(305) that
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B = Z};AM12Z1_3,14*M11
x (ZJ_D,14M11 +Zpiv — Y1 - Ygl)_l
X ZpanmZrarvn2Zp s
X (Zpanrss + Zpinras — Yoo — Y5)
X Zp iz
which is of size n by n. If the DUS and both loads are

reciprocal devices, Zpapr, Y 51, Y g2 are symmetric and the
transpose of Zp anr12 1S Zp Apr21, SO that

1

(308)

T _ p1x —1 s e -1
BY = Z 5 a0 (Zpansas + Zpanas — Ys2 — YY)
-1 1
X ZLipapoolipamaZip gpg
—1 — 1% * —
X (Zpany +Zpayn — Ys1 = Y5)

—1% *
X Zpan1Lpamon -

1

(309)

By [8, Sec. 1.4.1], the eigenvalues of BT are the same as
those of B, counting multiplicity. We note that, if we write

C =Zp s (Zranioe + Zpanias — Ys2 — YEQ)_l
x Zz_v,la\MzQZPAMmZJ_D,luun
X (Zphas + Zpam — Yor = Yi)
< T G10

the right hand sides of (307) and (309) are Z% 4,0, C and
CZ% 4591 respectively. Thus, using [8, Sec. 1.3.22] and the
fact that Z 45,4, 1s of size m by n, we find that:

e if m = n, then A and B have the same eigenvalues,
counting multiplicity;

e if m > n, then A has the same eigenvalues as B,
counting multiplicity, together with m — n additional
eigenvalues equal to zero; and

e if m < n, then B has the same eigenvalues as A,
counting multiplicity, together with n — m additional
eigenvalues equal to zero.

This leads to the final assertions of Theorem 29. O

X. SOME INEQUALITITES
The following corollary states inequalities which supplement
(k) of Theorem 24 and (k) of Theorem 25.

Corollary 10. Ignoring noise power contributions, we assert
that:

(a) if proposition Ps is true, we have

taimax 2 tB1 MAX (311)
and
tai MmN <tB1MIN; (312)
(b) if proposition Py is true, we have
tasmax <tpamax, (313)
and
tas MIN = tB2 MIN - (314)
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Proof: According to the explanations provided above to
prove (k) of Theorem 24, if Y s 45711 and H(ngan —Zs1)
are invertible, then the set of the values of tp; obtained
for all X5 € D(Dp;) equals the set of the values of tpq
obtained for all nonzero Vo € range(ngl vl Y SAM12)-
This set is a subset of the set A of the values of ¢z7 which
would be obtained if V5 could take on any value lying in
C™. Assertion (a) follows from the fact that, by Theorem 23
applied to port set 1, A has a minimum value that is equal to
ta1 MmN, and a maximum value that is equal to ¢ 41 a7 4 x -

Assertion (b) corresponds to assertion (a) with a different
labeling of port sets. O

Some equalities between power ratios lead to inequalities
between their bounds. For instance, since Theorem 15, The-
orem 17, Theorem 18, Theorem 24 and Theorem 25 ensure
that the maximum and minimum values of G 47, G, G 240,
Gpo, ta1 and tpo are defined and computable, (217) leads
us to:

Gaomintai min < Gar min <
min{Gao min tar max, Gaomax tai min} <

min{G a0 min, tarmin}, (315)
Gaomaxtaimax = Garmax =
max{Gao mintar max, Gaomaxtaimin}, (316)

Gpominteamin < Ger mIN <
min{Gpo mintB2 max, Gromax taMIN} <

min{Gpo mIn, teamin}, (317)
and
Gpomaxtpamax = Gprvax =
max{GpomintB2max, Gpomaxtamin}. (318)

Similar inequalities can be obtained from (218), (262)-
(263) and (288)—(289).

XI. SPECIAL CASE OF A LOSSLESS DUS
The DUS is lossless only if, for any positive definite Zg; and
Z 5, we have

Papp2 = Pagrp1 and Ppppi = Pprp2. (319)

In this Section XI, we now assume that the DUS is lossless.
It follows from (71)—(72), (211), (215) and (319) that, for
nonzero excitations,

GAT:tAl and GBT:tB2. (320)

If Parp1 # 0 W, it follows from (107) and (319) that we
have

Gao=1. (321)

Also, if Pgrpo # 0 W, it follows from (108) and (319)
that we have

Gpo =1. (322)

29



F. Broyde and E. Clavelier: Some Results on Power in Passive Linear Time-Invariant Multiports, Part 3

Theorem 30. We assume that the DUS is lossless, and that
the DUS and both loads are reciprocal devices. Ignoring noise
power contributions, we assert that:

ta1max = tB2MAX, (323)

mta1 AVvR = NtB2 AVR, (324)

(m=n) = (tarmIN =tB2MIN) , (325)

(m >n) = (taimin =0) (326)

and (m<n)= (tpamin =0) . (327)

Proof: Theorem 15 and (320) allow us to directly obtain
(323), (325), (326) and (327), but not (324).

By Table 1, Table 7 and (319), in the case X4 = Ig; and
in the case X 4 = V1, forany X 4 € C™, we have

X%ANarXa = Papp2 = Parp1 = X3N4.1 X 4. (328)

Thus, using (367) of Appendix C, we may conclude that
Nar = Ny;i. Since, according to Table 1 and Table 7, we
also have D 47 = D 44, it follows from (c) of Theorem 15
and (c) of Theorem 24 that

mtar avr = min{m,n} Gar avr - (329)

By Table 2, Table 11 and (319), in the case Xp = Ig, and
in the case Xp = Vo, for any Xp € C", we have

X3NprXp = Pppp1 = Perp2 = X3Np2Xp. (330)

This allows us to conclude that N g7 = N pgo. Since, ac-
cording to Table 2 and Table 11, we also have Dpp = Dpo,
it follows from (g) of Theorem 15 and (c) of Theorem 25 that

ntps avr = min{m,n} Gpr avr - (331)

Consequently, (324) follows from (j) of Theorem 15. [

In Section VIII of Part 2, it was assumed that P53 and
Py are true, and we defined: tarax1, taraxe, tarrnt and
tarrn2, Which correspond to ta1arax, tB2 MAX, tAT MIN
and t g2 as1 N, respectively. Thus, Theorem 30 may be viewed
as an improved version of Theorem 9 of Part 2.

Theorem 31. We assume that the DUS is lossless, and that
‘Ps and Py are true. Ignoring noise power contributions, we
assert that:

(a) if Zpapr1o is of rank m and/or Y gaps12 is of rank m,

then, for any nonzero excitation in CA, we have
Gaa=1and ta =tas; (332)

(b) if Zpapsio is of rank m and/or Y g4ps12 is of rank m,
then,

tatmax =tazmax, (333)
tA1AVR = tA2 AVR (334)

d
an tatMIN =tA2MIN; (335)
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(¢) if Zpansor is of rank n and/or Y g 401 is of rank n,

then, for any nonzero excitation in CB, we have
GBA =1 and tBl :tBQ; (336)

(d) if Zpapro1 is of rank n and/or Y gaps01 is of rank n,
then,

tB1MAX =tB2MAX » (337)
IB1AVR = tB2AVR (338)

and
t1 MIN =tB2 MIN; (339)

(e) if Zpapr1o is of rank m and/or Y g apr12 is of rank m,
and if Z p 4 pr21 1S of rank n and/or Y g 4721 is of rank n,
then,

Garmax = GBr max , (340)

Garmiv = GerMmIN, (341)

Gavmax = GBu max (342)
and

Gav min = GBu mIN - (343)

Proof: Since P53 and P, are assumed to be true, Lemma 11
tells us that Y 4711 and H(ng‘M11 — Zg1) are invertible,
and Y gaar22 and H(Y;‘M22 — Zgo) are invertible. Thus,
port set 1 behaves, in CA, as an m-port load of impedance
matrix Zpy = Yg}lel — Zg; such that H(Z7») is positive
definite, and port set 2 behaves, in CB, as an n-port load of
impedance matrix Z71 = Y g} /90 — Zs2 such that H(Z7)
is positive definite.

Z p Apr22 being invertible by Lemma 11, port set 2 may be
viewed, in CA, as an n-port generator of internal impedance
matrix Z7, and rms short-circuit current vector

Ir1 = ZphasonZpanailst . (344)

In the proof of Theorem 10 of Part 2, it is shown that, if
rank Zpanr12 = m, then

(ZSQ = Z}l) — (Z5'1 = Z}2) (345)

Let us assume that rank Z p 4712 = m. By the maximum
power transfer theorem for multiports [4], [13], for any
excitation Is; € C™ in CA, the circumstance Zgy = Z7
entails: Papps = Paavpz; and Parp1 = Paavgi by
(345). It follows from (319) that, for the excitation Ig1, we
have Pyavp2 = Paavgi. This result is independent of the
value of Zgs, because Zgo has no effect on Py 4y g1 and
no effect on Py 4y po. Thus, for any value of Zgo and any
nonzero excitation Ig; € C™ in CA, we have G44 = 1, and
we have t 41 = t 49 because Pappas = Parp1 by (319).

If, instead of assuming that rankZpap0 = m, we
assume that rank Y gans12 = m, we can likewise show that,
for any value of Y g and any nonzero excitation Vo € C™
in CA, we have G444 = 1l and t 41 = t4o.

This leads us to (332), and to (333) and (335) using (a)
of Theorem 24 and (f) of Theorem 25. A different approach
is needed to prove (334). According to Table 7 and Table 8,
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in the case X4 = Ig; and in the case X4 = V1, for any
X4 € C™, we have

XUNa1X4 = Parp1 = Papp2 = X3 NAXy4  (346)

by (319), and we have

XiaDaiX 4 = Pyaver =
Paavpr =X3D Xy (347)

because G 44 = 1.

Thus, utilizing (367) of Appendix C, we may conclude that
N1 = Nag and D 41 = D 45. This proves (334).

If, instead of assuming that Zpaps12 or Ygsansio are
of rank m, we assume that rankZpap01 = n or that
rank Y gapr01 = n, we can likewise show that, for any value
of Y g1 and any nonzero excitation in CB, we have Gp4 = 1
and tg; = tgo, and then obtain (337)—(339).

If we now assume that Zpsps12 or Y gaps12 are of rank
m, and that Zp o1 or Ysapei are of rank n, we can for
instance use (a) and (e) of Theorem 15, (320), (333), (335)
and (k) of Theorem 25, to obtain (340) and (341).

Since P3 and P, are assumed to be true, it follows from
Theorem 29 that G oy and G gy are defined, and that D 47
and Dpy are positive definite. Thus, (342)-(343) follow
from (288)—(289), (320) and (332)—(341). O

Theorem 31 is new. It shows that, in the case of a lossless
DUS, we can obtain reciprocal relations on the bounds of the
sets of the values of the transducer power gains in CA and
CB, if some conditions are satisfied, which do not require
that the DUS and/or the loads are reciprocal devices.

XIl. SOME EXAMPLES

A. FIRST EXAMPLE

In a first example, such that m = n = 2 and already used in
Section VI.B of Part 1, we assume that

(514395 19+ 79j
Zs1 = (27+56j 37+61j) &, (348)
(324875 114415
Zsy = (23 +375 T3+ 13j) &, (349)
and that the DUS has an impedance matrix given by
Z =
89+255 31+11j 31455 17+ 405
21435 59+355 34625 40+175 Q. (350
34215 414295 73+415 21+49j ’
334+135 T4+7;  23+425 49+ 215

Zgs1, Zgo and Z are not symmetric and have each a
positive definite hermitian part. Thus, the DUS and the loads
are passive, not reciprocal and not lossless. Zp 45 can be
computed using (35).

The maximum, average and minimum values of the power
ratios defined above have been computed a first time using
Theorem 12, a second time using Theorem 14, and a third
time using an extremum-seeking algorithm (as explained in
Section VLA of Part 1). The three methods give exactly the
same values, shown in Table 17 to Table 19.
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TABLE 17. Maximum values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.786206 | 0.786206
power transfer ratio at port set 2 of the DUS 0.950923 | 0.950923
transducer power gain 0.084966 | 0.171115
operating power gain 0.132830 | 0.183025
available power gain 0.098264 | 0.320845
unnamed power gain 0.165136 | 0.372990
power transfer ratio without the DUS 0.864763 | 0.864763
insertion power gain 0.126970 | 0.291078

TABLE 18. Average values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.608507 | 0.608507
power transfer ratio at port set 2 of the DUS 0.626807 | 0.626807
transducer power gain 0.049283 | 0.100428
operating power gain 0.079257 | 0.139813
available power gain 0.069560 | 0.183837
unnamed power gain 0.118456 | 0.256470
power transfer ratio without the DUS 0.539976 | 0.539976
insertion power gain 0.087939 | 0.192515

TABLE 19. Minimum values for the first example.

Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.430809 | 0.430809
power transfer ratio at port set 2 of the DUS 0.302691 | 0.302691
transducer power gain 0.013600 | 0.029740
operating power gain 0.025685 | 0.096601
available power gain 0.040856 | 0.046829
unnamed power gain 0.071777 | 0.139950
power transfer ratio without the DUS 0.215189 | 0.215189
insertion power gain 0.048907 | 0.093953

The computed values are compatible with the reciprocal
power relations stated in (i) of Theorem 23, (k)—(¢) of
Theorem 24 and (k)—(¢ ) of Theorem 25. We also find that the
reciprocal power relations stated in (i) and (j) of Theorem 15,
(i) of Theorem 16, (e) of Theorem 27, (e) of Theorem 28 and
(i) of Theorem 29 need not be true in a case where the DUS
is not reciprocal and not lossless, and where the loads are not
reciprocal.

B. SECOND EXAMPLE
In a second example, such that m = n = 2 and already used
in Section VI.C of Part 1, we assume that

(51 +395 234687
ZSl<23+68j 37+61j>Q’ (351
(324875 174397
Z52<17+39j 73+13j>Q’ (352)
and that the DUS has an impedance matrix given by
Z:
89+255 26+7j 17+13j 25+ 27j
26+7)  59+35) 22446j U+12j | o (355,
17+ 135 224465 73 +415 224 46j :
25+27j 244125 224465 49+ 21;
31
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TABLE 20. Maximum values for the second example.

TABLE 23. Maximum values for the third example.

Quantity CA CB Quantity CA CB
power transfer ratio at port set 1 of the DUS 0.814625 | 0.814625 power transfer ratio at port set 1 of the DUS 0.785846 | 0.785846
power transfer ratio at port set 2 of the DUS 0.984960 | 0.984960 power transfer ratio at port set 2 of the DUS 0.526631 | 0.526631
transducer power gain 0.065234 | 0.065234 transducer power gain 0.049441 | 0.049441
operating power gain 0.118331 | 0.090104 operating power gain 0.067408 | 0.131088
available power gain 0.090104 | 0.118331 available power gain 0.131088 | 0.067408
unnamed power gain 0.189454 | 0.189454 unnamed power gain 0.176905 | 0.176905
power transfer ratio without the DUS 0.876240 | 0.876240 power transfer ratio without the DUS 0.286756 | 0.286756
insertion power gain 0.159534 | 0.141010 insertion power gain 0.172413 | 0.172413
TABLE 21. Average values for the second example. TABLE 24. Average values for the third example.
Quantity CA CB Quantity CA CB
power transfer ratio at port set 1 of the DUS 0.642041 | 0.642041 power transfer ratio at port set 1 of the DUS 0.754678 | 0.754678
power transfer ratio at port set 2 of the DUS 0.643069 | 0.643069 power transfer ratio at port set 2 of the DUS 0.410713 | 0.410713
transducer power gain 0.041627 | 0.041627 transducer power gain 0.033257 | 0.033257
operating power gain 0.072153 | 0.067040 operating power gain 0.044716 | 0.086282
available power gain 0.067040 | 0.072153 available power gain 0.086282 | 0.044716
unnamed power gain 0.122072 | 0.122072 unnamed power gain 0.115480 | 0.115480
power transfer ratio without the DUS 0.551352 | 0.551352 power transfer ratio without the DUS 0.286756 | 0.286756
insertion power gain 0.098332 | 0.091509 insertion power gain 0.115976 | 0.115976
TABLE 22. Minimum values for the second example. TABLE 25. Minimum values for the third example.
Quantity CA CB Quantity CA CB
power transfer ratio at port set 1 of the DUS 0.469456 | 0.469456 power transfer ratio at port set 1 of the DUS 0.723510 | 0.723510
power transfer ratio at port set 2 of the DUS 0.301177 | 0.301177 power transfer ratio at port set 2 of the DUS 0.294795 | 0.294795
transducer power gain 0.018019 | 0.018019 transducer power gain 0.017073 | 0.017073
operating power gain 0.025975 | 0.043977 operating power gain 0.022024 | 0.041476
available power gain 0.043977 | 0.025975 available power gain 0.041476 | 0.022024
unnamed power gain 0.054690 | 0.054690 unnamed power gain 0.054056 | 0.054056
power transfer ratio without the DUS 0.226464 | 0.226464 power transfer ratio without the DUS 0.286756 | 0.286756
insertion power gain 0.037131 | 0.042008 insertion power gain 0.059538 | 0.059538
He.re, Zsq, .Z.SQ and Z are symmetric and have a positive Zss = (32 + 87§) (1 0) Q) (355)
definite hermitian part. Thus, the DUS and the loads are 0 1

passive, reciprocal and not lossless. Zg; and Z g are neither
circulant nor in the form of a complex number times 1.

The maximum, average and minimum values of the power
ratios defined above were computed a first time using Theo-
rem 12, a second time using Theorem 14, and a third time
using an extremum-seeking algorithm. The three methods
give exactly the same values, shown in Table 20 to Table 22.

We find that the computed values are compatible with the
reciprocal power relations stated in (i) and (j) of Theorem 15,
(i) of Theorem 23, (k)—(¢) of Theorem 24, (k)—(¢) of The-
orem 25, (e) of Theorem 27, (e) of Theorem 28 and (i) of
Theorem 29. We also find that the reciprocal power relations
stated in (i) of Theorem 16 need not be true in a case where
we cannot say that Zg; and Zgo are each in the form of
a complex number times an identity matrix, and where we
cannot say that Z g1, Zgo and Zp 4p21 are circulant.

C. THIRD EXAMPLE
In a third example, already used in Section VI.D of Part 1,
we assume that

Zs1 = (51 + 395) <(1) (1)> Q) (354)

32

and that the DUS has an impedance matrix given by (353).

Here, Zg1, Zg-> and Z are symmetric and have a positive
definite hermitian part. Thus, the DUS and the loads are
passive, reciprocal and not lossless. Also, Zg; and Zgo are
each in the form of a complex number times the identity
matrix 1.

The maximum, average and minimum values of the power
ratios defined above were computed a first time using Theo-
rem 12, a second time using Theorem 14, and a third time
using an extremum-seeking algorithm. The three methods
give exactly the same values, shown in Table 23 to Table 25.
These values are compatible with the reciprocal power rela-
tions stated in (i)—(j) of Theorem 15, (i) of Theorem 16, (i) of
Theorem 23, (k)—(¢) of Theorem 24, (k)—(¢) of Theorem 25,
(e) of Theorem 27, (e) of Theorem 28 and (i) of Theorem 29.

D. FOURTH EXAMPLE

In a fourth example, already used in Section VLE of Part 1,
we assume that

51 — 394
Zs1—< J

7+ 165 (356)

7+ 165
51—39]')9’
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TABLE 26. Maximum values for the fourth example.

TABLE 29. Maximum values for the fifth example.

Quantity CA CB Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.994997 | 0.994997 power transfer ratio at port set 1 of the DUS 0.924578 | 0.924578
power transfer ratio at port set 2 of the DUS 0.453406 | 0.453406 power transfer ratio at port set 2 of the DUS 0.924578 | 0.924578
transducer power gain 0.120251 | 0.120251 transducer power gain 0.924578 | 0.924578
operating power gain 0.165995 | 0.309882 operating power gain 1.000000 | 1.000000
available power gain 0.309882 | 0.165995 available power gain 1.000000 | 1.000000
unnamed power gain 0.427761 | 0.427761 unnamed power gain 14.48862 | 14.48862
power transfer ratio without the DUS 0.691529 | 0.691529 power transfer ratio without the DUS 0.864763 | 0.864763
insertion power gain 0.215581 | 0.215581 insertion power gain 1.187487 | 1.238501

TABLE 27. Average values for the fourth example. TABLE 30. Average values for the fifth example.

Quantity CA CB Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.859712 | 0.859712 power transfer ratio at port set 1 of the DUS 0.496799 | 0.496799
power transfer ratio at port set 2 of the DUS 0.420730 | 0.420730 power transfer ratio at port set 2 of the DUS 0.496799 | 0.496799
transducer power gain 0.065159 | 0.065159 transducer power gain 0.496799 | 0.496799
operating power gain 0.088056 | 0.166041 operating power gain 1.000000 | 1.000000
available power gain 0.166041 | 0.088056 available power gain 1.000000 | 1.000000
unnamed power gain 0.225037 | 0.225037 unnamed power gain 7.785100 | 7.785100
power transfer ratio without the DUS 0.624666 | 0.624666 power transfer ratio without the DUS 0.539976 | 0.539976
insertion power gain 0.115068 | 0.115068 insertion power gain 0.738134 | 0.757694

TABLE 28. Minimum values for the fourth example. TABLE 31. Minimum values for the fifth example.

Quantity CA CB Quantity CA CB

power transfer ratio at port set 1 of the DUS 0.724428 | 0.724428 power transfer ratio at port set 1 of the DUS 0.069020 | 0.069020
power transfer ratio at port set 2 of the DUS 0.388055 | 0.388055 power transfer ratio at port set 2 of the DUS 0.069020 | 0.069020
transducer power gain 0.010066 | 0.010066 transducer power gain 0.069020 | 0.069020
operating power gain 0.010116 | 0.022200 operating power gain 1.000000 | 1.000000
available power gain 0.022200 | 0.010116 available power gain 1.000000 | 1.000000
unnamed power gain 0.022312 | 0.022312 unnamed power gain 1.081575 | 1.081575
power transfer ratio without the DUS 0.557803 | 0.557803 power transfer ratio without the DUS 0.215189 | 0.215189
insertion power gain 0.014556 | 0.014556 insertion power gain 0.288782 | 0.276887

Zgy = (51? - jﬂj 5 N j%) Q, (357)  E. FIFTH EXAMPLE

and that the DUS has an impedance matrix, given by
Z =

544255  6+7j 204135 —10—5j
64+7j 54+255 —10—5j 20+ 13j
20+13j —10—5; 25-257 6+17; |- (358
—10—5; 20+13j 6+17j 25— 255

Here, Zg1, Zgss and Z are symmetric and have a positive
definite hermitian part. Also, Zg1 and Zg- are circulant, and
Z is a 2-by-2 block matrix, the blocks of which are of size 2
by 2 and circulant. Thus, the DUS and the loads are passive,
reciprocal and not lossless, and it follows from Observation
4 of Part 1 that Z p 4721 is circulant.

The maximum, average and minimum values of the power
ratios defined above were computed a first time using Theo-
rem 12, a second time using Theorem 14, and a third time
using an extremum-seeking algorithm. The three methods
give exactly the same values, shown in Table 26 to Table 28.
These values are compatible with the reciprocal power rela-
tions stated in (i)—(j) of Theorem 15, (i) of Theorem 16, (i) of
Theorem 23, (k)—(¢) of Theorem 24, (k)—(¢ ) of Theorem 25,
(e) of Theorem 27, (e) of Theorem 28 and (i) of Theorem 29.

Copyright ©2023 by Excem

In a fifth example, the DUS has an impedance matrix

7 =

255 314115  31+5j 174405
—31 4115 357 3+625 404175

—314+5j —3+625 415 21 4495 | - (359)
—17+40; —40+17j —21+ 495 215

In this fifth example, already used in Section IX.A of
Part 2, Z g1 is given by (348), and Z g is given by (349). Z 1,
Z s> and Z are not symmetric, so that the DUS and the loads
are not reciprocal devices. Zg; and Z g2 have each a positive
definite hermitian part. We have H(Z) = 0 because Z is
the impedance matrix of a lossless DUT. We have computed
Zp 4 and found that rank Zp g p712 = rank Zp ap01 = 2.

The maximum, average and minimum values of the power
ratios defined above were computed a first time using Theo-
rem 12, a second time using Theorem 14, and a third time
using an extremum-seeking algorithm. The three methods
give exactly the same values, shown in Table 29 to Table 31.
These values are compatible with the reciprocal power rela-
tions stated in Theorem 31.

This example also allows us to observe unnamed power
gains and insertion power gains that are greater than one.
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F. A NOTE ABOUT THE FIVE EXAMPLES
In Table 17 to Table 31, all values could be computed using
Theorem 12 and Theorem 14, and it was possible to use
the simple formulas (189) and (195) to obtain Z 4 4y po and
Z 5 Av p1, and compute the maximum, average and minimum
values of t 42, tB1, Gaa, GBa, Gay and Gpy.

In other problems, this need not be possible, especially
when m # n.

Xill. ABOUT THE FRIIS TRANSMISSION FORMULA
The original Friis transmission formula is about “a radio
circuit made up of a transmitting antenna and a receiving
antenna in free space” [7]. It is about two single-port an-
tennas, and it assumes that the antennas are polarization
matched, that the distance between the antennas, denoted
by d, is sufficiently large (far-field condition), and that the
transmitting antenna is reciprocal [5, Sec. VII]. The original
Friis transmission formula is:
P, avr ArAt

P, d2X\?’
where: P, is the power available at the port of the receiving
antenna; P; is the power fed into the transmitting antenna at
its port; A, is the effective area of the receiving antenna, in
the direction of the transmitting antenna; A; is the effective
area of the transmitting antenna, in the direction of the
receiving antenna; and A is the wavelength.

In [5, Sec. VII], we observed that one of the teachings of
(360) is that, if the roles of the antennas are reversed (i.e., the
receiving antenna becomes the transmitting antenna and vice
versa) without moving the antennas, then the unnamed power
gain does not change. In [5, Sec. VII], we also explained that
this teaching can be generalized to two single-port LTI and
reciprocal antennas lying in an LTI and reciprocal medium,
neither assuming polarization-matched antennas, nor a large
value of d, nor an homogeneous free space environment.

We can now propose a broader generalization. To this end,
we now consider the DUS shown in Fig. 2, comprising: a
first multiport antenna array (MAA) denoted by “MAA 17;
a second MAA denoted by “MAA 2”; and whatever lies
around MAA 1 and MAA 2. Let d be the distance between the
MAAs. We neither assume a large value d, nor a free space
environment, nor any form of polarization-matching between
the MAAs. In CA, MAA 1 is used for emission and MAA 2
for reception. In CB, MAA 2 is used for emission and MAA 1
for reception. If we assume that both MAAs are reciprocal
and that the medium surrounding them is reciprocal [18,
Sec. 13.06], we can use theorem II of [19], known as the
“Rayleigh-Carson reciprocity theorem” and corresponding
to [18, eq. (13-40)], to assert that Zp s and Ygaps are
symmetric. The DUS being in this case reciprocal, (i) of
Theorem 29 on unnamed power gain in CA and CB can be
used if P3 and Py are true, and if both loads shown in Fig. 2
are reciprocal devices. The wanted generalization of the Friis
transmission formula is (298)—(302) of Theorem 29.

The reciprocal relations (298)—(302) generalize the above-
mentioned teaching of the original Friis transmission formula
(360), according to which the unnamed power gain does not

(360)

34

device under study (DUS)
m-port n-port
generator (in CA) load (in CA) or
or load (in CB) generator (in CB)
4 + + +
port 1 antenna 1 antenna 1 port 1
MAA 1 MAA 2
+ + + 4
port m antenna m antenna » port n

FIGURE 2. The configurations considered in Section XllI, in which the DUS
comprises: MAA 1 having m antenna ports; and MAA 2 having n antenna ports.

change if the receiving antenna becomes the transmitting
antenna and vice versa. Other reciprocal relations obtained
above for a reciprocal DUS may also be used, such as: (79)-
(83) of Theorem 15; (97)—(99) of Theorem 16 if m = n;
(268)—(272) of Theorem 27; and (281)—(285) of Theorem 28.
Each reciprocal relation is based on the assumptions stated
in the corresponding theorem, the most general being the
reciprocal relations on the transducer power gain, that is
(79)—(83). Note that ionospheric propagation may involve a
significant Faraday rotation, which makes the propagation
medium non-reciprocal [18, Sec. 17.10], [19], [20, Sec. 6.6].

Lossless MAAs operating in a lossless medium do not lead
to a lossless DUS, in the meaning of Section XI, except in
the theoretical case of two lossless MAAs installed inside a
closed lossless enclosure that does not allow radiation outside
its boundary, the enclosure containing only the MAAs and
a lossless medium. Such an enclosure may for instance be
made of a perfect electric conductor (PEC). In this theoretical
case, we note that Gao = Gpo = 1, regardless of the
distance between the MAAs (inside the enclosure).

Let us assume that P35 and P, are true. In CA, Paavy ps
depends on the generator connected to port set 1 and on
the DUS, but not on Zg-. Except in the theoretical case
discussed above, for sufficiently large values of d, the inter-
action between MAA 1 and MAA 2 will typically be very
small, so that P4arp; depends very little on Zgo, and G 41
depends very little on Zgo. Likewise, for sufficiently large
values of d, Gpy depends very little on Zg;. It follows
that, in the far field, Gay pax, Gav avr and Gay vin
depend very little on Zgo; and Gy max, Gy avr and
Gy m1n depend very little on Zg; . Thus, in the far field,
if the DUS and the loads shown in Fig. 2 are reciprocal,
then: Gay max = Gpumax and Gay avie = GBU AvR
depend very little on Zg; and Zgo; and, if m = n, then
G au min = Gpu min depends very little on Zgy and Zgs.

This is what makes Gy max, GBu max, GAu AvR»
GBu avr, Gav vrnv and Gy prn attractive metrics of a
radio link.
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XIV. CONCLUSION

We have improved two reciprocal theorems on the bounds of
the sets of the values of transducer power gains and insertion
power gains for all nonzero excitations, which had been
treated in Part 1. We have established new results about the
computation of the power available at output ports, which
generalize the maximum power transfer theorem for multi-
ports stated in [4] and [13], to a port set having an immittance
matrix whose hermitian part need not be invertible. We have
established new results about the bounds of the sets of the
values of power transfer ratios, operating power gains, avail-
able power gains and unnamed power gains for all relevant
excitations. The new results include five reciprocal theorems
(theorems 24, 25, 27, 28 and 29), two of them (theorems 24
and 25) being fully applicable to a DUS that need not be a
reciprocal device.

We have also established other results about power ratios
and their bounds, including some inequalities and some re-
ciprocal relations applicable to a lossless DUS that need not
be a reciprocal device.

We appreciate that the reciprocal relations and theorems
treated in this article are comparable to, but much more
complex than, the reciprocal relations covered in [S5]. This
is why [5] can advantageously be read before this article, as
a prologue.

One of the new reciprocal theorems, relating to unnamed
power gains, was used to generalize the Friis transmission
formula.

This article is applicable to many problems in which
bidirectional transmission may occur in an LTI system having
more than two ports, and particularly relevant to problems in
which the location of X 4/||X 4|2 on S,,, and/or the location
of Xp/||Xg||2 on S, are not constant and/or not known.
Such circumstances for instance happen in the technical areas
of radio communication, wireless power transmission, and
electromagnetic compatibility (EMC).

APPENDIX A
This Appendix A is about corrections to known errors in
Part 1, Part 2 and [5].

The only known error in Part 1 [1] is that the title shown
in the header of even pages (“Some Theorems on Power in
Passive Linear Time-Invariant Multiports, Part 1”’) should be
replaced with the correct title (“Some Results on Power in
Passive Linear Time-Invariant Multiports, Part 17).

In Part 2 [2], page 11 column 2, “I; € CV” should be
replaced with “I; € C™” (2 occurrences), and “Ig; € CNV”
should be replaced with “Ig; € C™” (2 occurrences).

Several errors have been detected in [5]: in page 5, column
2, in the first sentence of Section IV.E, “operating power
gains is” should be replaced with “operating power gain is”;
in page 6, column 2, in the first sentence of Section V, “is
lossless if and only if”” should be replaced with “is lossless
only if”’; in page 6, column 2, in Section V, “Z 4 pps” should
be replaced with “Zpgpps” (4 occurrences); and in page 10,
column 2, the title of reference [17] should be in italics
instead of between quotation marks.

Copyright ©2023 by Excem

APPENDIX B

In this Appendix B, we want to show that (189) can be di-
rectly derived from (188). If Z p 4ps95 is invertible, it follows
from (128) and (129) that

. *
Zpy = ZPAMQ2
—1x%

X | Zpanros + Zpanias — Y2 — Yo | Zpanaa  (361)
and
Kpo = —Zp5v00(Zr2 — Zpanaz) - (362)

In this Appendix B, we now assume that Zp 4722 and
H(ZpY oo — Ys2) are invertible. Thus, it follows from
(361) that Z g is invertible, so that ZE2 = Z 5. By (362),
we have

KpoZhoKis = Zplinan(Zpz — Zpanien)
X Ly (Zps — Zpani2e) Lph s =
Z};}AM22 [ZE? —Zpam2 — Z?AM22
+ ZPAM2QZE‘%Z};AMQ2} Z;,laxMzz - (363)

Using (128) in (363), we obtain

Ygo + YZ*Q + KE2ZTEzK*E2 =
ZI;}4*M22ZPAM?QZE‘§Z*PAJ\422Z;’114]\122' (364)

Using (361) in (364), we get
Yso+ Yo, + KE2ZthKE2 = Zp e

—1
—1 — 1% *
X [ZPAM22 +Zp s — Ys2 — YS2:|

X Zp s - (365)

Using (365) in (188), we obtain (189).

APPENDIX C
Let A and B be hermitian matrices of size v by v, where
v is a positive integer. The hermitian matrix A can be used
to define the hermitian quadratic form « : C¥ — R such
that a(x) = x*Ax. The hermitian matrix B can be used to
define the hermitian quadratic form 8 : C¥ — R such that
B(x) = x*Bx.
An important result is

(a=p0) <= (A=B), (366)

that is to say

(Vx eC”, x*"Ax = X*Bx) — (A = B) . (367)

To prove this, we observe that Vx € C¥, x*Ax = x*Bx
if and only if Yx € C”, x*(A — B)x = 0. It follows from
Observation 6 that Vx € C¥, x*Ax = x*Bx if and only if
Vx € CY, x € ker(A — B), that is to say A = B.

Other proofs of (366)—(367) exist [8, Sec. 4.1.P6], [9, p.
174 Problem 6], [10, Sec. 3.2.4], but are more complicated.

Let Y x1 be an hermitian admittance matrix of size m by
m and Zx be an hermitian impedance matrix of size m by
m. If an average power is given by Px1 = V{5, Y x1 Vo, for
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any Vo1 € C™ and Px; = I5,Zx11g; for any Ig; € C™,
it follows from Is; = Y g1 Vo1 and (367) that:

Yx1=Y5Zx1Ys (368)

and

Zx1=7Z4Yx1Zs . (369)

Likewise, Y xo being an hermitian admittance matrix of
size n by n and Z x5 an hermitian impedance matrix of size
n by n, if an average power is Pxo = V{5, Y x2V oo for any
Voo € C" and Pxo = IEQZXQISQ for any Iso € C”, then

Yxo=Y5Zx2Ys2 (370)

and

Zxo=75Yx0Zso. (371)

It follows that, if a power ratio is defined as a generalized
Rayleigh ratio of Y1 to Y p1, in the variable Vo1, and as
a generalized Rayleigh ratio of Z; to Zp1, in the variable
ISI’ then YNl = YZ*lZNlYSl and YDI = Y§1ZD1Y51-
Thus, if Y p1 and Z p are invertible, Y x1Y 5} and Zy1 Z )
are similar. It follows that

tr (YniYp)) =tr (ZviZp)) - (372)

Likewise, if a power ratio is defined as a generalized
Rayleigh ratio of Y y2 to Y po, in the variable Voo, and as
a generalized Rayleigh ratio of Z 5 to Zpo, in the variable
Iso, and if Y po and Z po are invertible, then Y NgYBé and
Z NQZBé are similar. It follows that

tr (Yn2Yps) =tr (ZnoZpy) - (373)
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