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Key Results
 We focus here on a grid reconstruction 
problem, a typical issue in the (paleo-) cli-
mate community. By using a very conserva-
tive approach with small sample sizes (espe-
cially for deep learning), we could produce a 
realistic, robust global temperature recon-
struction.

 Our approach allows for the reconstruc-
tion of di�erent climate variables from 
(paleo) climate archives such as tree rings, 
coral and ice cores. Needless to say, recon-
structions do not need to be global, but can 
focus on a region of interest.

 By utilising existing data, storage and 
energy consumption can be kept at a mini-
mum, while at the same time contributing to 
the United Nations Sustainable Development 
Goals. The RNN reconstructions can be creat-
ed in less than an hour on a average-priced 
laptop, operating solely with open-access, 
open-source software and data.

 Correlation between indepen-
dent data and LSTM are very high, 
even when training sample size is 
small (N=1980). Highest correlations 
close to local data, but teleconnec-
tions are captured. 

 Seasonal and regional di�erences 
make sense and highlight challenges 
intrinsic to the climate system.

 Some features can be artifacts, 
such as negative correlation over 
equatorial Western Africa. It is speci�c 
to MPI-GE as a training data set and do 
not occur for 20CRv3 nor CESM-LME. 

 Highlighting the boreal cold 
season of 1834/1835 shows the 
method`s capability to reproduce 
not only mean statistics, but also spe-
ci�c climate events. 

 As training data set we use monthly 2m temperature anomalies with re-
spect to the period 1951-1980 CE from three di�erent gridded products, 
one reanalysis (20CRv3), two coupled climate models (CSM-LME & MPI-GE). 

 We extract the nearest neighbour information from realistic 25 loca-
tions, displayed as yellow diamonds. Those are our “pseudo local data” 
which are located roughly where we can expect the longest temperature 
time series in reality. 

 25 monthly 2m temperature anomaly times series are then used as input 
to reconstruct a global �eld time series via a simple long short-term 
memory neural network.

 We utilized a small LSTM with an output dimensionality of 50 units and 
the hyperbolic tangent as activation function, followed by a dense layer of 
18,432 parameters that were reshaped into a grid of 96 × 192 temperature 
points. The LSTM was trained with three layers (i.e., latitude, longitude, 
and 2m temperature anomaly). Training data size is N=1980 and for com-
parison N=20000. 

 Understanding monthly-to-annual climate variability is essential for adapt-
ing to future climate extremes.

 We need cheap, performant reconstructions of global, gridded, monthly 
temperature anomalies given only few local data.

 As proof-of-concept, we want to reconstruct 4,824 months (1602–2003) of 
2m mean temperature anomalies to compare with independent data and to high-
light a low cost, high �exibility approach.

Pearson Correlation Coefficient
Maps of Pearson Correlation Coe�cients between EKF400v2 ensemble mean and the MPI-GE based 
(N=1980 training months) LSTM temperature anomaly reconstruction for the period 1602–2003 CE. a) 
Correlation Coe�cients for boreal summer (JJA) seasons (N=402). b) Correlation Coe�cients for boreal 
winter (DJF) seasons (N=401). c) Correlation Coe�cients for all months (N=4824). d) Correlation Coe�-
cients for yearly means (N=402).

Cold season (ONDJFMAM) 2m temperature anomalies for 1834/35 CE. c) is our LSTM reconstruction, 
a,b,d) are independent reconstructions that take into account much more input data.
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Concept of the reconstruction process. (Upper) Example of gridded data resolution and location of pseudo-station data. (Mid-
dle) example of one year of pseudo-station temperature anomaly time series. (Lower) Schematic of training �ow for the LSTM.


