The Aneris Documentation

March 15, 2023

Abstract

This document formally describes the Aneris program logic. The latest version of this document and
the Coq formalization can be found in the git repository at https://github.com/logsem/aneris.

https://github.com/logsem/aneris

Contents

1 Language 3
1.1 Abstract Syntax 3
1.2 Operational Semantics e 3

2 Program Logic 9
2.1 Comnnectives and rules 9
2.2 Adequacy e 10

1 Language

1.1 Abstract Syntax

AnerisLang is an untyped functional language with higher-order functions, fork-based concurrency, higher-order
mutable references, and primitives for communicating over network sockets. The abstract syntax is as follows.

z €L
s € String

x € Var, sh € Handle, { € Loc = (infinite countable set)
l € BaseLit := z | true | false | () | £ | s | sh
veValu=1l|recfx=e] (v1,v2) | inl v | inr v
©1 5= ~ | — | i2s | s2i | len
©@i=4+ | — | x|quot |rem |[& ||| | << | > | < | < | =]|++
e€FEmpra=v|x|e ex| @1 ¢e|e; @ ey | if €1 thenes elsees

| find ey e2 e3 | substring ej e; e3 | rand e | (e1,ez) | fst e | snd e
| inl e | inr e | matchewithinl x; = e; | inr x2 = e end
| fork {e} | ref e| le|e; < ey | CAS €1 €3 €3
| makeaddress e; ey | getaddress e | socket | socketbind ey e

| sendto ey es e3 | receivefrom e | settimeout e; e e3 | start [e

We introduce the following syntactic sugar: lambda abstractions Az. e defined as rec __ z = e, let-bindings
let x = e; iney defined as (Ax. e2)(ey), sequencing ej; es defined as let = e; ineq, assertions assert e
defined as if e then () else 0 0, None defined as inl () and Some x defined as inr z.

We have the usual operations on locations £ € Loc in the heap: ref v for allocating a new reference, ! ¢ for
dereferencing, and ¢ < v for assignment. CAS £ v1 vy is an atomic compare-and-set operation used to achieve
synchronization between threads on a specific memory location £. Operationally, it tests whether ¢ has value
vy and if so, updates the location to vo, returning a boolean indicating whether the swap succeeded or not.

The binary operations &, |, *, <<, >> are all bitwise operations, respectively: and, or, exclusive or,
left shift, right shift.

The operation £ind finds the index of a particular substring in a string s € String and substring splits a
string at given indices, producing the corresponding substring. i2s and s2i convert between integers and
strings. These operations are mainly used for serialization and deserialization purposes.

The expression fork {e} forks off a new (node-local) thread and start n e will spawn a new node
n € IP-Address (we use ip addresses as node identifiers modeled on the set of strings) running the program e.
Note that it is only the system node & (& is a particular ip address we use to represent the system node) who
is able to spawn nodes. The intention is for this to be done during the bootstrapping phase of a distributed
system.

We use sh € Handle to range over socket handles created by the socket operation. makeaddress
constructs a socket address given an ip address and a port, and the network primitives socketbind, sendto,
receivefrom and settimeout correspond to the similar BSD-socket API methods. Do note that in the Coq
implementation, socket takes three values, in accordance with the similar BSD-socket API method, in form
of an address family PF__INET, socket type SOCK_DGRAM and protocol type IPPROTO__UDP. As we do
not support other types of address families, sockets or protocols, we omit these from this document.

1.2 Operational Semantics

The operational semantics is defined using the following evaluation contexts, where e denotes the empty
evaluation context. Observe that the evaluation contexts imply right-to-left evaluation order.

K e Ctz =

=e |Kv|eK| ® K|K @ v|e @ K |if K thene;elseey | find K vy v9
| find e K v | find e e5 K | substring K vy vy | substring e K v

| substring e; ea K | rand K | (K,v) | (e,K) | fst K | snd K | inl K

| inr K | match K withinl 1 = e | inr 29 = egend |ref K | | K | K v

| e+ K | CAS K vy vo |CAS e K v | CAS e; e5 K | makeaddress K v

| makeaddress e K | getaddress K | socketbind K v | socketbind e K

| sendto K v; vs | sendto e K v | sendto e; es K | settimeout K vy v9

| settimeout e K v | settimeout e; e K | receivefrom K

In AnerisLang, the state is of the form (7-_[, S’: M) where M is a message soup, a multiset of messages in transit,
Hand S mappings from IP addresses to, respectively, node-local heaps H and node-local socket mappings S.
We model sockets as a pair where the first element is a socket address together with a blocking-bit, indicating
whether the socket is blocking upon receiving messages, and the second element is a receive buffer. Formally
a state is of the following type, where we use P* to denote the power multiset:

IP-Address = String

op(A) £ None | Some a (a € A)
Port = N
Message = (IP-Address x Port) x (IP-Address x Port) x String

S : Handle i ((op(IP-Address x Port) x B) x List(Message ,
NetworkState £ { ((on()) (ge)) }

M : Pt (Message)

H : IP-Address i (Loc ™ Val),

S: IP-Address ™™ (Handle ™ ((op(IP-Address x Port) x B) x List(Message))),
M : PT(Message)

State £

For notational convenience, we let mg.., Mmgyst and mg,. denote respectively the first, second and third
projection of the message m. We write e for the empty list of messages. We proceed by introducing the
stepping relations bottom up.

Socket-Step (~(n))

Socket-Step has the signature

Expr x NetworkState ~) Ezpr x NetworkState.

Sockets steps are node local network aware steps, i.e. steps happening at a particular node defined by its IP
address that may use and modify the network-related state (sockets and message soup). The Socket-Step
relation is parameterized by n, the ip of the node executing the step. Remark that we only model timeouts
partially: Timeouts only decide whether a socket is blocking or not, hence we treat all non-zero timeouts the
same.

NEW-SOCKET
sh & dom(S)
(socket (), (S, M)) ~(n) (sh,(S[sh + ((None, true),e)], M))

SOCKET-BIND
Vsh' € dom(S). S(sh') = ((Some (n',p’),V'),e) =p #p
(socketbind sh (n,p), (S[sh — ((None, b), €)], M)) ~~

(0, (Slsh > {(Some (1m,p), B),)}y M)

SEND-MESSAGE
(sendto sh str dst, (S[sh +— ((Some (n,p), b), B)], M)) ~ ()
(|str|, (S[sh — ((Some (n,p), b),)] M A{((n,p),dst, str)}))

(n)

RECEIVE-SOME-MESSAGE
(receivefrom sh, (S[sh +— ((Some (n,p), b), B+ [m])], M)) ~(n)
(Some (mstm mSTC)7 (S[Sh = ((Some (nap)a)a)}7 M))

RECEIVE-EMPTY-BUFFER-NON-BLOCKING
(receivefrom sh,(S[sh +— ((Some (n,p),false),€)], M)) ~ ()
(None, (S[sh — ((Some (n,p),false),¢)], M))

RECEIVE-EMPTY-BUFFER-BLOCKING
(receivefrom sh, (S[sh — ((Some (n,p),true),¢)], M)) ~

(n)
(receivefrom sh, (S[sh — ((Some (n,p), true),e)], M))

SET-SOCKET-T0O-NON-BLOCKING-RECEIVE
0<2A0<yA0< (z+Yy))
(settimeout sh z y, (S[sh — ((Some (n,p), b), B)], M)) ~
(0, (S[sh = ((Some (n,p), false), B)], M))

SET-SOCKET-TO-BLOCKING-RECEIVE
(settimeout sh 00, (S[sh — ((Some (n,p), b), B)], M)) ~ ()
(0. (S[sh ((Some (n.p), true), B)], M)

Base-Step (~)

Base-Step has the signature
Expr x (Loc i Val) ~y, Expr x (Loc ™ Val) x List(Expr).

Base-step is a non network aware step that may modify the node local heap. Fork allows for creation of new
threads, under the same node as the current execution, hence the presence of a list of new expressions in the
relation where € denotes the empty list. Note the Get-Address-Info-Step is redundant in this representation
but is included to reflect the BSD-socket API. We use the terminology pure about a reduction with no side
effects. The b in ~~;, is a part of the name of the relation and not a parameter.

Pure Reductions

BETA-STEP UNARY-OPERATION-STEP

((rec f(x) = €)(v), H) ~ (el(rec f(z) = e)/f][v/z], H,¢€) (o2 H) b (=2,H,¢€)

BINARY-OPERATION-STEP IF-TRUE-STEP

(21 +@ 22, H) ~p (21 + 22, H, €) (if true thene; else ey, H) ~p (€1, H, €)
FIND-FROM-STEP
li
IF-FALSE-STEP n > Ng s1=s3[n-(n+n)
(if false thene; else ez, H) ~p (€2, H, €) (find $1 n2 s3, H) ~p (n, H, €)
RAND-STEP
SUBSTRING-STEP 0<r<u
(substring s ny ng, H) ~yp (s[ny -+ (n1 + n2)], H, €) (rand u, H) ~p (r,H,€)
FsT-STEP SND-STEP
(fst (vi,v2),H) ~p (v1,H,€) (snd (vi,v2), H) ~p (v2,H,€)

CASE-LEFT-STEP
(matchinl v withinl z; = e; | inr 29 = ez end, H) ~, (e1[v/x1], H,€)

CASE-RIGHT-STEP
(matchinr v withinl x1 = ey | inr 29 = ey end, H) ~p (eav/z2], H,€)

MAKE-ADDRESS-STEP GET-ADDRESS-INFO-STEP
(makeaddress np, H) ~b ((’I’LJD%H, 6) (getaddress (’I’L,p), H) ~b ((’I’L7p)7 H? 6)

Impure Reductions

ALLOC-STEP

¢ ¢ dom(H) LOAD-STEP
(ref v, H) ~p (6, H[L — v],€) (M, HIC — v]) ~p (v, H]E = v],€)
CAS-FAIL-STEP
STORE-STEP v # vy
(£ v, H[l — w]) ~p (), H[— v],€) (CAS £ vy va, H[l — v]) ~p (false, H[l — v],€)
CAS-SUCCESS-STEP FORK-STEP
(CAS £ vy v, H[l — v1]) ~ (true, H[l — va],€) (fork {e},H) ~ (), H, [e])

Head-Step (~)
Head-Step has the signature

(IP-Address x Expr) x State ~ (IP-Address x Ezpr) x State x List(IP-Address x Expr).

Head-Step is aware of the whole state and is defined using the socket-step and base-step. Importantly the
head-step allows for creation of new nodes through the Assign-New-Ip-Step rule. Note only the system node
G is able to create new nodes.

LoCAL-PURE-STEP

(e,H) ~p (€, H, e, ,ex])
((n; e),0) ~ ((n; €),0,[(n; e1), -+, (n; ex)])

LOCAL-STEP

_' _ (e, H) ~ (e’,?—i’,[el,'-- ,e;i])
<<n§ 6>, (H[’I’L = H]aS’M)) ~ (<n7 €/>, (H[n = /H/]vS’M)’ [<n7 61>7 B <n; ek>D

ASSIGN-NEW-IP-STEP

n#6& ngdom(H) n¢dom(S)
((&; start n e), (H,S, M)) ~ (& (), (H[n — 0],8[n — 0], M), [(n; €)])

SOCKET-STEP

(e, (S, M)~ (¢, (S, M)
((n;), (H, S[n = S}, M)) ~ ((m; €'}, (H, Sln = 8], M), €)

Prim-Step (—,)
Prim-Step has the signature

(IP-Address x Expr) x State —,, (IP-Address x Expr) x State x List(IP-Address x Expr).

Prim-step deals with the use of evaluation contexts as previously defined. The p in —, is a part of the name
of the relation and not a parameter.

EVALUATION-CONTEXT-STEP
(<n; 6>7J) ~ (<n’ €,>7 J/’ [<n’ €1>7 T 7<n; 6k>])
((n; Klel), o) =p ((n; K[e']), 0", [(ns e1), -+, (1 ex)])

System-Step (—;)
System-Step has the signature

State —, State.
The system-step models that the network can take a step, specifically it models that using UDP sockets,

messages can be dropped, reordered and duplicated. The s in —4 is a part of the name of the relation and
not a parameter.

MESSAGE-DELIVER

me M

(H,S[n + S[sh — ((Some mys, b), B)]], M) =4 (H,S[n — S[sh — ((Some magt, b), [m] 4 B)]], M\ {m})

MESSAGE-DUBLICATE MESSAGE-DROP

me M meM
(H, S, M) =, (H,8", M {m}) (H,8, M) =, (H,8, M\ {m})

Step (—)
Step has the signature

List(IP-Address x Expr) x State — List(IP-Address x Expr) x State.

Step is the top most relation and uses prim-step and system-step in its premises. It models that either the
network will take a step or a thread on a node will take a step from the pool of all threads. T; denotes a
thread pool and o refers to the whole state (H,S, M).

STEP-ATOMIC STEP-STATE
((n; €),0) =p ((n; €'),0",€) 050
(T1 + (5 €)] 4 T, 0) — (T1 4 [(n; €)] 4 T2 4+ €,07) (T,0) = (T,0")

2 Program Logic

2.1 Connectives and rules

Aneris has all the types and connectives of Iris and is extended with the following:

T,0 = ... | Handle | Socket | IP-Address | Message
t,P,Q,P = ... | Freelp(n) | FreePorts(n,P) | £ v | sh <5 s | sa ~ (R,T) | sa = @ | Unallocated(A)

Freelp(n) states that the node n (nodes are IP-addresses) is free and FreePorts(n,P) means that none of
the ports in the set P are active on node n. £ +% v and sh < s are respectively heap and socket mappings
local to node n. sa ~~ (R,T) means that the socket address sa has received the messages in the set R and
transmitted the messages in the set T'. sa = @ denotes that the socket address sa adheres to the protocol
& : Message — iProp and Unallocated(A) states that A is a set of socket addresses not adhering to any
protocol.

We present the rules of the Aneris program logic using Hoare triples denoted with the node n, on which
the expression e is executing, and mask &:

{P}e{v.Q}2 2 O(P — wpie {U. Q})

Aneris is an instantiation of Trillium (the Aneris weakest precondition is defined in terms of the Trillium
weakest precondition) which is built using the Iris base logic, hence for the rules of the base logic and
its derivations we refer to the Iris documentation. In addition, the usual structural rules relating weakest
preconditions have been proven for Aneris (file). The significant rules of Aneris are as follows:

HT-PURE ,)
(e,0) ~n (€, 0,¢€) {Pte {v.Q}¢ Hr-ALLOC HT-LOAD
{>P}ef{v.Q}2 {True} ref (v) {€. £ ¥ v}2 Bl v} 1 {v. £ v}g
HT-FORK
HT-STORE {P}e{w. Trueft HT-CAS-suc

bl whl+—v{l o}z {P} fork {e} {v.v=()}2 {>l ¥ v1} CAS £ v vo {v.v = True x £ & vo}

Hr-CAS-FAIL
w # vy HT-RAND
{>l ™ w}CAS £ vy vy {v.v = False x £ 5 w}? {0<ulrand u{r.r > 0ATr <u}z
ProTOCOL-SPLIT PORTS-SPLIT
A # Ay Unallocated(A4; U A5) P1 # P2 FreePorts(n, Py U Ps)
Unallocated(A;) * Unallocated(A5) FreePorts(n, P1) * FreePorts(n, Ps)
Hr-PrOTOCOL HT-START
egVal {Pxape le{v. Q2 {P * FreePorts(n, P)} e {w. True}t
{P x Unallocated({a})} e {v. @} {P % Freelp(n)} start n e {v.v = ()}§

HT-SET-BLOCKING
{>sh < (Some (n,p), b)}

settimeout sh 00
HT-NEWSOCKET

{True} socket () {sh.sh <% (None, true)}2 {v.v = () * sh < (Some (n,p), true)}?

https://arxiv.org/pdf/2109.07863.pdf
https://plv.mpi-sws.org/iris/appendix-4.0.pdf
https://github.com/logsem/aneris/blob/master/aneris/aneris_lang/program_logic/aneris_weakestpre.v

HT-SET-NON-BLOCKING

0<zA0<yN0<(z+y)) HT-SOCKETBIND

{>sh <% (Some (n,p), b)} {>FreePorts(n, {p}) * >sh < (None, b)}
settimeout shx y socketbind sh (n,p)
{v.v = () * sh <% (Some (n,p),false)}y {v.v = 0% sh < (Some (n,p), b)}2
HT-sEND HT-SEND-DUPLICATE
(n,p) = m.src x >sh < (Some m.src, b) * (n,p) =m.srcxm € T x> sh <> (Some m.src, b) x
>m.src ~ (R, T) x>m.dst = & x>P(m) >m.src ~ (R, T) x>m.dst = &
sendto sh m.str m.dst sendto sh m.str m.dst
v.v = |m.str| x sh < (Some m.src, b) x| ¢ v. v = |m.str| x sh <% (Some m.src, b) *| ¢
m.src ~ (R, T U {m}) m.src ~ (R, T)

HT-RECV-NON-BLOCKING

>sh <% (Some (n,p), False) x >(n,p) ~ (R, T) *
HT-RECV-BLOCKING

>sh < (Some (n,p), True) * >(n,p) ~ (R, T) * (n.p) = @
(n,p) = & receivefrom sh
receivefrom sh . (v = None * sh <> (Some (n,p), False) x 2
v. v = Some (m.str,m.src) * m.dst = (n,p) * |2 (n,p) ~ (R, T)) v
(¢ R* sh < (Some (n,p), True) x (Elm m.dst = (n,p) * v = Some (Mm.str, m.src) x
(n,p) ~ (RU{m},T) * (n,p) = @+ P(m)) ((m ¢ R* sh < (Some (n,p), False) «
V (m € Rxsh < (Some (n,p), True) * (n,p) ~ (RU{m},T) «d(m)) V (m € Rx*
(n,p) ~ (R, T))) sh <% (Some (n,p), False) * (n,p) ~ (R, T)))

2.2 Adequacy

Theorem (Adequacy): Let IPs be a set of ip-addresses not containing the system node &, A a set of socket
addresses A C (IP-Address x Port), e an expression, ® a first-order predicate on values, o = ([& — 0], [G —
0],0) the initial state of valid program execution ([(&; e)], o) =* ([(&; e})...(n),; et)], o). If

{Unallocated(A) * >|< (0,0) * >l< Freelp(n))} e {®(v)

acA nelPs

, then:
1. For alli, 1 <i<m, e, € Val or Reducible((n}; e.),c")

2. If the main thread €} is a value v then ®(v) holds at the level of the meta-logic.

10

	1 Language
	1.1 Abstract Syntax
	1.2 Operational Semantics

	2 Program Logic
	2.1 Connectives and rules
	2.2 Adequacy

