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Abstract—Assisting humans in collaborative tasks is a promis-
ing application for robots, however effective assistance remains
challenging. In this paper, we propose a method for providing
intuitive robotic assistance based on learning from human natural
limb coordination. To encode coupling between multiple-limb
motions, we use a novel interval type-2 (IT2) polynomial fuzzy
inference for modeling trajectory adaptation. The associated
polynomial coefficients are estimated using a modified recursive
least-square with a dynamic forgetting factor. We propose to
employ a Gaussian process to produce robust human motion
predictions, and thus address the uncertainty and measurement
noise of the system caused by interactive environments. Experi-
mental results on two types of interaction tasks demonstrate the
effectiveness of this approach, which achieves high accuracy in
predicting assistive limb motion and enables humans to perform
bimanual tasks using only one limb.

Index Terms—Human-robot collaboration, Bimanual manipu-
lation, IT2 polynomial fuzzy system, Robot learning, Gaussian
process.

I. INTRODUCTION

ROBOTS can assist humans and potentially alleviate their
workload during collaborative tasks, while the human

user typically contributes to the adaptation of trajectories and
efforts. Effective human-robot coordination is crucial to ensure
that the interaction is transparent to the user. A supervised
teleoperation scheme can allow the robot to follow human
commands [1]–[3]. Similarly, the robotic agent of [4] assists
in trajectory training for novices based on task-dependent rein-
forcement learning. From a cognitive perspective, robots could
be made more flexible and better interact with human users
by learning from human movements humans using logical
inference. Recent works have emphasized the importance of
the robot to generate commands based on the prediction of
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the user’s movements [5]–[7]. Different from transfer learning
[8]–[10], learning from demonstration [11]–[14] or human
posture prediction in physical human-robot interaction [15],
our idea is to generate human-robot assistive control based
on the coordination observed in bimanual control or in the
collaborative control between multiple humans.

Intrinsic nonlinearity and uncertainty of human motion pose
great challenges to developing the aforementioned coordi-
nation models. Transferring cognitive processes observed in
human brain to robotic applications may be used to generate
behaviours that are robust to changes in the environment
[16]. Different from neural networks [17] and regression
models [18] that rely on an arbitrary system structure, fuzzy
systems can represent nonlinear plants starting from human
know-how, which can reduce the computational complexity
and the number of required parameters [19]. Takagi-Sugeno
fuzzy model based (T-S FMB) systems realize nonlinear
approximation capability with arbitrary accuracy through a
weighted sum of linear subsystems [20]. As an effective
extension, the polynomial fuzzy model relaxes the restrictions
on the argument domain, allows the system matrices to contain
polynomials, and therefore can express nonlinearties well [21].
In terms of T-S and polynomial FMB (PFMB) identification,
most reported methods obtain fuzzy sets and fuzzy rules by
clustering methods and perform linear identification operations
with least-square-like under each rule [22], [23]. The above
algorithms leveraged the first order of input data and inter-
data relationship, i.e. the input data are decoupled. However,
the limb motion in each dimension contributes to the other
in a coupled way, thus the above approaches might miss the
intra-data relationship.

Moreover, they are not designed to deal with parameter
uncertainty in the membership function induced by human
motion, where measurement errors may result in vibrations
in the membership function and thereby degrade the modeling
accuracy. The interval type-2 (IT2) fuzzy set is a promising
tool to handle such uncertainties, captured within the foot-
print of uncertainty (FOU) formed by the upper and lower
membership functions (i.e., UMF and LMF). In [24], [25], the
UMF and LMF are constructed by adjusting the fuzzy partition
matrix exponent in terms of fuzzy c-means (FCM) clustering,
which is beneficial to address parameter uncertainty in system
identification. The FOU is obtained through the heuristic-based
and histogram-based methods by scaling the parameters in
predefined type-1 membership functions [26]. However, the
above methods for constructing IT2 fuzzy sets can only handle
the parameter uncertainty within a predefined range, which
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relies on the prior knowledge of system uncertainty.
To address the intrinsic nonlinearity and uncertainty of

human motion for human-robot coordination, this paper intro-
duces a Gaussian process (GP) based IT2 polynomial fuzzy
learning (GP-IT2PFL) algorithm, which enables humans to
perform the bimanual task only by one limb. The proposed
method aims to attain a trajectory-level shared control in tele-
operation by utilizing a learned policy that is anticipated by the
human operator. Based on the modified FCM clustering with
z-score normalization, the entire task is classified into fuzzy
sets yielding corresponding membership functions. Mapping
nonlinearity, parameter uncertainty, and measurement noise
can be handled effectively, where the FOU is constructed
by a Gaussian process. The innovations of the GP-IT2PFL
algorithm are as follows:

(1) Cross-polynomial and solo-polynomial matrices are in-
troduced to reflect the intrinsic coupling of input data with
different features and dimensions, enabling to represent the
intra- and inter-class features in human limbs coordination.

(2) The UMF and LMF are developed by the posterior distri-
bution predicted through a non-parametric Gaussian process,
which facilitates the capture of parameter perturbations due
to measurement noise and system uncertainty. Therefore, the
GP-IT2PFL algorithm is featured by data-driven and does not
depend on the identification structure.

The paper first describes an IT2 polynomial fuzzy learning
method with Gaussian process based membership function,
which aims at generating human-robot assistive control. Then
we tested the GP-IT2PFL algorithm in two human-robot
collaboration scenarios. First, a foot-robot coordination exper-
iment was carried out for grasping, picking and placing tasks.
We recorded hand-foot coordination while performing these
tasks. The GP-IT2PFL algorithm then was used to generate
hand-like trajectories for foot-robot coordination to assist foot
behaviors thus freeing up the hands for direct manipulation.
Second, we recorded the movements of two collaborating
humans in a human-robot shared telesurgery experiment, then
modeled one human as a robot partner, where the robot
trajectory was generated by the GP-IT2PFL algorithm that
assisted humans in a peg-transfer task. These applications
validate the developed algorithms and illustrate some of the
opportunities they open.

II. METHODS

A. Mathematical Notation

Z+[a, b] refers to the set of natural numbers from
a to b. For x = [x1, x2, . . . , xn] ∈ Rn and d ∈
Z+[1,+∞], Gd(x1) = [xd−1

1 , xd−2
1 , . . . , 1]T and Gd(x) =

[Gd(x1), Gd(x2), . . . , Gd(xn)] ∈ Rd×n. colni=1{xi} ∈ Rn is
the column vector whose xi is the ith entry. Vd(x) ∈ Rn×d

denotes the Vandermonde matrix of degree d − 1. “◦” is the
Hadamard product. For y = [y1, y2, . . . , yn] ∈ Rn, Pxy =∑n

i=1 Vd(x)Gd(yi) ∈ Rn is defined as cross-polynomial ma-
trix of a binary tuple x-y. Px =

∑n
i=1 V∗

d (x)Gd(xi) ∈ Rn is
the solo-polynomial matrix of x, in which V∗

d (x) is the Van-
demonde matrix with all elements of row i being 1. “∨” is the
product operator for cross-polynomial matrix Pxy and block

matrix M such that M∨Pxy =
∑n

i=1 Mi◦Vd(x)Gd(yi) ∈ Rn,
where Mi is the ith block entry of M . I is the identity matrix
of the appropriate dimension.

B. Working Principle

In order to provide trajectory adaptation tailored to a human
operator, we construct a unified IT2 polynomial fuzzy frame-
work by utilizing kinesthetic data (i.e., the respective position
and velocity) from two-limb coordination. This framework is
developed through four steps: (i) Firstly, we utilize an FCM
clustering approach to carry out task segmentation, whereby
each cluster denotes a distinct subtask; (ii) The resulting mem-
bership functions are generated through a Gaussian process,
although they are dependent on kinesthetic data and subject to
uncertainty arising from human motion; (iii) IT2 polynomial
fuzzy model parameters with respect to each subtask are
identified online by introducing cross-polynomial and solo-
polynomial matrices; and (iv) The adaptation trajectory is
produced through the integration of the membership grades
and the corresponding fuzzy model. Fig. 1 illustrates how
the GP-IT2PFL based inference engine can generate motion
adaptation for hand-foot coordination.

Remark 1: The GP-IT2PFL framework can be used to
learn human-robot collaboration from various types of multi-
limb coordination. In the hand-foot coordination experiment of
Section III the coordinated left-hand motion is learned to later
automatically accompany the foot motion. In the experiment
of Section IV, the two interfaces are controlled by two humans
who collaborate on a shared task. During the training phase,
the left-hand and foot motion commands are used to generate
hand motion commands of the two individuals. In the testing
phase, one robot is autonomously controlled by the GP-
IT2PFL algorithm to assist the movement of one human’s arm.
This is validated in the shared telesurgery experiment.

C. Algorithm Implementation

Denote the two-limb motion states at the training stage as
[xi, yi]

N
i=1, where the subscript i stands for the ith sample and

N the number of samples. It is noticed that the bimanual task
usually consists of multiple segments, where the coordination
of the two-limb trajectories in each segment is difficult to
describe with the same model. Therefore, we utilize the FCM
clustering method to perform task segmentation. Since the
potential multiple features are contained in [xi]

N
i=1, FCM

clustering [27] is modified to solve the following optimization
problem using z-score normalization

min
C

N∑
i=1

l∑
j=1

(ωj(xi))
χ

∥∥∥∥xi − µx

σx
− cj

∥∥∥∥2 (1)

subject to
l∑

j=1

ωj(xi) = 1 (2)

where l is the number of fuzzy rules extracted by subtractive
clustering [28]. µx and σx are the mean and standard deriva-
tion corresponding to [xi]

N
i=1, respectively. χ > 1 is the fuzzy
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Fig. 1. Diagram of GP-IT2PFL algorithm in two-limb coordination scenario. L1 and L2 refer to two natural limbs, with the left hand and foot serving as
illustrative examples. Coordination features between two-limb (i.e., L1 and L2) motions are modeled using natural limb coordination data in the training
phase. The resulting model will generate limb-like robot behavior (predicted L1 motion) to assist a human operator.

partition matrix exponent. C = {c1, . . . , cl} stands for the set
of fuzzy set centers. The membership function with respect to
the rule j is denoted by ωj(xi). Taking the Lagrange multiplier
λ ∈ R+ into the optimization problem (1), one can obtain

L =

N∑
i=1

l∑
j=1

(ωj(xi))
χ

∥∥∥∥xi − µx

σx
− cj

∥∥∥∥2 + λ(1−
l∑

j=1

ωj(xi)).

(3)
First-order partial derivatives with respect to λ and ωj(xi)

are given by

∇λ,ωj(xi)L = 0 ⇔

χ(ωj(xi))
χ−1

∥∥∥xi−µx

σx
− cj

∥∥∥2 = λ,∑l
j=1 ωj(xi) = 1.

(4)
Solving the above equation group yields the center of each

fuzzy set as:

cj =

∑N
i=1(ωj(xi))

χ(xi − µx)

σx

∑N
i=1(ωj(xi))χ

, (5)

and

ωj(xi) =


0 ifxi = µx + σxck

1∑l
k=1

(
∥ xi−µx

σx
−cj∥

∥ xi−µx
σx

−ck∥

) 2
χ−1

ifxi ̸= µx + σxck

1 ifxi = µx + σxcj
(6)

With the obtained fuzzy clusters (5) and the membership
functions (6), the inherent relationship between the hand-foot

coordination trajectories can be represented by the following
discrete-time polynomial fuzzy system for j ∈ Z+[1, l]

Rule j : IF Aj(zi) is Bj

THEN yi = Mj ∨ Pziai + Cj ∨ Pzivi +Kj ∨ Pzi
(7)

where zi = xi − µx/σx is the z-score normalized form of
xi. ai = vi+1 − vi/∆T , vi and vi+1 represent the time-
derivative of zi at ith and (i + 1)th sample, which can be
obtained through Unscented Kalman filter (UKF) to overcome
the high computational effort associated with the linearisation
of complex motion models. ∆T is the sample time, Aj(zi)
the premise variable, and Bj the jth fuzzy set whose centre
is cj . Mj , Cj , and Kj are the coefficient matrices of appro-
priate dimensions, respectively. Pziai

and Pzivi are the cross-
polynomial system matrices of {zi, ai} and {zi, vi}, in which
the degree of polynomial matrices is dj − 1. Pzi ∈ Rn is the
solo-polynomial matrix of zi.

Remark 2: Introducing the Vandermond matrix in cross-
polynomial and solo-polynomial system matrices enables (7)
to incorporate the contributions of each element within a
single input (zi) and of the individual elements of binary
input ({zi, ai} and {zi, vi}). Thus, solo-polynomial and cross-
polynomial system matrices facilitate the representation of
intra-class and inter-class relationships of [xi]

N
i=1, respectively,

exhibiting the intrinsic coupling of limb motion in terms of
features and dimensions.

Given ai = colnp=1{aip} ∈ Rn and zi = colnp=1{zip} ∈ Rn

for p ∈ Z+[1, n], we have a more general form of (7) using
the equivalent property of polynomial matrix

yji = Mj ⟨zi, ai⟩+ Cj ⟨zi, vi⟩+Kj ⟨zi, zi⟩ , (8)
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where the polynomial operator ⟨zi, αi⟩ for binary tuple with
different features is defined as: ⟨zi, αi⟩ = colnp=1{⟨zi, αip⟩}
with

⟨zi, αip⟩ =


∑dj

q=1 z
dj−q
i1 αq−1

ip∑dj

q=1 z
dj−q
i2 αq−1

ip
...∑dj

q=1 z
dj−q
in αq−1

ip

 ,∀αi = colnp=1{αip} ∈ Rn.

(9)
Regarding the input with same features, then the polynomial

operator becomes ⟨zi, zi⟩ = colnp=1{⟨zi, zip⟩} with

⟨zi, zip⟩ =



∑dj

q=1 z
dj−q
i1 zq−1

ip∑dj

q=1 z
dj−q
i2 zq−1

ip
...∑dj

q=1 z
dj−1
ip

...∑dj

q=1 z
dj−q
in zq−1

ip


, q ∈ Z+[1, dj ]. (10)

It is worth pointing out that the pth element of ⟨zi, zip⟩ is a
polynomial of zip and the remaining elements are polynomials
of zig and zip for p, g ∈ Z+[1, n] and g ̸= p. Let the
augmented variables be Zi = [⟨zi, ai⟩ , ⟨zi, vi⟩ , ⟨zi, zi⟩]T and
Hj

i = [Mj , Cj ,Kj ], a more compact form of (8) can be
derived by

yji =Hj
i Zi. (11)

The polynomial coefficients in (11) for the jth rule can
be estimated using the modified recursive least-square with
dynamic forgetting factor (RLS-DFF):

Ĥj
i+1 = Ĥj

i + ỹji+1

(PiZi+1)
T

βi+1 + (Zi+1)TPiZi+1
, (12)

Pi+1 =
1

βi+1

(
Pi −

PiZi+1(Zi+1)
TPi

βi+1 + (Zi+1)TPiZi+1

)
, (13)

βi+1 = β0 + (1− β0)
(
1− tanh

(
β∗(ỹji+1)

Tỹji+1

))
, (14)

where ỹji+1 = yji+1 − Ĥj
i Zi+1 is the innovation vector.

βi ∈ (0, 1] is the time-varying forgetting factor, which dynam-
ically moderates the effect of new data on parameter estimates
according to the innovation. β0 ∈ (0, 1] is a constant scalar
initially defined for the forgetting factor. β∗ ∈ R+ is a tuning
parameter.

Considering the measurement noise in zi and the system
uncertainty, it is difficult to obtain the exact value of the
associated membership grade, which is prone to enter the FOU
formed by the upper and lower membership functions. In order
to capture the uncertainty in the membership function, we
model it as a Gaussian process with a squared exponential
kernel function

ωj(z) ∼ GP(µω(z), κ(z, z
′)) (15)

where µω(z) and κ(z, z′) are the prior mean function (6) and
the kernel function. Without loss of generality, each entry of
the squared exponential kernel function is calculated as

[κ(z, z′)]pι = σ2
κ exp

(
−∥zp − z′ι∥

2

2η2κ

)
(16)

where z ∈ Rn×Nz , z′ ∈ Rn×Nz′ , p ∈ Z+[1, Nz] and
ι ∈ Z+[1, Nz′ ]. σκ and ηκ are the optimal hyperparam-
eters obtained by maximizing marginal log-likelihood. Let
[z∗ν , ωj(z

∗
ν)]

m
ν=1(m < N) be the random sample (observations)

from the data set [zi, ωj(zi)]
N
i=1, the observations, therefore,

follow a joint Gaussian distribution with the rest data (predic-
tions)[

Ω∗
j

ωj(zi)

]
∼ GP

([
µΩ∗

j

µω(zi)

]
,

[
κ(Z∗, Z∗) + σ2

ϵ I κ(Z∗, zi)
κ(Z∗, zi)

T κ(zi, zi)

])
,

(17)
in which Ω∗

j = colmν=1{ωj(z
∗
ν)}, Z∗ = [z∗1 , z

∗
2 , . . . , z

∗
m], i ̸= ν.

The observation noise considered in (17) is subject to the
Gaussian distribution N (0, σ2

ϵ ). Thus, the posterior member-
ship function can be deduced according to marginalization and
conditional distribution [29]

ωj(zi) ∼ GP
(
µ̂ω(zi), σ

2
ω

)
(18)

where µ̂ω(zi) = µω(zi) + κ(Z∗, zi)
T(κ(Z∗, Z∗) +

σ2
ϵ I)

−1(Ω∗
j − µΩ∗

j
) and σω = (κ(zi, zi) −

κ(Z∗, zi)
T(κ(Z∗, Z∗) + σ2

ϵ I)
−1κ(Z∗, zi))

1
2 . Let α be

the confidence coefficient, the FOU induced by system
uncertainty and measurement noise is limited by

ωj(zi) = µ̂ω(zi)− ασω,

ω̄j(zi) = µ̂ω(zi) + ασω,
(19)

in which ωj(zi) and ω̄j(zi) denote the UMF and LMF for the
corresponding rule such that 0 ≤ ωj(zi) ≤ ω̄j(zi) ≤ 1. In this
regard, the firing strength of the rule j is within the following
interval set:

Wj(zi) = [ωj(zi), ω̄j(zi)], j ∈ Z+[1, l], (20)

which leads to an interval set [yj
i
, ȳji ], j ∈ Z+[1, l] by

substituting (20) into (7). The upper and lower bounds of yi
are processed in ascending order as {y∗j

i
} and {ȳ∗ji }, then

the ordinal number of the associated membership function is
adjusted to match the sorted output. The center-of-sets type-
reduction method [30] is used to convert the interval set into
crisp output:

yiL = min
ξ∈Z+[1,l−1]

∑ξ
∗j=1 ω̄∗j(zi)y

∗j
i

+
∑l

∗j=ξ+1 ω∗j(zi)y
∗j
i∑ξ

∗j=1 ω̄∗j(zi) +
∑l

∗j=ξ+1 ω∗j(zi)

=

∑L
∗j=1 ω̄∗j(zi)y

∗j
i

+
∑l

∗j=L+1 ω∗j(zi)y
∗j
i∑L

∗j=1 ω̄∗j(zi) +
∑l

∗j=L+1 ω∗j(zi)
,

(21)

yiR = max
ξ∈Z+[1,l−1]

∑ξ
∗j=1 ω∗j(zi)ȳ

∗j
i +

∑l
∗j=ξ+1 ω̄∗j(zi)ȳ

∗j
i∑ξ

∗j=1 ω∗j(zi) +
∑l

∗j=ξ+1 ω̄∗j(zi)

=

∑R
∗j=1 ω∗j(zi)ȳ

∗j
i +

∑l
∗j=R+1 ω̄∗j(zi)ȳ

∗j
i∑R

∗j=1 ω∗j(zi) +
∑l

∗j=R+1 ω̄∗j(zi)
,

(22)
where L and R are the switching points obtained by
Karnik–Mendel (KM) or EKM algorithm [31], [32] such that
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yL
i
≤ yiL ≤ yL+1

i
and ȳRi ≤ yiR ≤ ȳR+1

i . Hence, the crisp
output of the IT2 PFMB system can be calculated as:

yi =
yiL + yiR

2
, (23)

which therefore completes the entire modeling procedure that
is summarized in the Algorithm 1.

Algorithm 1: Data-Driven GP-IT2PFL Algorithm

Data: Input-Output pair data [xi, yi]
N
i=1

Result: IT2 polynomial fuzzy system and identified
clusters

1 Z-Score normalization for the collected xi

2 Calculate the cluster centres and prior membership
functions as (5) and (6)

3 while i ≤ N do
4 Conduct state augmentation as Zi using polynomial

operator
5 Update the parameter matrices as (12)-(14)
6 Construct the Gaussian process for membership

function as (15)
7 Calculate the UMF and LMF as (19)
8 Calculate the IT2 polynomial fuzzy output as (23)
9 end

Remark 3: The first and second-order derivatives of the
input data are also included in the observation matrix (8),
where the adopted UKF technique facilitates noise attenuation.
Additionally, the implementation of z-score normalization as
described in (1) assists in mitigating the detrimental impact of
input noise on the clustering outcomes. Therefore, it facilitates
the expression of the two-limb coordination trajectories. It en-
sures that the polynomial-operator-based modeling approach
is more effective to extract the nonlinear features of MIMO
mapping, compared to traditional methods that treat the input
data as independent [25], [33]–[35].

Remark 4: In contrast to [35], [36] which consider parame-
ter corrections to build IT2 fuzzy sets, a non-parametric Gaus-
sian process is utilised to model uncertainty in the membership
function directly. The resulting FOU benefits from capturing
the parameter perturbations and the black-box characteristics
due to measurement noise and system uncertainty. It is worth
noting that the membership function in (6) is utilized as the
prior mean function µω(zi) when reconstructing the FOU in
terms of uncertainty. The inverse of the covariance matrix
(κ(Z∗, Z∗) + σ2

ϵ I) can be effectively numerically calculated
through Cholesky decomposition.

III. COORDINATED MANIPULATION

We have carried out two experiments to check whether the
proposed algorithm can capture coordination patterns between
human limbs. In this section, we first test the hand-foot
coordination of a solo operator in three bimanual picking and
placing tasks.

A. Experiments

This experiment was conducted at the Institute of Percep-
tion, Action, and Behaviour at Edinburgh University. The
bimanual hand-foot coordination system is composed of two
torque-controlled, 7-DoF Franka Emika robotic manipulators,
which are both equipped with a flat 3D-printed contact plate
mounted on the end-effector. The bimanual impedance con-
troller [37] is implemented in velocity and offset modes to
make full use of the robot workspace while ensuring safe
interaction with the environment. Real-time module calcu-
lation is performed on the basis of the rigid-body dynamic
library Pinocchio, where EiQuadProg++ is used to solve
quadratic programs for inverse kinematics. The operator can
provide 6-DoF (position and orientation) commands via the
foot interface and Sigma-7 haptic device (Force Dimension
Inc., Switzerland), where the foot interface is a parallel-serial-
structure [38] using multiple force sensors to collect the foot
position and force information in four DoFs. The gravity
compensations for both hand and foot interfaces are set to
assist human manipulation and eliminate human fatigue.

We carry out three typical tasks based on the hand-foot
coordination system, namely (1) picking and placing a de-
formable object (Fig. 2a-c); (2) picking and placing a rigid
block (Fig. 2d-f); and (3) grasping a mobile object on the
treadmill (Fig. 2g-i). The object block in tasks 2 and 3 has
a rectangular shape (12 × 16 × 14 cm), weight 0.8 kg, and is
fitted with interconnecting industrial fittings (Anderson Power
Mid-Power Spec-Pak). Task 1 involves capturing the softball
located above the block and then moving it to the basin in the
red area. Notice that the block is removed after the grasping
action is completed to avoid collisions. In task 2, the block
located in the red area on the right side is first transferred
to the red area on the left side and then placed back in its
original position on the right side. With respect to task 3, the
dual-arm robot’s objective is to grab the block moving on the
treadmill and place it in the red rectangle. The three tasks are
progressively more difficult and require higher levels of hand-
foot coordination, ranging from static to dynamic grasping.

At the training stage, the aforementioned three tasks are
performed by the left hand and foot corresponding to the
left and right robotic manipulators, respectively, whose spatial
motion positions on the x, y, and z axis are fed into the
proposed approach as inputs. Subsequently, the left manip-
ulator moves according to the commands generated by the
proposed algorithm at the test stage, while the right robot arm
is controlled by the foot interface. The parameters are set as
l = 4, χ = 2, α = 1.96, N = 1000, σϵ = 0.1, σκ = 0.6009,
ηκ = 0.0053, and ∆T = 0.01s.

B. Results

To examine the performance of the GP-IT2PFL approach,
we evaluate the estimation performance by root-mean-square
error:

RMSE =

√√√√ 1

N

N∑
i=1

∥yi − ŷi∥2, (24)
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Fig. 2. Hand-foot coordinated manipulation tasks. Side views of the (a) initial, (b) grasping, and (c) placing stages of task 1; Demonstration in the operator
views of the initial grasping (d), intermediate positioning (e), and final placing (f) stages in task 2; Demonstration in the operator views of the initial (g),
grasping (h), and placing (i) stages of task 3.

where yi and ŷi represent the actual and the estimated end-
effector position, respectively. We construct the neural network
[39] and Gaussian process [40] for three tasks in bimanual
hand-foot coordination for comparison, where the dataset is
identical with the GP-IT2PFL approach, and the number of
samples is 5000 (training: 4000, test: 1000) based on an
empirical ratio in [41]. In particular, the neural network (NN)
is composed of 2 hidden layers with 40 and 20 neurons with
hyperbolic tangent and rectified linear unit (ReLU) activation
functions, the final output layer is with log-sigmoid activation
function, where the parameters of the NN are initialized by
[42]. Table I presents the comparative results in tasks 1-3,
where each value represents the average of the x, y, and z-axis
trajectory estimation errors corresponding to different meth-
ods. The estimated membership functions subject to UMF and
LMF are depicted in Fig. 3, where the practical membership

functions subject to measurement errors and uncertainties are
effectively captured by the UMF and LMF. We see that the
proposed algorithm enables the human to perform bimanual
tasks only by foot interface independent of the intervention of
two hands.

TABLE I
THE AVERAGE RMSES OF x, y, AND z-AXIS TRAJECTORIES FOR

HAND-FOOT COORDINATED MANIPULATION.

Task Neural Network GP GP-IT2PFL

Task 1 0.5808 0.5824 0.074
Task 2 0.2337 0.2254 0.053
Task 3 0.5511 0.5556 0.023
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Fig. 3. IT2 membership functions developed through Gaussian process
(18) in task 1 of hand-foot coordination manipulation. (a)-(d) illustrate
the membership grade predictions corresponding to B1, B2, B3 and B4,
respectively. The solid black lines between the yellow area represent the UMF
and LMF, respectively.

IV. SHARED TELESURGERY

To further assess the performance of the proposed method,
we carried out a second experiment on human-human biman-
ual surgical manipulation using the Da Vinci surgical robotic
system at Imperial’s Hamlyn Center for Robotic Surgery.

A. Experiments

The experimental setup is shown in Fig. 4. The local console
(Fig. 4a) consists of two Omega-7 haptic interfaces (Force
Dimension Inc., Switzerland) and a monitor providing visual
feedback of the patient side. We assume that the operator
can execute the task using top-down visual feedback as in
typical Laparoscopy. Two patient-side manipulators (PSM) of
Da Vinci robotic system (Intuitive Surgical, USA) are used
as remote robotic arms as shown in Fig. 4b. Regulated by the
Omega-7 controller, the hand-driven handle motion is directly
mapped to three-dimensional translations and one roll rotation
of PSM’s end-effector.

The standard training task peg transfer from Fundamentals
of Laparoscopic Surgery (FLS) [43] is selected as the testing
task for human-robot collaboration. This task can simulate the
surgical scenario that transfers the detached gallstones to the
collection tool from the primary surgeon to the assistant. In our
case, the human assistant is replaced by an automatic robotic
partner to facilitate the surgeon to complete the task. The
training data was collected from human-human collaboration
and was tested in human-robot collaboration.

We collect the trajectory data from the Omega-7 end-
effector in human-human cooperation. As shown in Fig. 5a,
the PSM gripper follows the commands from the end-effector
of the local interface, where the left PSM gripper is controlled
by the main operator and the right one by an assistant. The
main operator navigates the left gripper onto the initial peg,

grabs the orange block, lifts it, and moves it to the assistant-
controlled gripper on the right for the handover. Then, the
right-hand gripper moves the block to the target peg and
finally releases it (see supplementary video 1), as demonstrated
in Fig. 5b. The manipulation data of the main operator (left
gripper), including spatial motion positions on x, y, z axis
and the open angle of the gripper θ, are fed as inputs of the
proposed algorithm, while the assistive operator (right gripper)
motion data are the outputs. As the surgical robot system
lacks force/torque sensors, we have used the open angle of
the gripper to correspond to the grasping force.

B. Results

Fig. 6a shows the real right-hand trajectories and the estima-
tion ones in human-human cooperation, where the assistive op-
erator movement is effectively represented with minimal error.
The RMSEs of the estimation errors in x, y and z directions
are 4.2036×10−4m, 5.3761×10−4m and 5.3254×10−4m, re-
spectively. Similarly, Fig. 6b depicts the estimation profiles of
right-hand gripper trajectories in human-human cooperation.
The main operator moves the left-hand gripper to the initial
peg at the beginning. Upon arrival, the left-hand gripper opens
and grasps the block in 8.3s, then transfers the block to the
right-hand gripper, as shown in Fig. 6b. It can be found that
the right-hand gripper increases its opening angle to take over
the object within 7.47s. The estimated angle of the right-hand
gripper is close to the real angle in terms of time duration
(0.93s difference) and degree (RMSE = 0.7571◦). The opening
angle of the right-hand gripper and left-hand gripper in Fig. 6
are respectively denoted by positive and negative values of θ.

Four trained mappings (three for translations and one for
gripper angle) are implemented for the right-hand robotic
manipulator of the surgical robotic system. It acts as an
assistive robot cooperating with the human operator according
to the operator’s real-time manipulation. Figs. 6c-d demon-
strate the trained assistive robot motion at the test stage
(human-robot collaboration), which recognizes human motion
and cooperates accordingly. For example, the assistive robot
gripper waits for the operator’s action within an initial period
of 2.93s. When the assistive robot recognizes that the main
operator has grasped the object and is moving toward it, it
adjusts the opening angle of the gripper to hand over the
object, which takes approximately 19.11s. After the object
is successfully transferred and the human operator releases
the grasping, the assistive robot holds the object and quickly
moves to the target peg in 21.37s (see supplementary video 2).
With the involvement of the assistive robot, the main operator
completes the entire task in 27s.

V. DISCUSSION

This paper proposed a new GP-IT2PFL framework to
facilitate robot motion learning with tailored assistance in
human-robot cooperation, which enables humans to perform
bimanual tasks with one limb. This algorithm solved the
coupling issue between intra- and inter-input data in two-limb
coordination using the polynomial operator and minimized

https://www.youtube.com/watch?v=8tl6RrJfcl8
https://www.youtube.com/watch?v=F18CbB16W3w
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Fig. 4. Experimental setup for robotic surgery: Da Vinci system for laparoscopic surgery with Omega-7 hand controllers. (a) The local console includes dual
Omega-7 hand controllers and one monitor to provide visual feedback from the remote side. (b) Da Vinci surgical robotic system with dual manipulators and
one camera at the remote side.

Fig. 5. Cooperative peg-transfer task. (a) The human operator controls the left side tool to grasp the block object on the initial peg and passes it to the
robot-controlled tool. (b) The robot-controlled tool takes over the transfer block and moves it to the target peg.

the system uncertainty and measurement noise by Gaussian-
process-based upper and lower membership functions. The
proposed approach was tested in two applications: solo two-
limb coordination and dyad collaboration. The successful im-
plementation requires the same subject to perform a consistent
and stable motion strategy under the same initial conditions
during training and test phases, where the parameters in the
associated fuzzy model are tailored to this subject.

Fig. 3 demonstrates that the system uncertainty can be
captured by the FOU that is constructed by UMF and LMF.
It indicates that any system whose membership functions are
within the GP-based FOU can be represented by the GP-
IT2PFL approach. Different from traditional T-S fuzzy algo-
rithms [33], [34], [41], system uncertainty and measurement
noise can be handled simultaneously by GP-based UMF and
LMF. Therefore, the GP-IT2PFL algorithm can represent a
wider range of multiple-limb coordination behaviors compared
with existing approaches.

As shown in Fig. 3, the estimation output is regarded as
a weighted sum of four polynomial models, whose weights

are embodied by the data-driven membership function (6). In
addition, since the intrinsic coupling effects between intra- and
inter-input data of x, y, and z-axis trajectories are effectively
represented by the polynomial operator, the GP-IT2PFL algo-
rithm shows the highest fitting accuracy in Table I.

The experimental results on manipulation with hand-foot
control demonstrate the potential of the proposed method for
multi-limb coordination tasks. Foot interfaces can free the
operator’s hands and enable them carrying out tasks with three
or four instruments using both their hands and feet. Using a
similar approach, recent studies showed promising results of
using the feet to control an industrial robot [44], [45]. We have
verified that movements controlled by a foot in coordination
with one hand can be learned to develop an autonomous
behavior or augment one-hand control of a robot, which is a
first step towards using coordinated movements learned with
our method. These results indicate that we can now explore
a similar approach for enhancing the movements of both
hands, towards enabling an operator to perform tri- or quad-
manipulation by the hands, with some robot arms controlled
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Fig. 6. Experimental results from (a-b) human-human training to (c-d) human-robot test. Trajectory learning from the main operator and assistive operator:
(a) Cartesian trajectories in human-human telesurgery (x, y and z denote the right-hand movement along the associated direction. The dashed lines are the
estimate with respect to the associated direction using the proposed method). (b) Gripper grasping θ: the dashed line stands for the estimate of gripper
movement. θLH and θRH represent the angle at which the left and right-hand grippers open. Trajectory learning from the human operator and assistive robot:
(c) Cartesian trajectories in human-robot telesurgery (x, y, and z denote the assistive robot movement along the associated direction). (d) Assistive gripper
grasping: θRP is the angle of the assistive robot gripper.

directly with the hands and the other through coordinated
motion learned from previous interactions.

Fig. 6 shows that similar behaviors are generated with the
GP-IT2PFL algorithm (Fig. 6 c,d), compared with the trajecto-
ries and gripper movement of the assistive operator (Fig. 6 a,b).
Furthermore, the experiment results on the Da Vinci surgical
system have shown that the assistive robot can reduce the
intensity of the surgeon’s manipulation effectively by imple-
menting the proposed method, which facilitates assisting and
adapting to surgeon behavior autonomously. Trained by the
trajectories and gripper movements of human-human collab-
oration, intuitive human-robot cooperation was demonstrated
in a peg-transfer task with self-determining movements from
the assistive robot.

With the assistive robot, the surgeon can perform the peg-
transfer task alone thus avoiding potential communication
errors with an assistant. Moreover, Fig. 6 demonstrates that
the proposed GP-IT2PFL approach allows for modeling the
coordinated gripper movements. Hence, the assistive robot
driven by the proposed method embodies the capability to
assist humans with telesurgery tasks in the force-sensor-free
scenario. It sheds light on the fact that the proposed algorithm

is effective in modeling human motion adaptation.
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