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Automated planning is a major topic of research in artificial intelligence, and enjoys a long and distinguished history.
The classical paradigm assumes a distinguished initial state, comprised of a set of facts, and is defined over a set of
actions which change that state in one way or another. Planning in many real-world settings, however, is much more
involved: an agent’s knowledge is almost never simply a set of facts that are true, and actions that the agent intends
to execute never operate the way they are supposed to. Thus, probabilistic planning attempts to incorporate stochas-
tic models directly into the planning process. In this article, we briefly report on probabilistic planning through the
lens of probabilistic (logic) programming: a programming paradigm that aims to ease the specification of structured
probability distributions using first-order logic. In particular, we provide an overview of the features of two systems,
HYPE and ALLEGRO, which emphasise different strengths of probabilistic programming that are particularly useful
for complex modelling issues raised in probabilistic planning. Among other things, with these systems, one can in-
stantiate planning problems with growing and shrinking state spaces, discrete and continuous probability distributions,
and non-unique prior distributions in a first-order setting.

1 Introduction

Automated planning is a major topic of research in artificial intelligence, and enjoys a long and distinguished history
[18]. The classical paradigm assumes a distinguished initial state, comprised of a set of facts, and is defined over a set
of actions which change that state in one way or another. Actions are further characterised in terms of their applicability
conditions, that is, things that must be true for the agent to be able to execute it, and effects, which procedurally amounts
to adding new facts to a state while removing others. The scientific agenda is then to design algorithms that synthesise a
sequence of actions that takes the agent from an initial state to a desired goal state.

From the early days, automated planning was motivated by robotics applications. But it was observed that the real
world – or more precisely, the robot’s knowledge about the world – is almost never simply a set of facts that are true,
and actions that the agent intends to execute never operate the way they are supposed to. One way to make sense of
this complication is to separate the “high-level reasoning,” in our case the planner’s search space, from the low-level
sensor-motor details. On the positive side, such a move allows the plan representation to be finite, discrete and simple.
On the negative side, significant expert knowledge has to go into materialising this separation of concerns, possibly at
the loss of clarity on the behaviour of the system as a whole.

Incidentally, by testing the robot’s effectors repeatedly in a controlled environment, one can approximate the uncer-
tain effects of an action in terms of a probability distribution. Similarly, based on minimalistic assumptions about the
environment, expressed as a probabilistic prior, by repeated sampling, the robot can update its prior to converge on a
reasonable posterior that approximates the environment [60]. To that end, probabilistic planning attempts to incorporate
such models directly into the planning process. There are to-date numerous languages and algorithmic frameworks for
probabilistic planning, e.g., [15, 9, 27, 46].

In this article, we briefly report on probabilistic planning through the lens of probabilistic (logic) programming
[20]. Probabilistic logic programming is a programming paradigm that aims to ease the specification of structured
probability distributions using first-order logic. In general, probabilistic programming languages developed so as to
enable modularity and re-use in probabilistic machine learning applications. Their atomic building blocks incorporate
stochastic primitives, and the formal representation also allows for compositionality. Here, we specifically provide an
overview of the features of two kinds of systems, both of which have their roots in logic programming:

• HYPE [45]: a planning framework based on distributional clauses [22]; and

• ALLEGRO [3]: a high-level control programming framework that extends GOLOG [53].
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These two systems emphasise different strengths of probabilistic programming, which we think are particularly
useful for complex modelling issues raised in probabilistic planning. HYPE can easily describe growing and shrinking
state spaces owing to uncertainty about the existence of objects, and thus is closely related to BLOG models [36, 58].
Since HYPE is an extension of PROBLOG [51], it stands to benefit from a wide range of applications and machine
learning models explored with PROBLOG.1 The dynamical aspects of the domain are instantiated by reifying time as an
argument in the predicates, and so it is perhaps most appropriate for finite horizon planning problems.

ALLEGRO treats actions as first-class citizens and is built on a rich model of dynamics and subjective probabilities,
which allows it to handle context-sensitive effect axioms, and non-unique probability measures placed on first-order for-
mulas. GOLOG has also been widely used for a range of applications that apply structured knowledge (e.g., ontologies)
in dynamical settings [30], and ALLEGRO stands to inherit these developments. GOLOG has also been shown as a way
to structure search in large plan spaces [2]. Finally, since there are constructs for iteration and loops, such programs are
most appropriate for modelling non-terminating behaviour [13].

In what follows, we describe the essential formal and algorithmic contributions of these systems before concluding
with open computational issues. Clearly, these two systems are not the only languages with elements of logic and
probability for planning: relational MDPs [56], first-order POMDPs [57], and to a much lesser extent dynamic Bayesian
networks over action models [55] are part of the larger family. However, these systems are built on powerful and general
logical foundations: HYPE is an extension of PROBLOG, and so allows the specification of probabilistic assertions with
logic programming. ALLEGRO, on the other hand, is an extension of GOLOG, which is a dialect of first-order logic
with some second-order logical features. Thus, they are indicative of what is possible when probabilities and first-order
logic are unified in a dynamic setting. This sets our agenda apart from proposals such as BLOG and its dynamic version
too [37, 58], which support some first-order features but do not permit arbitrary logical connectives and quantification.

To prepare for our discussion, let us briefly reflect on why probabilistic logic programming is a powerful paradigm.

2 Why probabilistic programming + logic?

Probabilistic programming is a growing field that involves representing probabilistic models as executable code [21, 33,
26, 32, 47, 38, 19]. This approach has enabled researchers to formalize, automate, and scale up many aspects of modeling
and inference, making them more accessible to a broader audience of developers and domain experts. By integrating
modeling and inference approaches from multiple domains, this technology has also led to the development of new
programmable AI systems. Probabilistic programming is widely used for formulating and solving problems in statistics
and data analysis. Stochastic programming languages, such as STAN and BUGS [29], provide a formal language that
gives simple, uniform, and reusable descriptions of a wide range of models, supporting generic inference techniques.
Pyro, a probabilistic programming language written in Python and supported by PyTorch, enables flexible and expressive
deep probabilistic modeling, unifying deep learning and Bayesian modeling [7].

Much of the mainstream discussion falls into two camps. First, for "conventional" programming languages such as
Python, the effort centers around support for wrapping neural computations in program code, as in the case of Pyro (and
STAN to some extent) [8]. On the other extreme, support for functional programming and higher-order programming
languages, and how a denotational semantics should be assigned to operational constructs in such languages, remains a
challenge, especially constructs such as "sampling" from a, say, normal distribution [59]. The correct sampling strategy
for programmatic code, especially with loops and higher-order functions, and how these samples converge for robust
inference, is also a challenging problem [32].

Amidst this, an interesting entrant is probabilistic logic programming (PLP) [23, 31, 54, 40, 41, 42, 48, 50]. This con-
cept involves the integration of probabilities into the rules of a logic program. (Although we largely focus on PROBLOG
here, there’s a history of interesting proposals for combining logic programming and probability, as hinted above; see
[14].) Initially, the idea was to generate all possible proofs for each random choice and determine the probabilities of
these "worlds" [52]. However, recent advancements have led to the development of encoding strategies of programs to
the task of model counting [17]. Interestingly, this problem task can be applied to many other representations, including
factor graphs, relational Bayesian networks, and Markov logic networks [61]. All this instantiates an incredibly powerful
pipeline that offers exact inference.

1dtai.cs.kuleuven.be/problog



Vaishak Belle 3

In our view, four key features set probabilistic logic programming apart from other probabilistic programming tech-
niques. Firstly, probabilistic logic programming exhibits elaboration tolerance, which means that it can easily incorpo-
rate new knowledge without having to change the entire program. Secondly, it allows for the incorporation of relational
knowledge, which enables modeling of random objects and their properties. Thirdly, it can handle constraints, which
makes it useful for solving optimization problems. Lastly, it supports modular non-probabilistic computation, which
makes it easier to develop larger and more complex systems.

We do not mean to suggest that PLPs alleviates the problems or the representational challenges of classical proba-
bilistic programs (PPs). To a large extent, the foci and applications of classical probabilistic programming are orthogonal
to those of probabilistic logic programming (PLP). While it is possible to reconstruct some simple examples from prob-
abilistic programs to PLPs, a deeper study is clearly needed. Additionally, the integration of functional artifacts and
higher-order programming in the context of PLPs requires further study, despite existing work on integrating logic pro-
gramming and higher-order programming [39].

Let us make these aforementioned features concrete using a few examples. Recall that declarative programming is a
programming paradigm that expresses the logic of a computation without explicitly defining how the individual steps are
to be executed. We describe the “what” of the program rather than the “how to accomplish it”. What might this paradigm
mean in a probabilistic context? We take this to mean that (a) the instructions and logic for decision making are fixed,
but (b) the probabilities, which are learned from data anyway, can be updated without needing to manipulate the logical
instructions. Additionally, (c) computing with these probabilities can be done without requiring input from the user. As
we will show, a language like PROBLOG (but also other probabilistic logical languages) can accomplish this easily.

Suppose there is an infectious disease spreading through a population. If two people are in regular contact and one
is infected, there is a 0.6 probability that the other person will also become infected. The goal is to predict the spread of
the disease given a set of initially infected people and a graph of connections between individuals in the population. We
might use the following program:

person(a).
person(b).
0.1::inf(X) :- person(X).
0.1::contact(X,Y) :- person(X), person(Y).
0.6::inf(X) :- contact(X, Y), inf(Y).
query(inf(_)).
This statement indicates that a person chosen at random has a 0.1 probability of being infected. Two people chosen

at random have a 0.1 probability of being in contact with each other. Finally, given a randomly chosen infected person
and another person in contact with that infected person, there is a 0.6 probability that the second person will become
infected.

It is clear that if we need to update the probabilities or make any of them deterministic, the logical rules are unaf-
fected. We would only need to update the numerical values. For example, to make the contagion deterministic, we may
replace the fifth line above with:

inf(X) :- contact(X, Y), inf(Y).
Indeed, McCarthy’s notion of elaboration tolerance was defined as a property of a formalism that makes it convenient

to modify a set of facts to accommodate new phenomena or changed circumstances. This means that the formalism can
easily incorporate new knowledge without having to change the entire program. He envisoned that there are different
kinds of elaboration, with the simplest being the addition of new formulas, which he called "additive elaborations."
Additionally, a second type of elaboration is changing the values of parameters. Although he ultimately explored these
notions using a different set of examples, it is easy to see that in a very concrete sense, elaboration tolerance is seen
to be supported in PLPs. Updating the probabilities or even making probabilistic assertions deterministic is easily
accomplished, as seen below (example adapted from [34, 35]):

0.2::inf(X) :- person(X).
0.2::contact(X,Y) :- person(X), person(Y).
inf(X) :- contact(X, Y), inf(Y).
In this case, the priors on infection and contact were increased to 0.2 - likely due to new data - and the spread of

infection among people in contact with each other is categorical.
If we are now to incorporate multiple sources of infection (so-called inhibition effects [34]):
0.1::inf(X) :- person(X).
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0.1::contact(X,Y) :- person(X), person(Y).
0.1::groundzero(X) :- person(X).
0.6::inf(X) :- contact(X, Y), inf(Y).
0.2::inf(X) :- groundzero(X).
We need then a noisy-or structure where the parents independently influence a joint effect. All of this is accomplished

without manipulating the remaining rules, and the computing of the probabilities is completely hidden from the user.
Finally, we can further contextualize influence, by allowing for, say, a distinguished group of vulnerable people,

while not adjusting the weights or the rules previously constructed.
0.1::inf(X) :- person(X).
0.1::contact(X,Y) :- person(X), person(Y).
0.1::groundzero(X) :- person(X).
0.1::susceptible(X) :- person(X).
0.6::inf(X) :- contact(X, Y), inf(Y), \+susceptible(X).
0.8::inf(X) :- contact(X, Y), inf(Y), susceptible(X).
0.2::inf(X) :- groundzero(X).
The program now additionally says that a vulnerable person has an increased chance of catching the infection.
It is worth noting that such languages could serve as an interface for other AI systems, including natural language

interactions as well as deep learning models. For example, in [16], questions of the following sort can be parsed into
PROBLOG programs.

You roll a fair six-sided die twice. What is the probability that the first roll shows a five and the second roll shows a
six?

Here, the bold text is clearly a probabilistic model, and the rest a query. Correspondingly, the text is parsed and
tokenized into a PROBLOG program of the following sort (with some additional syntax for probability and combinatorics
constructs, including taking with replacement):

group(die).size(die, 6).
given(exactly(1, die, one)).
...
given(exactly(1, die, six)).
take_wr(die, rolls, 2).
probability(and(nth(1, rolls, five), nth(2, rolls, six))).
property(outcome(0), [one, two, three, four, five, six]).
Running this program then returns the answer to the question.
Conversely, in [31, 24], logical reasoning is used to signal deep learning models to learn distributions that respect

constraints. Underlying these models is an extremely simple but ubiquitous computational task called weighted model
counting [10]. An extension to that task for continuous models [4] has enabled a logic-based solver strategy for a range
of “non-logical” (i.e., classical) probabilistic programming languages in the recent years [11, 1, 25].

3 HYPE

PROBLOG aims to unify logic programming and probabilistic specifications, in the sense of providing a language to
specify distributions together with the means to query about the probabilities of events. As a very simple example, to
express that the object c is on the table with a certain probability, and that all objects on the table are also in the room,
we would write (free variables are assumed to be quantified from the outside):

.6::onTable(c).
inRoom(x) :- onTable(x).

This then allows us to query the probability of atoms such inRoom(c).
A more recent extension [22] geared for continuous distributions and other infinite event-space distributions allows

the head atom of a logical rule to be drawn from a distribution directly, by means of the following syntax:

h ~ D :- b1, ..., bn.
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For example, suppose there is an urn with an unknown number of balls [36]. Suppose we pull a ball at a time and put it
back in the urn, and repeat these steps (say) 6 times. Suppose further we have no means of identifying if the balls drawn
were distinct from each other. A probabilistic program for this situation might be as follows:

n ~ poisson(6).
pos(x) ~ uniform(1,10) :- between(1,~(n),x).

For simplicity, we assume here that the physical form of the urn is a straight line of length 10, and the position of a ball
is assumed to be anywhere along this line.

HYPE is based on a dynamic extension that allows us to temporally index the truth of atoms, and so can be used to
reason about actions. For example, the program:

numBehind(x,t+1) ~ poisson(1) :- removeObj(x,t).

says that on removing the object x at t, we may assume that there are objects – typically one such object – behind x. Such
programs can be used in object tracking applications to reason about occluded objects [43].

A common declaration in many robotics applications [60] is to define actions and sensors with an error profile, such
as a Gaussian noise model. These can be instantiated in HYPE using:

pos(x, t+1) ~ gaussian(~(pos(x,t)) + 1, var) :- move(x,t).
obs(x,t+1) ~ gaussian(~(pos(x,t)), var).

The first rule says that the position of x on doing a move action is drawn from a normal distribution whose mean is x’s
current position incremented by one. The second one says that observing the current position of x is subject to additive
Gaussian noise.

As an automated planning system, HYPE instantiates a Markov decision process (MDP) [49]. Recall that MDPs are
defined in terms of states, actions, stochastic transitions and reward functions, which can be realised in the above syntax
using rules such as:

poss(act, t) ~ conditions(t).
reward(num, t) :- conditions(t).

To compute a policy, which is a mapping from states and time points to actions, HYPE combines importance sampling
and SLD resolution to effectively bridge the high-level symbolic specification and the probabilistic components of the
programming model. HYPE allows states and actions to be discrete or continuous, yielding a very general planning
system. Empirical evaluations are reported in [45] and [44].

4 ALLEGRO

The GOLOG language has been successfully used in a wide range of applications involving control and planning [30],
and is based on a simple ontology that all changes are a result of named actions [53]. An initial state describes the truth
values of properties, and actions may affect these values in non-trivial context-sensitive ways. In particular, GOLOG is
a programming model where executing actions are the simplest instructions in the program, upon which more involved
constructions for iteration and loops are defined. For example, a program to clear a table containing an unknown number
of blocks would be as follows: ([πx onTable(x)?;removeObj(x)])∗;¬∃x onTable(x)?

Here, π is the non-deterministic choice of argument, semi-colon denotes sequence, ? allows for test conditions, and
∗ is unbounded iteration. The program terminates successfully because the sub-program before the final test condition
removes every object from the table.

As argued in [30], the rich syntax of GOLOG allows us, on the one hand, to represent policies and plans in an obvious
fashion; for example: (a1; . . . ;an;P?) ensures that the goal P is true on executing the sequence of actions. However, the
syntax also allows open-ended search; for example: (while ¬P πa. a) tries actions until P is made true. The benefit of
GOLOG then is that it allows us to explore plan formulations between these two extremes, including partially specified
programs that are completed by a meta-language planner.

ALLEGRO augments the underlying ontology to reason about probability distributions over state properties, and
allow actions with uncertain (stochastic) effects. In logical terms, the semantical foundations rests on a rich logic of
belief and actions. Consequently, it can handle partial probabilistic specifications. For example, one can say c is on the
table with a certain probability as before: pr(onTable(c)) = .6, but it is also possible to express the probability that
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there is an object on the table without knowing which one: pr(∃x onTable(x)) = .6. We can go further and simply
say that there is a non-zero probability of that statement: pr(∃x onTable(x)) > 0, which means that any distribution
satisfying the formula is admissible. Such a feature can be very useful: for example, in [28], it is argued that when
planning in highly stochastic environments, it is useful to allow a margin of error in the probability distributions defined
over state properties.

To model the case of Gaussian error models, actions with uncertain effects are given a general treatment. For one
thing, the effects of actions are axiomatised using the notion of successor state axioms which incorporate Reiter’s solution
to the frame problem [53]. So, for example, changing the position of an object using a move action can be expressed as:

pos(x,do(a,s)) = u≡ (a= move(x,y)∧pos(x,s) = u+y)∨ (a ̸= move(x,y)∧pos(x,s) = u).
This says that if the action of moving x was executed, its position (along a straight line) is decremented by y units, and for
all other actions, the position is unaffected. To deal with uncertain effects, we will distinguish between what the agent
intends and what actually happens. That is, let move(x,y,z) be a new action type, where y is what the agent intends, and
z is what happens. Then, the successor state axiom is rewritten as follows:

pos(x,do(a,s)) = u≡ (a= move(x,y,z)∧pos(x,s) = u+z)∨ (a ̸= move(x,y,z)∧pos(x,s) = u).
The story remains essentially the same, except that z determines the actual position in the successor state, but it is
not in control of the agent. A Gaussian error profile can be accorded to this action by means: l(move(x,y,z),s) =
gaussian(z;y,var). That is, the actual value is drawn from a Gaussian whose mean is the intended argument y.
Analogously, attributing additive Gaussian noise in a sensor for observing the position is defined using: l(obs(x,z),s) =
gaussian(z;pos(x,s),var). That is, the observation z is drawn from a Gaussian whose mean is the actual position of
the object x.

As hinted above, as an extension to GOLOG, the syntax of ALLEGRO is designed to compactly represent full or
partial plans and policies in a general way, and on termination, ALLEGRO programs can be tested for any probabilistic
or expectation-based criteria. The foundations of ALLEGRO was established in [3] with a discussion on its empirical
behaviour against a predecessor based on goal regression.

5 Conclusions

Automated planning is often deployed in an application context, and in highly stochastic and uncertain domains, the
planning model may be derived from a complex learning and reasoning pipeline, or otherwise defined over non-trivial
state spaces with unknowns. In this article, we reported on two probabilistic programming systems to realise such
pipelines. Indeed, combining automated planning and probabilistic programming is receiving considerable attention
recently, e.g., [58]. These languages are general purpose, and their first-order expressiveness can not only enable a
compact codification of the domain but also achieve computational leverage.

One of the key concerns with the use of probabilistic programming and stochastic specifications generally is that
most systems perform inference by Monte Carlo sampling. As is well-known, one is able to only obtain asymptotic
guarantees with such methods, and moreover, handling low-probability observations can be challenging. In that regard,
there have been recent logical approaches for inferring in mixed discrete-continuous probability spaces with tight bounds
on the computed answers [6, 5, 12]. Since HYPE, ALLEGRO and many such systems use probabilistic inference as a
fundamental computational backbone, the question then is whether the aforementioned approaches can enable robust
planning and programming frameworks in stochastic domains.
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