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Abstract. The unification of the first-order logic and probability has been seen
as a long-standing concern in philosophy, AI and mathematics. In this talk, I will
briefly review our recent results on revisiting that unification. Although there are
plenty of approaches in communities such as statistical relational learning, auto-
mated planning, and neuro-symbolic AI that leverage and develop languages with
logical and probabilistic aspects, they almost always restrict the representation as
well as the semantic framework in various ways that does not fully explain how to
combine first-order logic and probability theory in a general way. In many cases,
this restriction is justified because it may be necessary to focus on practicality and
efficiency. However, the search for a restriction-free mathematical theory remains
ongoing. In this article, we discuss our recent results regarding the development
of languages that support arbitrary quantification, possibly infinitely many ran-
dom variables, both discrete and continuous distributions, as well as program-
ming languages built on top of such features to include recursion and branching
control.
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1 Introduction

The unification of the logic and probability has been seen as a long-standing concern
in philosophy and mathematical logic, going back to Carnap [14] and Gaifman [23],
at least in terms of early rigorous algebraic studies. In artificial intelligence, starting
from Nilsson [47], Bacchus [2] and Halpern [25], a wide range of formalisms encom-
passing various first-order logical features have been proposed. In so much as a prob-
abilistic underpinning provides the gateway for incorporating probabilistic induction,
areas such as statistical relational learning [50], inductive logic programming [45] and
neuro-symbolic AI [27], are promising candidates for unifying deduction, noisy sensory
observations and association-based pattern learning.
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1.1 What’s missing from a first-order viewpoint?

From a knowledge representation viewpoint, however, especially in the context of rea-
soning about first-order knowledge – which by design must resolve issues around quan-
tification, and an arbitrary (possibly infinite) domain of discourse – there is very little
work beyond the initial study by Halpern [25]. This is despite the fact that first-order
logic is widely acknowledged to be very important for capturing common sense and
reasoning about generalized assertions [38, 37] in a way that humans intuitively seem
to be able to do so.

There are many practical dimensions to this concern. For example, even though data
that automated systems would encounter is finite, we still want knowledge such as "the
father of a father is a grandfather" to be applicable to all humans in the universe. A robot
might encounter an object and it is reasonable to assume that there are objects that are
potentially occluded by the first object, and behind it. So the mental model of the robot
should allow for the possibility that an unknown number of objects are behind the first
object.

This issue, of course, has not gone unnoticed by the community. There are plenty of
works that explore concepts such as open-world modeling – in contrast to the closed-
world assumption that assumes the set of objects is fixed and finite in advance [4, 42].
But most solutions in the literature make a number of assumptions in terms of the mod-
eling and the reasoning capabilities of the frameworks. This is justified from the point
of view of practicality, but it leaves open what a general mathematical theory for first-
order logic and probability looks like. Such a theory should allow, in the least:
1. infinite domains and arbitrary quantification from a first-order viewpoint;
2. discrete, continuous and mixed discrete-continuous distributions from a probability

theory viewpoint.
The logical framework, understandably, should provide a calculus where we can

express sentences that mix logical and probabilistic assertions. Moreover, these may be
provided at any level of specificity by the modeler [3, 9] such that the model theory
allows one to reason about entailments in a way that adheres to the axioms of first-order
logic as well as probability theory.

1.2 The story does not get easier with actions

The world is constantly in motion and objects, as well as their properties, are subject
to change. Therefore, a static representation of the world is insufficient, as it does not
allow for the possibility of changes occurring as a result of actions. Some of these
actions may be initiated by the agent by choice, for example, whereas others may be
caused by external factors that the agent cannot control but only perceive and react to.
We might then complement (1) and (2) above, with (3):
3. The theory should enable the modeling of actions, effects, and sensors, even those

that are unreliable with a probabilistic model. It should also provide a mechanism
for reasoning about how all of these entities impact the way knowledge about the
world is evolving.
The above desiderata is virtually ignored in probabilistic modelling languages, at

least in a general way that permits a comprehensive account of actions and sensing, and
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its complications such as the frame and ramification problem [43]. Indeed, probabilistic
graphical models [49] and Kalman filters [56] are used for temporal phenomena, but
under strict assumptions about how distributions are affected to capture a changing
world. Although decision-theoretic [30] and probabilistic-planning languages allow the
modelling of actions and effects [59], they are neither logics (in allowing for arbitrary
connectives and quantifiers) nor general models of actions in terms of being able to
reason about past and future histories. Relational probabilistic models [57], including
dynamic ones [17], offer some logical features (such as clausal reasoning), but are not
usually embedded in a theory of action and so do not provide a framework to reason
about unbounded sequences of actions. This is not to say that such a framework could
not designed starting from one of the more practical options – and indeed, there are
many that come close [48] – but just that the search for a general and restriction-free
option is still ongoing.

It is also not the case that these problems are completely solved by the knowledge
representation community either. Consider, for example, that Reiter’s [52] reconsider-
ation of the situation calculus has proven enormously useful for the design of logical
agents, essentially paving the way for cognitive robotics [34]. Among other things, it
incorporates a simple monotonic solution to the frame problem, leading Reiter to define
the notion of regression for basic action theories. The situation calculus has enjoyed nu-
merous extensions for time, processes, concurrency, exogenity, reactivity, sensing and
knowledge. Nevertheless, one criticism levelled at this line of work, and indeed at much
of the work in cognitive robotics and reasoning about actions, is that the theory is far
removed from the kind of probabilistic uncertainty and noise seen in typical robotic ap-
plications [56] and machine learning [46]. In fact, for many years, this criticism applied
broadly to almost every knowledge representation language for reasoning about actions
including, dynamic epistemic logic [58], the fluent calculus [55], among others [5, 53].

As discussed above, many recent attempts do come close to our desiderata, but of-
ten fall short in addressing (1) and (3) fully. For example, [48] unifies probabilistic
relational languages, (not necessarily finite) discrete and continuous distributions, and
a model of time to capture change to object properties. But it does not support arbi-
trary first-order logic or a full model of actions and unbounded sequences of actions.
Analogously, [54] is a dynamic version of [42] – a probabilistic relational model with
open-world features – but it does not support all of first-order logic or even arbitrary
connectives. It also restricts how we can reason about sequences of past and future
histories.

1.3 The case for meta-beliefs

A final ingredient ignored by almost all statistical relational learning and machine learn-
ing frameworks is the lack of a construct that can reason about meta-beliefs [22]. In
areas from game theory [1] to distributed systems [44] to computer science [26], epis-
temic notions play an important role because we can easily distinguish between what
is known versus what is true. For instance, we might be wanting to say that the box is
red, but the robot believes it is blue, until it comes close to it and senses the true color.
The notion of knowledge becomes even more important in a distributed and multi-agent
setting [7] where we need to reason about the beliefs of many agents at the same time.
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Moreover, each agent may need to hold beliefs about other agents so that they can col-
laborate, communicate and/or compete in a systematic way. Epistemic notions may also
be useful for explaining automated systems [32, 6].

1.4 Our results

In this talk, I will briefly review our recent results on revisiting the unification of first-
order logic and probability theory. In particular, we discuss the development of lan-
guages that support arbitrary quantification, possibly infinitely many random variables,
both discrete and continuous distributions, as well as programming languages built on
top of such features to include recursion and branching control. All of these languages
are epistemic logics, and so support reasoning about beliefs and meta-beliefs as a bonus.
In particular, we refer to the following results:
1. A first-order logic for actions and continuous distributions [9], but with finitely

many random variables. (This model, however, is not a very convenient approach
to reason about meta-beliefs.)

2. Query rewriting results for that logic that reduce an action sequence to some for-
mula about the initial (static) knowledge base [10]. We may instead update the
knowledge base [11].

3. A programming model with recursion for that logic [13].
4. A reconstruction of the logic with infinitely many random variables but with dis-

crete distributions [8]. This model, in contrast, is an epistemic modal logic and
permits reasoning about meta-beliefs in the usual way.

5. A model of program abstraction based on this epistemic modal logic [28]. This
allows one to abstract the stochasticity away so that probabilistic programs can be
mapped onto ones that mention no probabilities at all.

6. A refinement of the modal logic with infinitely many random variables and both
discrete and continuous distributions [41].

2 A brief overview of results

Although it would be impossible to provide all the details of these contributions, we
will give a quick overview of the key ideas behind these results here.

2.1 Language

We are interested in a first-order language. That is, it includes a set of predicates, func-
tion symbols, equality, first-order quantifiers (both universal quantification and existen-
tial quantification) and the usual connectives for conjunction, disjunction and negation.
It will be simpler to often assume a fixed domain of discourse, say the set of natural
numbers: N, which serves as a domain of quantification.

Of course, if we want the language to also capture continuous distributions, we
will also need to allow the domain to include the set of reals. The idea is that when
we reason about objects (such as places, things and people), we will be quantifying
over the countable domain of discourse. And when we need to reason about real-valued
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quantities, we will be using variable maps to go over the real numbers. The most general
introduction to this can be found in [41].

2.2 Beliefs

If we simply want to talk about probabilities and how they change, our language can
remain "objective." That is, we would need to only write down probabilistic expressions
in our language and reason about them, as seen in [21]. However, since our aim here is
to capture the beliefs of the robot, we will need epistemic operators. In particular, we
will consider a "degrees of belief" modal operator that can be used as follows:

– B(mass < 20) > 0.9;
– B(mass , 0 ∧ mass , 1) > 0.8; and
– K(mass2 > 5 ∨ mass2 > 6), where Kα � (Bα = 1).

The first formula says that the agent believes the mass of an object being less than 20
units (say, kilograms) is greater than 0.9. We are dealing with normalized probabilities
here so probabilities range between 0 and 1 inclusive. The second formula is saying
that the agent believes the mass of the object not being 0 and not being 1 is greater
than 0.8. Finally, the third one is saying that the square of the mass of this object being
greater than 5 or being greater than 6 is believed with a degree of 1. The last formula
is interesting because although it provides a probability for the disjunction, it does not
quite say what exactly is a degree of belief for each of the disjuncts. This is the power
of providing a general way to combine logic and probability because it allows you to
express and quantify over arbitrary first-order formulas without specifying how exactly
the probabilities should be assigned to the (ground) atoms in those formulas. This then
raises the question: what does the semantics look like?

2.3 Semantics

The semantics for epistemic logics is usually given in terms of possible worlds [22].
The idea being that the agent considers some worlds possible and is said to know things
only when those things are true in all the worlds considered possible. Ordinarily, when
dealing with degrees of belief [20], we would say that the worlds are also assigned
weights. This allows us to then say that some formula is believed with a degree of
belief r if and only if the sum of the weights of the worlds that satisfy this formula
comes up to r.

How then do we generalize this idea to deal with first order formulae, as well as
the assigning of probabilities to complex formulas without providing the probabilities
of atoms, as seen in the example of the disjunction above? For starters, we would say
that each world is a first-order structure that interprets the predicates and the functions
over the constants and the domain of the discourse in the usual way [19]. But because
there are uncountably many worlds, we need to ensure that distributions are defined so
as to obey the usual axioms of probability theory. There are a number of different ways
to do this. We could either provide an appropriate analogue to the classical concept of
defining a measure over an uncountable space [41]. Or, we could set up the probability
of formulas based on countable additivity and convergence of the weights of worlds [8].
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Such a framework, however, only accounts for a single distribution over the formu-
las. But because we are permitting situations where there may not be a unique distribu-
tion for formulas, we define an epistemic state as a set of distributions.

Once the semantics is set up this way, we can reason about disjunctions with the
appropriate interpretation. For example: B(p∨q) = r for r , 0 does not imply B(p) = n
for any n. Note that, of course, in each of the distributions in the epistemic state, B(p)
will be equal to some n, but there is no single value agreed upon by all distributions in
an epistemic state where B(p ∨ q) , 0. In other words, the only obvious consequence
of B(p ∨ q) , 0 is B(¬p ∧ ¬q) , 1.

Moreover, with the same semantical setup, we will now be able to reason about
meta-beliefs and meta-knowledge very much in the spirit of introspective epistemic
logics [15]:

– (B(α) = r) ⊃ K(B(α) = r);
– (¬Kα) ⊃ K(¬Kα);
– (α ≡ β) ⊃ (Bα = Bβ);
– (B(α) = r) ∧ (B(β) = r′) ∧ (B(α ∧ β) = r′′) implies B(α ∨ β) = (r + r′ − r′′).

The first formula says that if the agent believes a formula with degree r, then it
knows (degree = 1) that it believes this. The second says that not knowing something
means that the agent knows what it does not know. The third formula says that if two
formulas are logically equivalent then the degree of belief for these formulas has to be
the same. Finally the last formula is about the additive rule of probability.

2.4 Actions

To extend the model to actions [8], we can consider a language where a subset of the
function symbols are reserved for actions. These function symbols could be things like
move(x) which might say that the agent should move to x, and pick(x) which says
that the agent should pick up the object x, and so on. To include these actions in the
language, we will introduce two modal operators: [a] and □, such that if ϕ is a formula,
then so are [a]ϕ and □ϕ. The first one says that ϕ is true after doing a. The second one
says that after every sequence of actions, ϕ is true.

To extend the semantics, now we have to think of every world as a tree of first-order
structures, because the world would be interpreting what is true initially as well as what
is true after sequences of actions. The agent language is actually based on the situation
calculus [52], but recast in a modal logic [33].

2.5 Basic action theories

To capture an application domain, we define a set of axioms which describes how the
domain works: what actions are available, what sensors are available and what effects
these have on the world and on the agent’s knowledge. For example, consider [28]:

– Σ0 = at(near) ∨ at(midpos) ∨ at( f ar);
– □Poss(a) ≡ ∃l.a = goto(l) ∧ ¬at(l); and
– □[a]at(l) ≡ a = goto(l) ∨ at(l) ∧ ¬∃l′a = goto(l′).
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This says that initially the robot might believe to be close to an object (say, a wall),
or at mid-distance from the object, or far away. The second one says that doing a go-to
action is only possible when the robot is not already at the location. And finally the
third sentence captures a monotonic solution to the frame problem [39] and basically
says that the robot is at a location either if it executed a go-to action previously to
that particular location, or it was already at this location and it did not go to some other
location. Notice the box operator for the second and the third sentence. These conditions
– the precondition and the effect of actions – is something that we want the worlds to
obey after every action. So these are axioms that hold for all possible action histories.

A programming language can be defined on such axiomisations for high-level con-
trol [36]. For example, a program to get close to the wall and move away from the wall
could be:

if ¬At(near) then goto(near) endif; goto( f ar)
Classically, most action languages have made a number of serious assumptions:

noiseless sensors without measurement error and exact actions that always have the de-
sired effect. In practice, both assumptions are idealistic: The sonar sensor may measure
with an error, e.g., ± 1, or even have a continuous noise profile [56]. The robot may get
stuck or fail with some probability. Most seriously, the robot may not be able to observe
those errors.

2.6 Revisiting the axiomatisation

To address these assumptions, we need to revisit how we capture the domain. It may
be too simplistic to simply say we can go to some location as an atomic action. And to
say that we are either close or far from the wall might be too coarse to work with for
a probabilistic representation. So we might end up using the following symbols in our
language to capture the domain:

– loc(x) is true if the distance to the wall is x;
– An action move(x, y), where
• x is the distance the robot intends to move;
• y is the distance that the robot actually moves;
• but y may not be observed by the robot; and
• so, we will write move(x) for πy. move(x, y).

Here, πy is a nondeterministic pick operator for programs, the idea being that nature
nondeterministically chooses y. Analogously, if sonar(x) measures the distance to the
wall and returns x, we let sonar() be short for πx. sonar(x) (where nature chooses x). Let
us also assume that if a move by x units is intended, then the actual outcome is within
one unit of the intended value. Likewise, whenever the sensor reads x, the true value is
within one unit of that number. The probabilities accorded to these alternatives does not
really matter for our informal discussion below, but for the sake of concreteness, say
that each of x − 1, x, x + 1 taken on a probability of 1/3. (That is, the possible values are
taken from a discrete uniform distribution.) Note that, by way of the language, we do
not have to commit to a single distribution for the outcomes, much like how we did not
need to commit to a single distribution for the robot’s initial knowledge.
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2.7 A revised program

With all of this machinery, the simple program from above, understandably, gets a lot
more complicated and would look something like this:

sonar()
while ¬K(∃x.loc(x) ∧ x ≤ 2) do move(−1); sonar() end while
while ¬K(∃x.loc(x) ∧ x ≥ 5) do move(1); sonar() end while
So, while the robot does not know that it is close, move towards the wall (using

a negative argument). But because the move action is noisy, the robot needs to sense.
And the sense-act loop needs to repeat until the robot has full certainty that it is actually
close. It then exits the first while-loop and enters the second while-loop. Here, as long
as it does not believe that is far, it moves away from the wall and senses to counter the
noisy action. This repeats until it is actually away from the wall.

3 Abstraction at play

Probabilistic belief programs seem to capture the intuitions perfectly, and they corre-
sponding to cyclic policies [35], but they present several challenges, at least when writ-
ten down by hand. Firstly, correctly designing these programs is a complex task. The
incorporation of probabilities into the program structure requires a careful assessment
of how sensed values, which are not in the robot’s control, need to determine what to do
next. Secondly, reasoning about probabilities can be a difficult endeavor for the modeler.
It is challenging to accurately assess the likelihood of different outcomes or events, es-
pecially over long histories. Lastly, comprehending how and why a probabilistic belief
program works is nontrivial.

So, ideally, we would like to write high-level programs without having to deal with
probabilities. And, by doing so, one can obtain models and execution traces that are
easy to understand. This is where abstraction comes in. The (low-level) action theory
includes stochastic actions as usual, but then a high-level action theory is defined that
abstracts away stochasticity [28]. For example, it is possible to show that there is a
mapping for predicates and actions for the numeric example above such that the above
programming involving two while-loops has the same behavior as the one with if-then-
endif (the first program introduced above)! This is because the goto action in the if-then-
endif program maps to a sense-act while-loop for the low-level action theory, allowing
us to establish that formally the two programs are equivalent for a particular mapping.
Obviously, this has a huge advantage because it is very easy to design the first program.
It almost corresponds to how we might describe the instructions in natural language. In
contrast, the second program is much harder and requires an understanding of proba-
bility theory and dynamics.

3.1 A note about continuous noise

The discussion above was largely based on a discrete model of probability theory em-
bedded in first-order logic. This is why we were able to consider the degree of belief
taking a value of exactly one. The sensor model, moreover, also introduced an error
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within one unit of the actual value. In reality, in continuous models, this becomes far
more complex. Beliefs about the initial situation may take on uncountably many val-
ues. Both the sensor and effector can have, say, Gaussian error profiles [56]. What this
means is that we still require sense-act loops, but it is highly unlikely that the degree of
belief in a formula of interest would be exactly one. We might have to contend with a
degree of belief greater than, say, 0.9 as conditions in the programs. It would even make
sense to involve the expected values of the probabilistic variables, as discussed in [13].

4 Future work

Much of this discussion has largely been on a theoretical front in terms of searching for
general-purpose languages where restrictions are not placed purely for computational
reasons. We are interested in developing the semantics and the mathematical theory that
allows us to reason about properties in languages that allow a full fragment of first-order
logic + all of probability. As argued, this is a much needed mathematical exercise, but in
reality we would want to work with robots and virtual agents. So the obvious question
here is how can we make any of this tractable, scalable or efficient?

To do that, we need to revisit areas such as statistical relation learning and neu-
rosymbolic AI, which have achieved considerable success in developing concise lan-
guages [51]. These languages not only capture interesting probability distributions de-
scribed over symbolic artifacts but also provide implementations and, in some cases,
tractability guarantees [16]. However, as we have argued, these areas do not offer a
complete understanding of how probability theory integrates with first-order logic over
a general theory of actions. Hence, our above exercise sets the stage. With that in hand,
we may now strive to find a middle ground, where we can explore fragments that are
slightly more expressive than existing proposals in statistical relation learning. These
fragments should retain certain features mentioned earlier, including the ability to de-
fine recursive programs and reason about hypothetical events and future histories, much
like in temporal logic [18].

To some extent we have some early results that do exactly this. For example, in [12],
we showed how reasoning about actions can be reduced to a formula about the initial
situation, after which we can use any existing reasoning module for the initial situation,
including Bayesian networks and relational probabilistic models. Interestingly, this type
of reduction strategy was explored independently for the practical problem of robot task
and motion planning [31]. In [13], we showed that the kinds of belief-based programs
discussed above, involving degrees of beliefs as conditions in the program, can be im-
plemented using a particle-filtering strategy provided the language was appropriately
restricted. By extension, it would be interesting to also develop fragments where it is
possible to combine discrete and continuous distributions in natural way, and reason
about things like abstraction. There is some recent work on verifying such programs
[40].

It might be also possible to connect these advances in knowledge representation to
exciting work in ML on probabilistic programming [24], where the topic of synthesis
and learning are also embraced. For example, there is already work on synthesizing
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(recursion-free) probabilistic program abstractions [29] and perhaps it is possible to
leverage such ideas for the programs discussed above.

More broadly, despite the advances of deep learning, it is now becoming increas-
ingly clear that symbolic artifacts play an important role from the perspective of ex-
plainability, domain adaptation, domain knowledge inclusion, as well as reasoning.
Neuro-symbolic AI is a representative example for the scientific need for this type of
unification [27]. However, ad-hoc or otherwise limited combinations of logic and prob-
ability are likely to only take us so far: we need to think more carefully about how
general-purpose open-ended agents might reason with quantifiers and how they might
reason about past histories and future outcomes. All of these latter features is precisely
what motivates many expressive knowledge representation languages. By embracing
probability theory, we are now in a position to draw concrete connections between ex-
pressive KR languages and learning, and offer capabilities, including reasoning about
meta-beliefs and belief-based program verification, that are out of reach for standard
machine learning theory based on probability theory alone.
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