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Abstract—Vegetation encroachment in power transmission and
distribution networks constitutes a major hazard for the envi-
ronment and the networks’ integrity, but also for the society at
large, with multifaceted consequences. On many occasions the
vegetation near the power lines, in conjunction with the aged
infrastructure, caused and spread fires leading to large-scale
disasters. To this end, 3D representations are proactively created
using LiDAR sensors to identify locations of vegetation encroach-
ment. Of particular interest is the use of UAVs, which propose
a cost-effective alternative to employing airplanes. In this study,
UAVs were employed to acquire LiDAR data from the power
distribution network and a subtractive data-driven methodology
is proposed, whereby irrelevant points are discarded, aiming to
identify power lines without employing 3D modelling methods.
In this context, geometric features are calculated and a rigorous
analysis is conducted over the feature set, different classifiers
and parameters to investigate the robustness of the proposed
approach. Extensive evaluation suggests that the Random Forest
classifier is able to identify power lines with high performance
(F1-Score=97.74% and Accuracy=99.09%), using both geometric
and color-based features, being also robust to the presence of
moderate noise and down-sampling levels.

Index Terms—unmanned aerial vehicles, point cloud, 3D
model, power line corridor, vegetation monitoring

I. INTRODUCTION

Modern societies rely on electricity to a profound ex-
tent; thus, urging Electricity Authorities (EAs) to expand
and implement efficient mechanisms to monitor and maintain
the existing infrastructure. The operated power transmission
and distribution networks, which are most commonly aged,
usually traverse large forest and mountainous regions, and are
frequently exposed to adverse weather conditions [1], [2].

According to a recent report, many fires were caused and
spread by the power infrastructure due to its adjacency to
trees, with 100,000 hectares being burned during the California
fires in 2018, while the blown fuses on a utility pole have
sparked the Dixie fire in July 2021, resulting in 400,000
burned hectares. The effects were immense both financially
and socially but also environmentally, with hundreds of struc-
tures being destroyed and a town being vanished almost in its
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entirety. Simultaneously, the released smoke endangered the
health of millions of people [3].

Consequently, it is critical to apply preemptive measures to
prevent such disasters. To this end, EAs employ skilled per-
sonnel which either on foot or with helicopters are dispatched
across the infrastructure to monitor the vegetation and identify
high-risk locations [4]. Although this approach has been used
for decades, it is accompanied by increased workload and long
inspection cycles, while the accuracy is greatly dependent on
the inspectors’ observation skills [2], [4].

In this context, Light Detection and Ranging (LiDAR)
airborne scanning technology is the ideal alternative for cre-
ating accurate 3D models of the power lines and is preferred
to Mobile- and Terrestrial- Laser Scanning methods, which
cannot be applied in dense forest and steep mountainous
landscapes [2], [5]. Additionally, during the last few years,
Unmanned Aerial Vehicles (UAVs) have been made widely
available, proposing a low cost and flexible solution for
power infrastructure inspection applications covering the entire
spectrum of power components [6], [7], power line [8], [9],
utility poles detection [10], [11], as well as the development of
autonomous systems to rapidly acquire high-quality data in a
repeatable manner using multiple sensors, e.g. RGB, thermal,
multispectral [12], [13].

In this study, a LiDAR-enabled UAV is employed to acquire
3D data from the power distribution network and an algorithm
is developed to identify vegetation encroachment in the power
lines. The main contributions include:

• A subtractive methodology is proposed to identify the
power lines, by gradually discarding irrelevant points
based on 3D geometrical characteristics. In doing so, we
aim to avoid developing methods to directly detect the
power lines in the initial point cloud, with potentially
increased time complexity.

• A data-driven approach is proposed to detect the power
lines avoiding the use of 3D line fitting and modelling
methods.

• A rigorous analysis is performed to test the resilience
and robustness of the proposed algorithm for different
classification algorithms, feature combinations, as well
as noise and down-sampling levels.

The rest of the paper is structured as follows: Section
II illustrates the related work, while the description of the
proposed methodology is given in Section III. The rigorous



analysis of proposed method is presented in Section IV, while
concluding remarks are presented in Section V.

II. RELATED WORK

In one of the first studies, a methodology was proposed
to classify points into power lines, vegetation and surfaces
[14]. This was achieved by defining ellipsoid neighborhoods
and calculating the covariance matrix, whose eigenvalues
indicate data spread. Finally, for classification a Gaussian
mixture model was trained using the expectation-maximization
algorithm [14]. In another study, a multi-stage method was
proposed using Markov Random Field classifier to distinguish
power lines using linear features, while non-linear features
were employed to classify buildings and other objects [15].
Subsequently, electric towers were localized to facilitate the
detection of conductor spans, i.e. power lines between two
towers, and apply 3D catenary curve models. The inclusion of
points representing the power lines was established through
a hypothesis-verification approach [15]. In contrast, in [16] a
methodology was developed to analyze vegetation based on
geometric features, by detecting trees near the infrastructure,
while a Random Forest classifier was used to classify tree
species. As a result, trees growing within the safe distance and
tall trees that could fall onto the power lines were identified.

Efforts in [17] concentrated on improving the classification
performance by calculating 26 features encoding the local
point cloud geometry in conjunction with the JointBoost
supervised algorithm. This approach was applied on two
point clouds for distinguishing ground, vegetation, buildings,
power lines and pylons, obtaining accuracy of 95.73% and
93.88%, while graph-cut segmentation was employed to in-
crease accuracy to 97.48% and 95.03%, respectively [17].
On the other hand, in [18] ground and trees were identified
based on calculation of geometric features using a variety
of different neighborhood types and scales, suggesting that
improved classification performance can be obtained with
multi-type and multi-scale approaches, compared to single-
type and single-scale alternatives. Along similar lines, in [19]
Support Vector Machines were employed and a variety of
geometric features were calculated considering multi-scale
neighborhood schemes; thus, achieving precision rates of
95.64% and 93.83%, with the recall rates being 90.92% and
89.09% in two point clouds, respectively.

In [20], geometric characteristics were calculated to de-
tect pylons, vegetation and power lines, while the Euclidean
distance algorithm was used to cluster the power lines at
different heights. The final separation was performed through
a 2D line fitting procedure following a planar projection.
Similarly, the Hough transform was used to distinguish power
lines from noise and surrounding vegetation [5]. Additionally,
in [21] a 7-fold pipeline was proposed consisting of: initial
pylon and power lines classification, separation of individual
pylons, classification of shields and power lines, identification
of insulators, classification of shield wire endings and chains,
and finally catenary modelling. In this context, power lines
were identified and categorized into three subclasses, i.e. shield

conductors, common conductors and chains, while pylon clas-
sification was performed into suspension and anchor pylons.

Convolutional Neural Networks have been also employed to
classify full-waveform airborne LiDAR data [22]. A two-step
methodology was followed aiming to initially pre-process data
from each waveform to a compact representation, which along
with coordinates of the points were mapped to an image. The
resulting image was fed into a Fully Convolutional Network
for segmenting it into six classes, i.e. ground, vegetation,
building, power line, tower and street path, achieving an
accuracy of 92.6% [22].

Towards real-time classification, a method was presented in
[23], harnessing the capabilities of edge computing and data
transmission through the 4G network. With the processing be-
ing made during the UAV flight, risk assessment reports were
generated in a timely manner to facilitate prompt response
of inspection personnel. Likewise, in [24] a large point cloud
was divided into smaller segments to improve processing time,
while a voxel grid filter was applied for separating power
lines, pylons and vegetation. Subsequently, points representing
power lines were converted to binary images for retrieving
individual spans, which in turn were used to identify nearby
vegetation.

In [25], a fully automatic approach was presented for
extracting the power lines and measuring the distance to the
closest tree. The proposed methodology included geometrical
analysis and, in terms of a knowledge-based approach, the
points on the power lines were isolated from those representing
other structures, i.e. vegetation and towers. Finally, a 3D line
following approach was employed to select all the points on
the power lines using an automatically selected seed point,
whose selection greatly affected algorithm’s performance.
Apart from the aforementioned approaches, methodologies
have been proposed based on detecting trees using site-
specific thresholds and employing growth models to predict
and facilitate early detection of tree encroachment [2].

In this context, the present study proposes a subtractive
data-driven methodology, using a combination of conventional
geometrical reasoning through calculation of 3D geometric
features and machine learning approaches to detect power
lines, without employing additional power line fitting methods,
e.g. 3D catenary curve models. Specifically, instead of directly
identifying power lines in the initial point cloud, the proposed
approach consists of extracting irrelevant points to reduce
computational complexity, by leveraging on geometrical infor-
mation of the 3D scene. Consequently, only the power lines
remain along with surrounding vegetation; thus, reducing to
a binary classification problem, i.e. “power lines” vs “other
points”. Additionally, a rigorous analysis is performed through
an exhaustive search of geometric features across a variety of
classifiers, under different noise and down-sampling levels, to
investigate the robustness of the proposed approach.
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Fig. 1: Process diagram for identifying power lines and high-risk locations of vegetation encroachment

III. METHODOLOGY

A. Equipment and Data Acquisition

The DJI Matrice 300 Real Time Kinematics (RTK)
UAV was employed (https://www.dji.com/matrice-300), along
with the DJI Zenmuse L1 camera (https://www.dji.com/
zenmuse-l1), as shown in Fig. 2. As a testing site, a part
of the medium voltage network in Cyprus was considered
with length of 800m, consisting of 9 utility poles, with the
UAV performing an autonomous flight at a height of 50m
above ground, navigating directly above each pole. This was
achieved by applying an autonomous mapping procedure prior
to LiDAR data acquisition, using the ICARUS system [13]. It
must be noted that the use of a quadcopter is not specific to
the proposed methodology and fixed-wing UAVs, capable of
carrying LiDAR sensor, can be used as well.

Specifically, the UAV was provided with the best estimates
of the utility poles’ coordinates and navigated to these po-
sitions. As soon as each location was reached, a real-time
detection process was initiated to detect top-view of the pole
using video feed from the RGB camera and the tiny-You-
Only-Look-Once (tiny-YOLO) v4 [26]. Detection output, i.e.
bounding box marking the pole, was subsequently integrated
with the UAV’s flight controller, facilitating the generation of
suitable control commands for aligning the UAV directly above
the pole. To promote high navigation and positioning accuracy
multi-frequency and multi-constellation Global Navigation
Satellite Systems (GNSSs), e.g. GPS, Galileo, GLONASS, and
BeiDou, were enabled on the employed UAV [13].

B. LiDAR Sensor Setup

LiDAR was configured to acquire data using triple-echo
mode, i.e. for each laser pulse up to three reflections were
received, at a frequency of 160kHz, while the repetitive
scanning pattern was selected with FOV = 70.4°×4.5°; thus,
acquisition was performed in horizontal stripes for improved
representation accuracy. Moreover, RGB images were acquired
throughout the UAV’s flight and were processed in conjunction
with raw LiDAR data with the DJI Terra software (https:

Fig. 2: UAV and LiDAR sensor used for acquiring data

//www.dji.com/dji-terra) to obtain a colored 3D representation
of the power infrastructure. This colored point cloud was
set as input to the proposed methodology for identifying the
power lines and detecting high-risk locations of vegetation
encroachment, as depicted in Fig. 1.

C. Pre-processing

Pre-processing aims at discarding irrelevant points, since
we are interested in the power lines and the vegetation close
to them, to minimize computational complexity and promote
higher detection performance, compared to directly comparing
power lines in the initial point cloud. The following pre-
processing steps were performed in the PDAL library (https:
//pdal.io/en/2.5.2/) as described in the diagram in Fig. 3-left
panel and shown in Figs. 4b-4g.

1) ScanAngle-Based Filtering: Considering that the UAV
navigated directly above the utility poles, the power lines were
in the middle of the dataset; thus, points on the left and right
can be discarded. As mentioned above, the horizontal FOV of
the LiDAR sensor is 70.4°, i.e. ScanAngle ∈ [-35.2°, 35.2°]
(Fig. 4b), and the power lines were found for ScanAngle ∈
[−10°, 10°] (Figs. 4c-4d).

2) Down-Sampling: Uniform down-sampling was applied
to reduce the number of points using a voxel-based method
with cell size of [Vx, Vy, Vz] = [.2, .2, .2]m, whereby points
within each cell were replaced by the point being nearest to
the cell’s center (Fig. 4e).

3) Ground Filtering: To classify terrain the Simple Mor-
phological Filter algorithm was employed, through which a
minimum surface was created and processed to distinguish
grid cells containing bare earth and objects. Subsequently, a
digital elevation model was produced to facilitate identification
of ground points on the original LiDAR data [27] (Fig. 4f).

4) Outliers Detection: Sparse outliers were removed
through a statistical outlier removal method, by computing
for each query point pq = [xq, yq, zq]

T in the point cloud
P , the distances to its k-nearest neighbors and subsequently
calculating their mean µq and standard deviation σq . A point
was then considered as an outlier if its corresponding µq value
fell outside µq ± α · σq , where α = 2.0 and k = 8 [28] (Fig.
4g).

D. Classification

Classification aims to distinguish power lines from the
remaining points (mainly vegetation) and consists of three
main steps as described in Fig. 3-right panel and presented
in Figs. 4h-4j.

https://www.dji.com/matrice-300
https://www.dji.com/zenmuse-l1
https://www.dji.com/zenmuse-l1
https://www.dji.com/dji-terra
https://www.dji.com/dji-terra
https://pdal.io/en/2.5.2/
https://pdal.io/en/2.5.2/
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Fig. 3: Pre-processing steps for removing points not corre-
sponding to power lines and classification procedure

1) Features Extraction: A total of 16 features were com-
puted (Table I and Fig. 4h). Apart from R, G, B and Intensity
features which correspond to RGB values and reflectivity of
the laser beam, respectively, the rest aim to provide local
geometric characteristics of P , based on the covariance matrix
Cq ∈ R3×3, which was calculated for each query point pq

using its k-nearest neighbors as follows [29]:

Cq =
1

k − 1

k∑
i=1

(pi − p) · (pi − p)
T

, p =
1

k

k∑
i=1

pi (1)

with p representing the geometric center.
Covariance matrix Cq is symmetric and positive semi-

definite with its eigenvectors v⃗j forming an orthogonal frame
and its eigenvalues being positive real numbers λj ≥ 0 ∈
R, j ∈ {0, 1, 2} [30]. By sorting the eigenvalues as λ2 ≥ λ1 ≥
λ0 ≥ 0 the geometric features were calculated as shown in
Table I [29], [31]–[33]. Additionally, the eigenvector v⃗0 which
corresponds to the smallest eigenvalue λ0, is an approximation
of the local surface normal n⃗ = [nx, ny, nz] [34].

2) Power Lines Identification: For distinguishing the power
lines, a binary classification problem was defined, i.e. “power
lines” vs. “other points” (Fig. 4i). In this context, 9 classifica-
tion algorithms were examined, i.e. AdaBoost, Decision Tree
(DecTree), Extra Tree (ExtTree), Gaussian Mixture (Gauss-
Mix), KMeans, KMeans Mini Batch (KMeansMB), Linear
Support Vector Classifier (LinearSVC), Logistic Regression
(LogRegr) and Random Forest (RandFor). All classifiers were
implemented using scikit-learn library (https://scikit-learn.org/
1.2/) and in-house code. To assess the performance of classi-
fication a stratified 5-fold cross validation scheme was estab-

TABLE I: Calculated geometric features for classifying power
lines

Features Definition

R Value corresponding to Red channel
G Value corresponding to Green channel
B Value corresponding to Blue channel

Intensity Reflectivity of the laser beam

Height above Ground

Initially a Delaunay triangulation is created
using M ground points closest to the non-
ground query point pq . If pq lies inside the
triangulated area, the assigned value is
Zq − Ztr , where Ztr is the result of
interpolation from the three triangle vertices.
Otherwise, the assigned value is Zq − Zcl,
where Zcl is the value of the nearest ground
point [31].

Linearity Lλ = (λ2 − λ1)/λ2

Planarity Pλ = (λ1 − λ0)/λ2

Scattering Sλ = λ0/λ2

Anisotropy Aλ = (λ2 − λ0)/λ2

Omnivariance Oλ = 3
√
λ0λ1λ2

Eigentropy Eλ = −
∑2

i=0 λi ln (λi)

Sum of eigenvalues Σλ =
∑2

i=0 λi

Surface Variation Cλ = λ0/(λ0 + λ1 + λ2)

Demantke’s Verticality VD = 1− nz

Guinard’s Verticality
VG = n̂z , i.e. the vertical component of
n̂ =

∑2
i=0 λiv⃗i

Density
D = (k + 1)/( 4

3
πr3k−NN), with rk−NN

being the radius encapsulating the k-nearest
neighbors.

lished, to construct the confusion matrix, shown in Table II,
and calculate performance metrics as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 · Precision · Recall
Precision + Recall

Jaccard =
TP

TP + FP + FN

(2)

with TP, FP, TN and FN corresponding to True Positives, False
Positives, True Negatives and False Negatives, respectively.
Ground truth was established by manually assigning labels,
i.e. power lines and other, to all points of the dataset, using
CloudCompare (https://cloudcompare.org/).

TABLE II: Confusion Matrix

PREDICTION

Power Lines Other

GROUND

TRUTH

Power Lines TP FP
Other FN TN

https://scikit-learn.org/1.2/
https://scikit-learn.org/1.2/
https://cloudcompare.org/


(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 4: Procedure to identify locations of vegetation encroachment using LiDAR data: (a) initial LiDAR data, (b) horizontal scan
angle, (c) power lines points are characterized by small scan angle values, (d) scan angle based filtering, (e) down-sampling,
(f) ground filtering, (g) outliers detection, (h) feature extraction, (i) power lines identification, (j) refinement of identified power
lines and (k) vegetation encroachment detection

3) Refinement: The identified power lines may also con-
tain spurious detections; hence, to remove these outliers the
method described in Section III-C4 was applied to refine the
classification results (Fig. 4j).

IV. RESULTS

A. Classifier Assessment

As mentioned in Section III-D2, to assess classification
performance a stratified 5-fold cross validation scheme was
established, since only one dataset was available, and was
selected over the simple 5-fold cross validation approach, as
the former preserves the percentage of samples for each class;
an important aspect since the points representing power lines
were much fewer than the rest. Performance evaluation was
based on a grid-search approach over the set of features, by
calculating the binomial coefficients to define the subset of
features to be used as input to the classifiers. Specifically, the
number of combinations was calculated as follows:(

16

m

)
, m ∈ {5, 6, 7, 8, 9, 10} (3)

resulting in 4368, 8008, 11440, 12870, 11440, and 8008,
respectively, totalling 56134 feature combinations.

The corresponding results are shown in Fig. 5 in the form
of 2D matrix. Rows correspond to the feature combinations
starting from top to bottom, i.e. the upper part relates to all
combinations of 5 features, the second are the combinations
of 6 features etc. Colors correspond to the obtained F1-score
through the stratified 5-fold cross validation scheme.

Some remarks can be made by observing Fig. 5: DecTree
and ExtTree performed similarly, while GaussMix exhibited
the lowest performance for a number of feature combina-
tion. KMeans yielded lower F1-scores when fewer features
were used, albeit this was improved as additional features
were considered. On similar grounds, KMeansMB exhibited
low performance with fewer features, which increased with
an increasing number of features. LinearSVC and LogRegr

performed similarly and consistently across the various fea-
ture combinations, while AdaBoost also achieved high per-
formance. RandFor exhibited the highest classification score
across all feature combinations, although it can be seen that in
some cases performance was slightly decreased; nonetheless,
it is the best performing classifier among the chosen ones.
In Table III, the feature combination achieving the highest
performance for each classifier is presented.

Focusing on RandFor, the inclusion of additional features

Fig. 5: Performance of classifiers over all feature combinations

Fig. 6: Performance of RandFor classifier



TABLE III: Combination of features yielding the highest performance of each classifier

Classifier Feature Combination F1-Score Accuracy Precision Recall Jaccard

AdaBoost
Red, Blue, HeightAboveGround, Anisotropy, Density, Planarity,
GuinardVerticality

0.9605 0.9845 0.9825 0.9419 0.9250

DecTree
Red, Blue, Intensity, HeightAboveGround, DemantkeVerticality,
Eigenentropy, Omnivariance, SurfaceVariation

0.9402 0.9754 0.9361 0.9486 0.8874

ExtTree
Red, Blue, Intensity, HeightAboveGround, Omnivariance, Scattering,
EigenvalueSum, GuinardVerticality

0.9375 0.9745 0.9372 0.9427 0.8828

GaussMix
Green, Blue, HeightAboveGround, Anisotropy, Eigenentropy, Omnivariance,
SurfaceVariation

0.9510 0.9807 0.9904 0.9145 0.9065

KMeans
Blue, Intensity, HeightAboveGround, Eigenentropy, EigenvalueSum,
SurfaceVariation

0.9644 0.9858 0.9917 0.9387 0.9313

KMeansMB
Blue, Intensity, HeightAboveGround, Anisotropy, Eigenentropy,
EigenvalueSum

0.9640 0.9857 0.9885 0.9408 0.9306

LinearSVC
Green, Blue, HeightAboveGround, DemantkeVerticality, Eigenentropy,
Omnivariance, Planarity, EigenvalueSum, SurfaceVariation,
GuinardVerticality

0.9573 0.9833 0.9843 0.9346 0.9196

LogRegr
Red, Blue, HeightAboveGround, DemantkeVerticality, Eigenentropy,
Linearity, Omnivariance, EigenvalueSum, SurfaceVariation,
GuinardVerticality

0.9541 0.9817 0.9728 0.9396 0.9134

RandFor Red, Green, Blue, Intensity, HeightAboveGround, DemantkeVerticality,
Planarity, Scattering, EigenvalueSum, GuinardVerticality 0.9774 0.9909 0.9949 0.9605 0.9558

improves performance, as shown in Fig. 6. By selecting few
features (5 and 6) the exhibited performance is not consistent,
as suggested by the presence of outliers. On the other hand,
the inclusion of 9 and 10 features improves the performance,
whereby no outliers are observed suggesting that the included
features better describe the 3D geometry; thus, allowing for
more accurate and consistent classification outcomes. In Table
IV, the feature combination achieving the highest performance
for each number of features is presented. As can be seen,
the combination of 10 features is marginally better compared
to the remaining, as the addition of 1 feature at a time
slightly improves the performance, in agreement with Fig. 6.
Importantly, increasing the dimension of the feature set has
negligible impact on training and testing time, as shown in
Table IV, as well as in computational resources.

The performance of the remaining classifiers for the op-
timal feature combination, i.e. {Red, Green, Blue, Intensity,
HeightAboveGround, DemantkeVerticality, Planarity, Scatter-
ing, EigenvalueSum, GuinardVerticality}, is illustrated in Fig.
7. The remaining classifiers exhibited lower performance.
Notably, GaussMix yielded the highest precision, by not
identifying FPs (“power lines” as “other points”). Also, recall
was significantly lower, suggesting that a large number of FNs
was identified (“other points” as “power lines”; Eq. 2).

B. Effect of Noise

Additive spatial Gaussian noise was generated as follows:
p∗
j = pq + tq , with tq = [tqx, t

q
y, t

q
z] ∼ N (0, σ) and

pq ∈ P , while the noisy point cloud was created by con-
catenation: Pnoisy = P ∪ P∗. Noise was generated for
evenly-spaced points, i.e. every 1m, 0.5m and 0.2m, cor-
responding to 0.35%, 1.38% and 7.9% of points, respec-
tively. Moreover, standard deviation was altered using values:
σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. As can be seen in Fig. 8
(the horizontal dashed lines correspond to the performance

without artificially added noise) the presence of noise affected
the performance to a different extent relating both with σ
and spatiality. Specifically, a steep decline in performance is
observed when points spaced 0.2m apart were affected by
noise, compared to those spaced 1m, for all examined standard

Fig. 7: Comparison of classifiers for the optimal feature
combination

Fig. 8: RandFor performance in the presence of noise



TABLE IV: Performance of Random Forest for each number of features combination

Feature Combination F1-Score Accuracy Precision Recall Jaccard
Training
Time (s)

Test
Time (s)

Memory
Used (MB)

Red, Blue, Intensity, HeightAboveGround, Anisotropy 0.9728 0.9891 0.9901 0.9561 0.9470 0.5215 0.2346 1046.125
Red, Blue, Intensity, HeightAboveGround, Scattering,
GuinardVerticality

0.9757 0.9902 0.9922 0.9597 0.9526 0.5413 0.2360 1050.125

Green, Blue, Intensity, HeightAboveGround,
DemantkeVerticality, Scattering, GuinardVerticality

0.9765 0.9905 0.9932 0.9603 0.9540 0.5285 0.2361 1050.125

Red, Blue, Intensity, HeightAboveGround,
DemantkeVerticality, Omnivariance, SurfaceVariation,
GuinardVerticality

0.9769 0.9907 0.9941 0.9602 0.9548 0.5466 0.2431 1050.125

Red, Green, Blue, Intensity, HeightAboveGround,
DemantkeVerticality, Eigenentropy, Scattering,
GuinardVerticality

0.9773 0.9909 0.9939 0.9612 0.9556 0.5891 0.2382 1050.125

Red, Green, Blue, Intensity, HeightAboveGround,
DemantkeVerticality, Planarity, Scattering,
EigenvalueSum, GuinardVerticality

0.9774 0.9909 0.9949 0.9605 0.9558 0.5921 0.2423 1052.125

deviation values. Through a closer look, it can be inferred that
while precision is more stable compared to recall (meaning
that “power lines” were classified as such), recall exhibits
significantly lower performance, since “other points” were
classified as “power lines”. By construction, additive noise
was also added near the power lines to the extent defined
by values of σ; hence, these noisy points were considered
for calculating covariance matrix due to their inclusion in
the local neighborhoods. Nevertheless, results suggest that
RandFor is robust in the presence of moderate noise (F1-score
> 90% : σ = 0.1 with 1m spacing), while extreme levels of
noise are unlikely to be introduced in the data, since UAV
LiDAR technology has significant improvements during the
last years.

C. Effect of Down-Sampling

To examine the effect of different sampling rates, i.e. point
density that may be obtained by using different LiDAR sen-
sors, a variety of down-sampling rates have been tested in the
voxel-based method (Section III-C2). Specifically, cells with
sizes 0.1m, 0.3m, 0.4m and 0.5m were additionally considered.
The alteration of down-sampling levels does not affect, in
a negative manner, classification performance (Fig. 9). Inter-
estingly, a slightly higher F1-score was obtained with larger

Fig. 9: RandFor performance for different down-sampling rates

cell sizes, which can be attributed to the specific geometry of
the utility poles: the three power lines are horizontal and the
space between them varies from 0.6m to 0.9m, depending on
the location. Consequently, cell sizes up to 0.5m seem to not
affect nearby power lines, i.e. two power lines in the same cell.
Moreover, neighbors were spread in space; hence, geometric
features were able to better capture the geometry of the 3D
scene. These results suggest the potential of RandFor classifier,
creating avenues to explore in a more detailed manner the link
between down-sampling levels and parameters for estimating
features, i.e. neighborhood size and type, with classification
performance.

V. CONCLUSIONS AND FUTURE WORK

In this study, a LiDAR-enabled UAV was employed to
acquire data from the medium voltage distribution network
in Cyprus for identifying locations of vegetation encroach-
ment. In particular, a subtractive data-driven methodology is
proposed, whereby irrelevant points are initially discarded
and then power lines are identified through a binary classi-
fication method (“power lines” vs “other”). In this context,
a meticulous approach was applied over a wide selection
of classifiers, geometric features, noise and down-sampling
levels for analyzing the landscape of combinations and pa-
rameter selection, ultimately leading to the best performing
combination. The obtained results suggest that Random Forest
is the highest performing classifier (F1-score=97.74% and
accuracy=99.09%), also exhibiting robustness in the presence
of moderate noise and down-sampling levels. With regards to
the optimal feature set, this consisted of both of color and
intensity information, as well as geometric characteristics of
the point cloud.

As a future work we are planning to acquire more point
cloud data under different scenarios, i.e. forest and plain areas
with no vegetation near the power lines and cases where it
is much closer, i.e. touching the power lines. Consequently,
the proposed method will be assessed and verified in these
diverse conditions; thus, defining the corresponding robustness
levels of the application. Ultimately, locations of vegetation



encroachment will be identified on time, allowing operators
to proceed to proper measures to maintain safety of the power
network.
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