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Abstract

In a conversational context, a user converses with a system through a sequence of natural-language questions,

i.e., utterances. Starting from a given subject, the conversation evolves through sequences of user utterances

and system replies. The retrieval of documents relevant to an utterance is difficult due to informal use of

natural language in speech and the complexity of understanding the semantic context coming from previous

utterances. We adopt the 2019 TREC Conversational Assistant Track (CAsT) framework to experiment

with a modular architecture performing in order: (i) automatic utterance understanding and rewriting,

(ii) first-stage retrieval of candidate passages for the rewritten utterances, and (iii) neural re-ranking of

candidate passages. By understanding the conversational context, we propose adaptive utterance rewriting

strategies based on the current utterance and the dialogue evolution of the user with the system. A classifier

identifies those utterances lacking context information as well as the dependencies on the previous utterances.

Experimentally, we evaluate the proposed architecture in terms of traditional information retrieval metrics

at small cutoffs. Results demonstrate the effectiveness of our techniques, achieving an improvement up to

0.6512 (+201%) for P@1 and 0.4484 (+214%) for nDCG@3 w.r.t. the CAsT baseline.

Keywords: Conversational IR, Neural re-ranking, Query rewriting.

1. Introduction

Conversational Information Retrieval (IR) has recently gained interest due to the widespread popularity

of conversational assistant systems. Thanks to the recent advances in automatic speech recognition and

understanding, conversational assistant systems are widely used in chatbots and smart home devices, e.g.,

Google Home and Amazon Alexa, as well as in wearable devices and smartphones, e.g., Apple Siri, Google

Now, and Microsoft Cortana. These systems help users in activities ranging from simple to complex tasks.

Simple tasks include checking the weather forecast and managing music streaming services, while complex
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include performing e-commerce transactions. Users, including the elderly who are typically unfamiliar with

technology, find comfort as they converse with the system in a multi-turn conversation of questions (i.e.,

utterances)1 and replies.

Contrasting their ease of use, technologies enabling conversational assistant systems are complex and

heterogeneous. We focus on a key conversational assistant component, the conversational IR system. Given

a user utterance, the conversational IR system is tasked to retrieve one to a few documents, from within a

document collection, that contain the answer to the information need expressed in the utterance. Our efforts

enhance utterance context, improving conversational IR system accuracy, and thus, conversational flow.

The automatic management of user utterances is difficult as the conversational IR system must: (i)

understand the utterance and its relation with the context expressed in the conversation, (ii) find relevant

information in a knowledge base or document collection, and (iii) select a single or a very narrow list of

results preferably including the specific answer. Question understanding must deal with vague or misleading

formulations of the utterances. Indeed, natural language utterances are prone to the ambiguity and poly-

semy of words, the presence of acronyms, mistakes, and grammar misuses. More importantly, a complex

information need cannot be resolved with a single question; rather, the user formulates multiple subsequent

utterances that can be related to each other.

Consider the following questions in a conversation: (1) “Is Red Bull bad for you?”, (2) “Can it kill you?”,

(3) “How much can you drink in a day?”, (4) “What is taurine?”, (5) “What are its health effects?” While

the first and fourth questions are relatively easy to process by IR systems, in the second and third questions,

there are explicit and implicit references to the first subject of the conversation, i.e., “Red Bull”. The fifth

question refers instead to a specific substance, i.e., “taurine”, introduced later during the conversation.

Even in this short conversation, it is possible to identify self-explanatory utterances that do not require

rewriting, i.e., the first and fourth questions. However, the second question is not self-explanatory, and there

is an explicit reference to a previous topic, i.e., “it” refers to “Red Bull” mentioned in the first question.

The third question is even more tricky as there is no explicit reference to a previous topic, “How much can

you drink in a day?” one may ask “drink what?”, so the question itself lacks context. In the conversation,

we can also observe a topic drift, i.e., “Red Bull” → “Taurine”, that makes the fifth question refer to the

newly introduced topic, i.e., “taurine” and not to the initial subject of the conversation, i.e., “Red Bull”.

Traditional IR systems are not designed to answer utterances in conversational dialogues as the one shown

above. They focus on retrieving relevant documents in response to self-explanatory user queries, while a

conversational search system should also deal with the enrichment of utterance with contextual information

1Although the user requests are usually formulated as questions, there are cases in which they are not (e.g., “Tell me

about...” or “Show me...”). Thus, we will preferably use the term utterance unless we explicitly refer to a request formulated

as a question.
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permitting to retrieve the best documents answering the user information need. Our work focuses precisely

on utterance understanding to enrich those utterances that lack context. Previously we investigated topic

propagation in multi-turn conversations and experimented with some heuristic techniques for utterance

rewriting [36]. Furthering those results, we now propose a generalized architecture for conversational search

implementing advanced strategies for utterance understanding and enrichment.

Research Objectives. The research presented improves conversational information retrieval, a domain where

the user expresses her information needs verbally, and the system automatically understands the user ut-

terances to retrieve a good set of candidate answers. This is challenging as some utterances are not self-

explanatory and some are ambiguous. Moreover, since the search involves a multi-turn conversation, some

of the requests lack context as they refer to a topic previously mentioned in the conversation. Traditional

information retrieval does not support such kind of interactions; so we must improve conversational search

systems. Our objective is to prove that adding missing context chosen in a proper way improves the retrieval

task in conversational systems. We also prove that utterance classification can be used to find the best

rewriting technique for transforming a raw utterance into an enriched and self-explanatory one that is easy

to process for an automatic information retrieval system.

Novel Contributions. We present strategies for utterance enrichment driven by an in-depth analysis of the

current utterance and the evolution of the previous conversational turns. We rely on effective classifiers

to promptly detect the utterance context and to choose the best utterance rewriting strategy to adopt for

improving retrieval effectiveness. We experiment with different utterance classification and rewriting tech-

niques, showing that their adoption, together with linguistic analysis, allows us to understand how to enrich

utterances with keywords enclosing the right conversational topic and yielding to utterances that can be

effectively answered by the IR system. We integrate our novel techniques into a modular pipeline architec-

ture performing: (i) automatic utterance rewriting based on cascading or multi-class utterance classification,

(ii) first-stage retrieval of candidate documents for the rewritten utterances, and (iii) neural re-ranking of

candidate documents.

Utterance rewriting exploits linguistic analysis performed on the utterance and the output of its context

classification to devise additional content that explicitly refers to the implicit subject of the conversation

or to the specific facet of the question. The classification allows us to understand if the utterance is self-

explanatory or it misses explicit references to its context. In this latter case, the classification also helps to

identify which context is more suitable for enriching it. The second step, i.e., first-stage retrieval, narrows

down the search space by using the rewritten utterance to retrieve a limited set of relevant results. The

last step, i.e., neural re-ranking, exploits a contextualized language model based on BERT to re-rank the

retrieved documents [37].
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A comprehensive experimental evaluation of our modular architecture in terms of popular IR metrics,

e.g, P@1, P@3, and nDCG@3, is performed by adopting the TREC Conversational Assistant Track 2019

(CAsT) framework [18]. Our results show that adding context to the utterances based on the choice of our

classifiers is crucial for a more effective retrieval of the relevant documents when an explicit reference to

the conversational topic is missing. We also note that the conversation subject is typically enclosed in the

first utterance. However, context changes are also common in multi-turn conversations; so it is important to

promptly identify them to specialize the rewriting technique and to improve the quality of the results. Our

techniques for utterance rewriting take into account all these variations, surpassing, in performance, other

approaches based on co-referencing [22].

Regarding first-stage retrieval and neural re-ranking, experimental results show that pseudo-relevance

feedback is beneficial as it further expands the query with keywords extracted from the top K results

allowing an improvement of recall. Neural re-ranking provides, on the other hand, an important boost in

precision at very short cutoffs. Experiments show that our best approach achieves an improvement of 0.4855

(+215%) for P@1 and 0.4566 (+188%) for P@3 at the first-stage retrieval and of 0.6512 (+213%) for P@1

and 0.5988 (+200%) for P@3 at the neural-based re-ranking stage w.r.t. the CAsT provided baseline. The

improvement for nDCG@3 is instead of 0.3072 (+208%) at first-stage retrieval and 0.4484 (+215%) at neural

re-ranking stage, respectively.

Summarizing, the novel and unpublished contributions presented are:

• An approach for addressing the problem of utterance understanding based on a pipeline of three compo-

nents: (1) a context identification component, to detect a subset of the previous utterances considered

relevant for identifying the context of the current utterance, (2) a context generator component, re-

sponsible to extract from the previous utterances the keywords needed to enrich the current utterance

with the missing information, and (3) an utterance rewriting component, to generate the query that

will be processed by an automatic IR system. Our approach allows to detect the context of an utterance

and leverage it to generate a query for an IR system.

• Utterance classifiers for context identification trained thanks to our utterance taxonomy based on 3

classes: self-explanatory utterance, utterance depending on the first or previous topic. Our proposed

classifiers are based on gradient boosting decision trees and on bidirectional transformer neural net-

works, and we provide an evaluation of the accuracy of different combinations of classifiers.

• A detailed experimental evaluation of the impact of our utterance understanding pipeline on the effec-

tiveness of a multi-stage retrieval system, composed by a first-stage retrieval system and a second-stage

neural re-ranking system. We report different effectiveness metrics for different baselines, competitors,

and for the newly proposed methods for both the first-stage and the end-to-end systems. The strategies
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proposed in this paper are statistically better than the baseline and the rewriting techniques proposed

in [36].

Paper Structure. Section 2 discusses related work, while Section 3 introduces our conversational IR archi-

tecture and provides a detailed functional description of its utterance understanding components. Section 4

reports on the training of the utterance classifiers for context identification and discusses their performance.

The end-to-end performance of the proposed conversational IR system is carefully assessed in Section 5,

where experimental settings and baselines are also introduced. Finally, Section 6 presents the concluding

remarks.

2. Related Work

Early studies on conversational search date back to the 1980s, when efforts focused on investigating

information seeking strategies for interactive IR systems [8, 17]. More recently, Vtyurina et al. study the

human interaction with conversational systems [54] to conclude that existing conversational assistants do

not deal effectively with complex information needs. The difficulty in handling conversations with complex

and context-dependent information needs is also highlighted by Radlinski and Craswell [39]. They highlight

the need of a multi-turn interaction model for conversational search and propose a theoretical framework

to better cover contextual information needs. Previously this area was investigated by using conversation

proxies coming from services such as social media and microblogging services, where conversations are the

posts with comments from the users in the network. These tasks do not focus on retrieving responses rather

it is focused on how the discussion unravels, either in detecting social conversational features [44] or in

predicting the response rate [32].

In recent years, conversational IR gained attention in the research community in part due to advancements

in the human interaction experience introduced by emerging conversational assistants, e.g., Apple Siri,

Amazon Alexa, Google Now, and Microsoft Cortana. There are several faceted tasks related to this topic,

with research ranging from the analysis of spoken conversational search [50] to multi-modal or mixed-initiative

interaction systems [47]. Since 2019, TREC runs the Conversational Assistance Track (CAsT)2, with the

goal of establishing a robust and standard assessment process. Systems are directly compared to a common

gold standard by providing multi-turn conversations and passages relevant for the utterances extracted from

publicly available collections [18]. The primary focus of the new CAsT initiative is (i) system understanding

of information needs in a conversational format, and (ii) finding relevant passages leveraging conversational

context. The long-term vision of CAsT is focusing on progressively more complex tasks requiring multiple

interactions of the user with the system.

2http://www.treccast.ai/
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Current approaches to conversational IR include techniques belonging to different research fields. In the

following, we discuss some recent advances in two research fields, namely query/utterance rewriting and

query classification.

Query/Utterance Rewriting. Query rewriting is central in modern search as it better models the information

need of the user and enhances retrieval effectiveness. Research on query rewriting techniques for IR has a

long history, pioneered by the techniques for automatic query expansion based on pseudo-relevance feedback,

first deployed by the SMART system in TREC-3 [12]. In conversational IR, similar challenges arise, since

utterances, like queries, may be ambiguous or not-well formulated. Conversational utterance rewriting aims

to reformulate a concise turn in a conversational context to a fully specified, context-independent query that

can be effectively handled by information retrieval systems.

In conversational IR, utterance rewriting is investigated by focusing on effective strategies for handling

linguistic characteristics of human dialogues, such as anaphora (words that explicitly reference previous con-

versation turns) and ellipsis (one or more words that are omitted from the conversation and nevertheless

understood in the context of the remaining elements of the conversation). Conversational IR systems require

mechanisms capable of resolving contextual dependencies to correctly interpret the evolution of the conver-

sation, and utterance rewriting techniques are key in solving this task. While existing co-reference resolution

tools are designed to handle anaphoras, they do not provide any support for elliptical constructions. Yang

et al. propose the use of neural matching models for the next question prediction task in conversations [56].

Experiments on public data show that neural matching models perform well on this kind of task. Mele et al.

show that the addition of topic-related information when an explicit reference to the conversational topic is

missing is crucial for the effectiveness of conversational IR systems. Moreover, they propose some utterance

rewriting strategies leveraging topic information extracted from the first utterance or from previous utter-

ances containing cues or noun chunks. Their experiments show that such rewriting strategies obtain higher

effectiveness than rewriting strategies based on co-referencing [36].

Ren et al. propose the exploitation of a sequence-to-sequence model for context-aware rewriting of

conversational queries [41], while Aliannejadi et al. illustrate a dataset and a methodology to identify the

utterances relevant to a given turn by introducing a neural utterance relevance model based on BERT [1].

Yu et al. presents a few-shot generative approach to conversational query rewriting [58]. The authors

develop two methods, based on rules and self-supervised learning, to generate weak supervision data using

large amounts of ad-hoc search sessions. These data are used to fine-tune GPT-2 to rewrite conversational

queries. They show that on the TREC Conversational Assistance Track, the weakly supervised GPT-2

rewriter improves the state-of-the-art ranking accuracy by 12%, by only using a limited number of manual

query rewrites. Their experiments show that GPT-2 effectively learns to capture context dependencies, even

for hard cases involving long-turn dependencies.
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Other researchers tackle the problem of conversational question answering. Vakulenko et al. [51] propose a

question-rewriting technique able to translate ambiguous requests into semantically equivalent unambiguous

questions. The solution is applied to two different question-answering architectures for passage retrieval and

for answer extraction from passages. The question-rewriting model is based on a unidirectional Transformer

decoder whose input is the (potentially ambiguous) current question plus five previous conversation turns.

The model is trained using a set of ground-truth questions manually rewritten by human annotators and is

based on a teacher-forcing approach. Given a sequence of previous tokens, the model tries to predict the next

token in an output sequence. This approach relies on manually rewritten utterances, while we use manually

annotated utterances where labels help to define the best source from which the ambiguous utterance should

be enriched. In a follow-up work [52], Vakulenko et al. present an extensive comparison of different question-

rewriting methods on the CAsT 2019 and 2020 datasets. They compare original user questions and human

rewritten questions against questions automatically rewritten by sequence-generation models based on GPT-

2 and by a term-classification method, called QuReTeC. Given the conversation, the approach applies BERT

to predict the terms that should be added to the current question. The authors also prove that combining

different models can improve the performance. In particular, simply appending the terms predicted by

QuReTeC to the questions rewritten by a sequence-generation model allows to improve the state-of-the-art

ranking performance. Differing from our work, the question-rewriting approaches discussed are based on

sequence-generation models and term classification, while we use heuristics for general utterance rewriting.

A different line of research focuses on improving result ranking by incorporating external knowledge.

Yang et al. propose a learning framework on top of deep neural matching networks that leverages external

knowledge for response ranking in information-seeking conversation systems [55]. Information extracted

from the pseudo relevance feedback documents of the candidate responses is first used to enrich the original

candidate representations. Then, “correspondence” patterns between question and answer terms in external

question-answer pairs are incorporated into deep matching networks to help response selection. Experiments

on three conversational datasets show that the proposed approach outperforms several baselines.

Work resembling our approach is Voskarides et al. [53], where query rewriting for conversational search is

modeled as a binary term classification task. For each term in previous turns of the conversation, a classifier

decides whether to add it to the current query or not. The model encodes the conversation history and the

current query using BERT and uses a term classification layer to predict a binary label for each term in the

conversation history. Differing from this work, we design effective classifiers to detect the utterance context

and choose the best rewriting strategy to adopt for the utterance to improve the conversation IR system

effectiveness.

Query Classification. Early query classification efforts ground in Web mining research, where the charac-

terization of the nature of the queries is an important task for understanding user behavior and improving
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web search effectiveness. Query logs are analyzed to extract useful information about user interactions, and

query classification is exploited for several tasks such as query recommendation [3, 45, 59], query clustering

[2], document ranking [16], and session segmentation [9, 33, 40]. Pioneering work on query classification is

Lau and Horvitz [29], where the authors study a manually-labeled log from the Excite search engine and

classify query reformulation types with the final aim of building a Bayesian model of the user behavior that

takes into account also temporal information.

Rie and Xie explicitly target reformulation patterns in user search sessions [42]. In their studies, they

manually study 313 search missions and introduce a taxonomy for query classification/reformulation. In

2004 through 2007, to improve retrieval accuracy and efficiency, a week-long, hundreds of millions of queries,

general-purpose, commercial web log was used to conduct a variety of query classification and other analysis

studies [4, 5, 6, 7]. Resulting topic routing and caching strategies improved efficiency, while query disam-

biguation algorithms increased accuracy. In 2007, Jansen et al. propose an analysis of 1.5 million query

reformulations from a large commercial query log [26, 27]. They introduce automatic query classification

by exploiting a previous approach by He et al. [24], where the reformulations are identified with a set of

pre-defined rules. This classification employs 6 features that model term differences between a pair of queries.

Later, Boldi et al. revisit the taxonomy introduced by Rie and Xie by introducing a coarser granularity

for reformulations that, although part of the same search mission, are not just simple direct reformulations of

the previous query [10, 11]. They provide a new model for query reformulation that involves “generalization”

and “specialization” plus two new classes, i.e., “correction, and “parallel move”. Moreover, they also extend

the previous approach by Jensen by learning from labeled data a query reformulation classifier based on

27 features. The authors show that by exploiting a mix of several signals (cosine similarity, query length,

n-grams, etc) they can discover unexpected reformulations like from “dango” to “Japanese cakes” while

being able to cover simpler cases that are also modeled by previous approaches.

Like Boldi et al. we also train query/utterance classifiers to explicitly model the contextual dependency

of a utterance from the whole conversation. We use the result of the classification to feed adaptive utterance

rewriting strategies considering the evolution of the multi-turn dialogue of the user with the system.

3. Conversation Understanding Architecture

We now provide formal definitions and describe our conversational understanding architecture. A sum-

mary of the notation used herein is summarized in Table 1.

Given a conversation, let ui denote the current utterance, while u1, . . . , ui−1 denote the previous utter-

ances of the same conversation. Moreover, we use the term context to indicate the theme of an utterance in

the multi-turn conversation. Our conversational IR system receives as input utterances. Given the current

and previous utterances of the same conversation, its goal is to retrieve a ranked list of documents from a
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document collection.

To retrieve highly relevant documents, our utterance understanding approach exploits the conversation

context in any utterance since natural language utterances might not be self-explanatory. Indeed, if the

utterances are used directly as queries, they can be ambiguous or too generic. The system must thus

automatically transform the utterances into queries, i.e., sequences of keywords suitable for processing and

answered by an IR system. As illustrated in the upper half of Figure 1, our conversational system is

structured as a three-step cascade architecture, namely utterance understanding, first-stage top retrieval,

and second-stage neural reranking [13, 23, 49]. First, the utterance understanding component transforms the

input utterance into a suitable query. Second, the first-stage top retrieval component processes the input

query and retrieves a list of top K1 documents from a document collection D. Third, the second-stage neural

reranker reorders the K1 documents received in input to output the final ranked list of K2 � K1 documents.

qi
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<latexit sha1_base64="mqTvFpC+/6sI+ZDDZUVKRRY6sFU=">AAACAHicbVC7TsNAEDyHVwivACXNiQgpVWQjJKCLREMZJJxESkx0vmzCKeezdbdGiaw0fAUtVHSIlj+h4F+wjQtImGo0s6udHT+SwqBtf1qlldW19Y3yZmVre2d3r7p/0DZhrDm4PJSh7vrMgBQKXBQooRtpYIEvoeNPrjK/8wDaiFDd4iwCL2BjJUaCM0ylO3eQ9BGmmHCczueDas1u2DnoMnEKUiMFWoPqV38Y8jgAhVwyY3qOHaGXMI2CS5hX+rGBiPEJG0MvpYoFYLwkTz2nJ7FhGNIINBWS5iL83khYYMws8NPJgOG9WfQy8T+vF+PowkuEimIExbNDKCTkhwzXIq0D6FBoQGRZcqBCUc40QwQtKOM8FeO0n0rah7P4/TJpnzacs8blzVmtWS+aKZMjckzqxCHnpEmuSYu4hBNNnsgzebEerVfrzXr/GS1Zxc4h+QPr4xtHvZeR</latexit>

Tctx

<latexit sha1_base64="H/6wB3SVoUOVIURosRB8ix90JG0=">AAACAHicbVC7TsNAEDyHVwivACXNiQgpVWSjSEAXiYYySHlJSYjOl0045Xy27tYokeWGr6CFig7R8icU/Au2cQEJU41mdrWz4wZSGLTtT6uwtr6xuVXcLu3s7u0flA+POsYPNYc296Wvey4zIIWCNgqU0As0MM+V0HVn16nffQBthK9auAhg6LGpEhPBGSbSXWsUDRDmGHGcx/GoXLFrdga6SpycVEiO5qj8NRj7PPRAIZfMmL5jBziMmEbBJcSlQWggYHzGptBPqGIemGGUpY7pWWgY+jQATYWkmQi/NyLmGbPw3GTSY3hvlr1U/M/rhzi5HEZCBSGC4ukhFBKyQ4ZrkdQBdCw0ILI0OVChKGeaIYIWlHGeiGHSTynpw1n+fpV0zmtOvXZ1W680qnkzRXJCTkmVOOSCNMgNaZI24USTJ/JMXqxH69V6s95/RgtWvnNM/sD6+AZGIZeQ</latexit>

ûi

<latexit sha1_base64="p7V93WERwqGODFoql7tWuFfV6Iw=">AAAB+3icbVA9TwJBEN3DL8Qv1NJmIzGhIneGRO1IbCwxEdDAhcwtA2zY+8junAm58CtstbIztv4YC/+Ld+cVCr7q5b2ZzJvnRUoasu1Pq7S2vrG5Vd6u7Ozu7R9UD4+6Joy1wI4IVajvPTCoZIAdkqTwPtIIvqew582uM7/3iNrIMLijeYSuD5NAjqUASqWHwRQoiRdDOazW7Iadg68SpyA1VqA9rH4NRqGIfQxIKDCm79gRuQlokkLhojKIDUYgZjDBfkoD8NG4SR54wc9iAxTyCDWXiuci/t5IwDdm7nvppA80NcteJv7n9WMaX7qJDKKYMBDZIZIK80NGaJk2gXwkNRJBlhy5DLgADUSoJQchUjFOq6mkfTjL36+S7nnDaTaubpu1Vr1opsxO2CmrM4ddsBa7YW3WYYL57Ik9sxdrYb1ab9b7z2jJKnaO2R9YH9/skZUZ</latexit>

ui

<latexit sha1_base64="s5b+dreqMgwYvTz+qabE3uettVY=">AAAB9XicbVC7TsNAEDyHVwivACXNiQgpVWQjJKCLREMZBHlIiRWdL5twyvls3e2BIiufQAsVHaLleyj4F2zjAhKmGs3samcniKUw6LqfTmlldW19o7xZ2dre2d2r7h90TGQ1hzaPZKR7ATMghYI2CpTQizWwMJDQDaZXmd99AG1EpO5wFoMfsokSY8EZptKtHYphteY23Bx0mXgFqZECrWH1azCKuA1BIZfMmL7nxugnTKPgEuaVgTUQMz5lE+inVLEQjJ/kUef0xBqGEY1BUyFpLsLvjYSFxszCIJ0MGd6bRS8T//P6FscXfiJUbBEUzw6hkJAfMlyLtAOgI6EBkWXJgQpFOdMMEbSgjPNUtGkplbQPb/H7ZdI5bXhnjcubs1qzXjRTJkfkmNSJR85Jk1yTFmkTTibkiTyTF+fReXXenPef0ZJT7BySP3A+vgEA6ZJM</latexit>

<latexit sha1_base64="9r6OWpD8b5y8dbi5ROk2upAVrJc=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESGlimwEgjISDRJNEOQhJVZ0vmzCKeeH7tagyMon0EJFh2j5Hgr+Bdu4gISpRjO72tnxIiUN2fantbS8srq2Xtoob25t7+xW9vbbJoy1wJYIVai7HjeoZIAtkqSwG2nkvqew400uM7/zgNrIMLijaYSuz8eBHEnBKZVurwfOoFK163YOtkicglShQHNQ+eoPQxH7GJBQ3JieY0fkJlyTFApn5X5sMOJiwsfYS2nAfTRukkedsePYcApZhJpJxXIRf28k3Ddm6nvppM/p3sx7mfif14tpdOEmMohiwkBkh0gqzA8ZoWXaAbKh1EjEs+TIZMAE15wItWRciFSM01LKaR/O/PeLpH1Sd87q9s1ptVErminBIRxBDRw4hwZcQRNaIGAMT/AML9aj9Wq9We8/o0tWsXMAf2B9fANlOpHi</latexit>

K1
<latexit sha1_base64="F8UsYYUQLUkImLewoYxjScdTFf8=">AAAB9XicbVC7TsNAEDyHVwivACXNiQgpVWRHICgj0SDRBEEeUhJF68smnHJ+6G4Niqx8Ai1UdIiW76HgX7CNC0iYajSzq50dN1TSkG1/WoWV1bX1jeJmaWt7Z3evvH/QNkGkBbZEoALddcGgkj62SJLCbqgRPFdhx51epn7nAbWRgX9HsxAHHkx8OZYCKJFur4f1Ybli1+wMfJk4OamwHM1h+as/CkTkoU9CgTE9xw5pEIMmKRTOS/3IYAhiChPsJdQHD80gzqLO+UlkgAIeouZS8UzE3xsxeMbMPDeZ9IDuzaKXiv95vYjGF4NY+mFE6Iv0EEmF2SEjtEw6QD6SGokgTY5c+lyABiLUkoMQiRglpZSSPpzF75dJu15zzmr2zWmlUc2bKbIjdsyqzGHnrMGuWJO1mGAT9sSe2Yv1aL1ab9b7z2jByncO2R9YH99myZHj</latexit>

K2

Figure 1: Conversation understanding architecture.

The utterance understanding component is our main focus. It transforms the current utterance ui ex-

pressed in natural language into a structured query qi expressed in an IR-specific query language such as

the Indri [46] or Terrier [38] query languages. The conversational search utterances express different facets

of the user information need. An utterance can be self-explanatory or vague; it can explore several aspects

regarding an implicit topic, can be a specialization, a paraphase, and even a topic switch. All these nu-

ances are hard to capture and even harder to resolve [41]. For such reasons, we propose different utterance

understanding techniques to improve the expressiveness of queries. Our utterance understanding strategies

transform a potentially vague and ambiguous conversational utterance into a self-explanatory query that can

be effectively processed by an IR system to provide highly relevant results to conversational searches.

To address the problem of utterance understanding, i.e., to detect the context of an utterance and leverage

it to generate a query for an IR system, we propose the components depicted in the lower-half expansion of

Figure 1. The input utterance ui is provided to a context identification component. This component receives

as additional input the previous utterances u1, . . . , ui−1 of the same conversation, and it returns a subset

Uctx of the previous utterances considered relevant to identify the context of ui. The relevant utterances
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Table 1: Notation.

Symbol Definition

D document collection

K1 number of documents returned by the first stage top retrieval module

K2 number of documents returned by the second stage neural reranker module

ui utterance at turn i of the current conversation

yi classification label of the utterance at turn i of the current conversation

qi query at turn i of the current conversation

Uctx set of the utterances together with their context classification information

ci context terms extracted from the utterance ui

Tctx set of the context terms together with their context classification information

ûi utterance at turn i enriched with context information

ĉi context terms extracted from the utterance context-enriched utterance ui

SE classification label for utterances that are Self Explanatory

FT classification label for utterances referring to the First Topic in the conversation

PT classification label for utterances referring to a Previous Topic in the conversation

different from the first one

included in Uctx are identified by means of specific utterance classifiers as discussed in Section 3.1.

The selected utterances are then provided to a context generator component (see Section 3.2), responsible

to extract from them the keywords needed to enrich ui with the missing information. For example, this

information can include noun chunks and/or named entities. The output of this component is a set Tctx

of keywords to be used by the utterance rewriting component (see Section 3.3) to generate a new enriched

utterance ûi. Note that the Uctx and Tctx sets can be empty if the utterance ui is self-explanatory and

its context is already completely specified in the utterance. The rewritten utterance is then processed by

the query generator (see Section 3.3), responsible to generate the query to be submitted to the first stage

retrieval component. For example, the query generator can include some preprocessing such as stopword

removal, stemming and special phrase operator generators [35, 48].

3.1. Context Identification

The identification of an utterance’s context can be challenging due to a plethora of different problems,

such as back references to topic/entities mentioned in previous utterances, i.e., zero anaphoras, or context

changes, i.e., topic shifts. We focus on these problems of lack or change of context by investigating novel

ways to identify the context – possibly missing – of an utterance, given the previous utterances in the same

10



Table 2: Example of a multi-turn conversation with their classification label.

Turn Utterance Label

1 Is Red Bull bad for you? SE

2 Can it kill you? FT

3 How much can you drink in a day? FT

4 What is taurine? SE

5 What are its health effects? PT

6 In general, what are the effects of consuming energy drinks? SE

7 Why are they harmful when mixed with alcohol? PT

8 What is the argument for their age restriction to kids? PT

9 Where are they banned to minors? PT

conversation.

The context identification component receives as input the current utterance ui along with the sequence

of previous utterances of the conversation u1, . . . , ui−1. Its goal is to understand if ui is self explanatory or

needs to be enriched with context extracted from the previous utterances in the conversation. Hence, the

context identification component identifies a set of the utterances together with their context classification

information Uctx necessary to provide the contextual information for rewriting ui (see Alg. 1). The core of

the component is the Classify function (line 1) taking as input a utterance and the previous utterance class

pairs (if any) and returning three main classes of utterance that are then used to specify the content added

to Uctx (lines 3, 5 and 7).

By carefully inspecting the utterances in the publicly available CAsT dataset, we notice that the con-

versations exhibit some common characteristics that can be exploited to identify the context of a generic

utterance ui. An example of multi-turn conversation and of the kinds of utterances observable in the con-

versational dataset is reported in Table 2. We refer to the exemplary utterances in this conversation to

introduce the three different cases for utterance context identification discussed below:

• The first utterance u1 in all conversations is Self Explanatory (SE) since it always contains an explicit

mention to the initial topic of the new conversation. In some cases, these utterances include acronyms

difficult to resolve, e.g., “What is nominal GDP?”, or refer to a rare topic, e.g.,“What is paleo?”

Anyway, they always contain all the context needed to understand the information need of the user.

The turn 1 utterance in Table 2 exemplary illustrates this case recurring in all the conversations of the

dataset. Even utterances in positions different from the first one can be SE. We observe that quite often

SE utterances appearing in the middle of a conversation introduce a change in the conversation’s topic.

11



Algorithm 1: The context identification algorithm

Input : A list C of i− 1 (utterance, class) pairs

The current utterance ui

Output: A list Uctx of 1, 2, or i (utterance, class) pairs

ContextIdentification(C):

1 switch Classify(ui, C) do

2 case SE do

3 Uctx ← [(ui, SE)]

4 case FT do

5 Uctx ← [(u1, SE), (ui, FT)]

6 case PT do

7 Uctx ← C + [(ui, PT)]

8 return Uctx

In our conversation example in Table 2, we have two cases of this kind: turn 4, where we observe the

mention to “taurine”, a new topic introduced in the conversation, and in turn 6, where we encounter

another topic drift: “taurine” → “energy drinks”. Independent of their position in the multi-turn

conversation, SE utterances do not need to be enriched with context extracted from other utterances.

Thus, for all of them, the context identification component simply outputs Uctx = {(ui, SE)}.

• The First Topic (FT) in the conversation often dominates its context. Many utterances are in fact

not SE but refer implicitly to the topic introduced by the first utterance of the conversation. In our

conversation example in Table 2, this case is represented by the utterance at turn 2 which carries

as context the first utterance of the conversation. For all FT utterances, the context identification

component outputs Uctx = {(u1, SE), (ui, FT)}.

• The last case is when ui implicitly refers to a Previous Topic (PT) mentioned in an utterance different

from the first one. In our conversation in Table 2, we observe PT utterances at turns 5, 7, 8, and 9.

These utterances only become understandable if enriched with context extracted from utterances 4

and 6. We experiment with different strategies for rewriting PT utterances (see Section 3.3). Thus,

when our context identification component encounters a PT utterance, it outputs the sequence of all

previous and current utterances along with their labels Uctx = {(u1, y1), . . . , (ui−1, yi−1), (ui, PT)}, with

y1, . . . , yi−1 ∈ {SE, FT, PT}.

This classification is used in our utterance understanding component to select the adaptive strategies for

utterance rewriting.

12



Algorithm 2: The context generation algorithm

Input : A list Uctx of 1, 2, or i (utterance, class) pairs

Output: A list Tctx of 0, 1, or i− 1 (context, class) pairs

ContextGeneration(Uctx):

1 switch yi do

2 case SE do

3 Tctx ← []

4 case FT do

5 c1 ← Extract(u1)

6 Tctx ← [(c1, SE)]

7 case PT do

8 Tctx ← []

for k ← 0 to i− 1 do

9 ck ← Extract(uk)

10 Tctx ← Tctx + [(ck, yk)]

11 return Tctx

3.2. Context Generation

The context generation component (see Alg. 2) receives as input Uctx, containing the contextual infor-

mation required to understand the information need expressed in utterance ui, as explained in Section 3.1.

The component extracts the context information by analyzing the utterances in Uctx to generate the context

Tctx, which in turn is passed to the utterance rewriting component detailed in Alg. 3. More formally, given

an utterance ui, we denote with ci the context extracted from the utterance. Such context consists of a list

of tokens extracted from the utterance with the help of the context generation component, i.e., the Extract

function (lines 5, 9). Every context ci is paired with the corresponding utterance label yi, and hence Tctx

is defined as a list of (ci, yi) pairs depending on Uctx. Note that the labels y1, . . . , yi will be used to apply

different rewriting strategies in the utterance rewriting component.

Part-of-speech tagging, named entity resolution, dependency parsing and co-reference resolution are the

linguistic analysis components which help identify significant pieces of text and which we exploit in our

context generation strategies to compute the different contexts. We extract various linguistic features from

the utterances3. The context generation component offers different methodologies, each one exploiting a

distinct set of linguistic features:

• Context extraction uses dependency parsing for identifying significant noun chunks, e.g., objects or

subjects different from pronouns. For example, given the utterance “Is Red Bull bad for you?”, this

3By using the spacy library available at https://spacy.io/usage/linguistic-features.
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method returns the noun chunk “Red Bull”.

• Context on cue is based on cues (e.g., “tell me about”) and tries to capture a context change that

might be significant for the conversation from that point on. It is based on dependency parsing for

extracting the current context from the utterance. For example, given the utterance “Tell me about

taurine.”, this method returns “taurine”.

• Context binder captures all previous noun chunks, different from pronouns, which are either subjects

or objects, to enrich the context of the conversation up to the current turn. For example, given the

utterance at Turn 5 “What are its health effects?”, this method returns a set of noun chunks from

previous utterances“{Red Bull, drink in a day, taurine}”. With conversation progression, context

increases. This brings benefits in case the conversation is mono-thematic (high recall), but can lead to

lower precision when wanting to answer a very specific question or when a context drift occurs.

Independent of the specific context generation methodology adopted, the output resulting from this

component Tctx transforms the input Uctx, by extracting from each utterance the context keywords, and

passes them to the next component, utterance rewriting, together with the label, as follows:

• if Uctx = {(ui, SE)} then Tctx = {}, meaning no context information if ui is self explanatory (SE);

• if Uctx = {(u1, SE), (ui, FT)} then Tctx = {(c1, SE)}, meaning the context information is extracted from

the first utterance u1 since the current utterance ui is labeled as first topic (FT);

• if Uctx = {(u1, y1), . . . , (ui−1, yi−1), (ui, PT)} then Tctx = {(c1, y1), . . . , (ci−1, yi−1)}, meaning that the

context information is extracted from all the previous utterances u1, . . . , ui−1 if the current utterance

ui is labeled as previous topic (PT).

3.3. Utterance Rewriting

The utterance rewriting component (see Alg. 3) takes as input the current utterance ui and Tctx, the

context keywords produced by the previously explained component, and rewrites the current utterance ui

according to one of the utterance rewriting strategies presented below. Our strategies exploit the utterance

classification provided by the context identification component to select the best source of context depending

on the class. The output is an enriched utterance ûi with the augmented context terms and can be converted

in a query for the information retrieval system by the query generator component.

Given an utterance classified as self-explanatory (SE), the utterance rewriting component receives as input

Tctx = [], meaning that the current utterance ui does not need any additional context (lines 1, 2). Otherwise,

the original utterance ui must be enriched with context extracted by the context extraction component. We

propose different rewriting strategies for the propagation of context.
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1. Standard : if ui is classified as FT, then it is enriched with context extracted from the first utterance,

i.e., c1 (line 8). Consider, for example, the conversation shown in Table 2. The second utterance is

not self-explanatory and is classified as FT. As a consequence, “Can it kill you?” becomes “Can Red

Bull kill you?”. If ui is classified as PT, then the context is extracted from the previous utterance,

i.e., ci−1 (line 10). For example, the fifth utterance “What are its health effects?” which is classified

as PT becomes “What are taurine health effects?” as it is enriched with the topic from the previous

utterance (i.e., the fourth).

2. Enriched : similar to (1), but if ui is classified as PT, then the context is extracted from the previous

enriched utterance ûi−1, namely ĉi−1 (line 15). As an example, the sixth utterance from Table 2

“What is the argument for their age restriction to kids?” is classified as PT. It is rewritten using the

enriched previous utterance, namely, “Why are energy drinks harmful when mixed with alcohol?” So,

it becomes “What is the argument for energy drinks age restriction to kids? harmful mixed alcohol.”

3. Last SE: this method always propagates the context extracted from the last seen SE utterance (line 17),

regardless of the current utterance label (FT or PT), i.e., cj with j = max{k : 0 < k < i ∧ yk = SE}

(line 5). Note that the last seen SE utterance is not necessarily the utterance of the previous turn, i.e.,

ui−1. As an example, “Where are they banned to minors?” becomes “Where are energy drinks banned

to minors?”

4. First and last SE: Similar to (3), but the rewriting strategy uses context from both the last seen SE

utterance and from the first utterance, i.e., c1 and cj , with cj defined as in (3) (line 19). For instance,

the utterance “Where are they banned to minors?” becomes “Where are energy drinks banned to

minors? Red Bull” as the topic extracted from the first utterance is always added to the question with

the purpose of enriching its context.

5. First or last SE: If ui is classified as FT, it is enriched with the context extracted from the first utterance,

i.e., c1 (line 22). If ui is classified as PT, then the context is extracted from the last seen SE instead of

the previous utterance, i.e., cj , with cj defined as in (3) (line 24). For instance, the utterance “Where

are they banned to minors?”becomes “Where are energy drinks banned to minors?” As energy drinks

is the last seen topic.

The Resolve function takes as input a utterance and a context (line 25). The output of this function is a

rewritten utterance ûi which includes the proper context in case of implicit or explicit references. In detail,

if the utterance contains a third-person pronoun, it is replaced with the context, otherwise the context is

concatenated at the end of the utterance. The transformed utterance is then passed to the query generation

component that converts it into a query interpretable by a search engine such as a classical or neural IR

system. As preprocessing, the IR system will perform standard operations such as lower-casing, stemming,

and stopword removal.
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Algorithm 3: The utterance rewriting algorithm
Input : The current utterance ui

The previous rewritten utterance ûi−1

A list Tctx of 0, 1, or i− 1 (context, class) pairs

The rewriting method m

Output: The rewritten utterance ûi

UtteranceRewriting(Tctx, ûi−1, ui,m):

1 if len(Tctx) = 0 then

// yi is SE

2 ctx← []

3 else

// yi is FT or PT

4 switch m do

5 j ← max{k : (uk, SE) in Tctx}

6 case Standard do

7 if yi = FT then

8 ctx← c1

9 else

10 ctx← ci−1

11 case Enriched do

12 if yi = FT then

13 ctx← c1

14 else

15 ctx← Extract(ûi−1)

16 case Last SE do

17 ctx← cj

18 case First and last SE do

19 ctx← c1 + cj

20 case First or last SE do

21 if yi = FT then

22 ctx← c1

23 else

24 ctx← cj

25 ûi ← Resolve(ui, ctx)

26 return ûi
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4. Utterance Classification

We now present the training and evaluation process of the utterance classifiers for context identification.

First, we present the datasets employed and the labeling process used to develop a golden truth for the

classifiers. Then, we report on the performance of different approaches for our utterance classification task.

4.1. Datasets and Labeling Process

We exploit two public and well-established conversational IR datasets to train the context identification

classifiers and assess the performance of our proposed conversational understanding architecture, namely the

CAsT 2019 dataset and the ConvQuestions dataset [14]:

• CAsT 2019 Dataset. The TREC Conversational Assistant Track (CAsT) 20194 provides a dataset

with 80 multi-turn conversations, having each from 8 to 12 utterances (748 utterances in total). Rel-

evance judgments, graded on a three-point scale (i.e., 2 very relevant, 1 relevant, and 0 irrelevant),

are provided for 20 conversations including 194 out of the 748 utterances. The judgements refer to

utterance-passage pairs where the passages are extracted from documents in three collections: (1)

TREC CAR (Complex Answer Retrieval), containing ∼29M passages extracted from ∼5M Wikipedia

articles, (2) MS-MARCO (MAchine Reading COmprehension), composed by ∼8M passages from an-

swer candidates of the Bing search engine, and (3) the WAPO (WAshington POst) dataset, consisting

of ∼8M passages extracted from ∼608K news articles. This dataset is used for both classification

training and conversational search performance assessment.

• ConvQuestions Dataset. Since the CAsT dataset does not provide enough utterances to train effective

classifiers for our context identification task, we used also other utterances from the ConvQuestions

(ConvQ) dataset [14], consisting of 350 conversations. Among these conversations, we selected 214

conversations for a total of 1, 010 utterances that provide relevant examples of our classification classes

for context identification. Notice that these utterances are used only for enriching the training set

for the classification task. We do not use these conversations for testing the performance of our

conversational IR solution, as utterance-passage relevance judgements are missing for them.

The utterances in the CAsT and ConvQ datasets were manually labeled by 5 annotators according to

our 3 classification classes (SE, FT, PT)5. The human annotators are researchers and PhD students with a

strong background in information retrieval. We measured the inter-annotator agreement with the Fleiss’

Kappa [21] indicator that provides us with a consistency measure of the assessors’ ratings. It is computed as

4http://www.treccast.ai/
5To favor reproducibility and further developments, we release the annotated dataset and the source code implementing our

solution at the following link: https://github.com/hpclab/adaptive-utterance-rewriting-conversational-search.
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κ = P̄−P̄e

1−P̄e
, where 1− P̄e gives the degree of agreement that is attainable above chance, and P̄ − P̄e gives the

degree of agreement actually achieved above chance. If κ = 1 the agreement is complete, while κ ≤ 0 means

no agreement. We registered a Fleiss’ Kappa value of 0.945 which, according to the table for interpreting κ

values provided in [28], corresponds to an “almost perfect” agreement.

4.2. Utterance Classification

The context identification component aims at understanding if an utterance is self-explanatory, i.e., SE,

or it needs to be enriched with context extracted from the previous turns in the conversation, i.e., FT or PT.

To automatically associate one of the three class labels to the utterances processed by our conversational

search architecture, we develop different classifiers that approach the task by performing either a cascade of

two binary classification steps or one multilabel classification, as depicted in Figure 2.

SE

FT

PT

FT

SE SEFT

PT FT Self-explanatory 
classification

First vs. previous 
topic classification

SE

SE

SE

FT PT
FT

SE

SE SEFT

PT FT
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SE
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FT
Multi-label 
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Binary Classification Multi-label Classification

Figure 2: Binary classification cascade (left) and multi-label classification (right).

In the first approach, utterance classification is implemented as a cascade of two stages: the first stage

distinguishes between SE and non-SE utterances, where the former (SE) does not need any additional context,

while the latter (non-SE) misses some context and needs enrichment. For those utterances that are classified

as non-SE, the second stage determines if the utterance is FT, i.e., it needs context from the first utterance,

usually introducing the general topic of the conversation, or PT, i.e., it needs context from a previous utterance

different from the first one. In the multi-label classification, there is only one classifier, simply getting as

input an utterance and returning one of the three labels, i.e., SE, FT, PT.

We follow a standard train/test methodology by splitting the manually labeled utterances into two sets:

the training set for learning the classifier and the test set for checking its predictive performance. More

specifically, we use all the labeled utterances from the ConvQ dataset and 554 utterances without relevance

assessments from the CAsT dataset for training, while the remaining 194 test utterances with relevance

assessments from CAsT are used for testing the classification accuracy. As detailed in the following, we

tackle our utterance classification task by training classifiers based on gradient boosting decision trees [60]

and on the BERT [20] bidirectional transformer neural network.

GBDT classifiers. We first perform the classification employing Gradient-Boosted Decision Trees (GDBT),

a non-parametric supervised learning method [60]. Gradient boosting is a broad concept that identifies a
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group of machine learning algorithms that combine many weak learners together to create a strong predictive

model. The goal is to create a model that predicts the class of an utterance by learning decision trees inferred

from a dense feature representation of utterances and labels. For training the classifiers, we specifically use

the LightGBM6 implementation of GDBT.

Features. The input representation for GBDT classifiers is based on two sets of sentence-level and conversa-

tion-level hand-crafted features. The complete list of features is reported in Tables 3 and 4. Named entities

are detected using both the Spacy7 and TagMe8 toolkits. The set of features listed in Table 3 is used for

the binary classifier aimed at deciding whether the utterance is SE or not. For this task, we build a rich

set of sentence-level features, with the help of the linguistic features provided by Spacy, enabling the model

to discriminate between utterances that lack context or those that contain all the elements for generating

a possibly successful query. For example, the presence of third person pronouns is an indication that the

utterances are not self-explanatory.

The set of conversation-level features listed in Table 4 is instead designed to model the relation of the

current utterance with the previous utterances in the conversation. These features are used by the second

classifier of the classification cascade aimed at distinguishing between FT and PT utterances. We look at the

depth of the current utterance within the conversation (i.e., turn) and how distant it is from the last SE,

either immediately after or several turns after. Another group of features are referring to the likelihood of

the current utterance to be the next after the first utterance or the previous utterance, in other words we

would like to answer the question: is the current utterance more likely to follow the first or the previous

utterance. For extracting these features we use the next sentence prediction BERT-base model, and give in

input two pairs, the current with the first utterance or the current with the previous utterance. We use the

model available in the HuggingFace library9. The last four features in Table 4 consider the cosine similarity

between the current utterance and the first or previous utterances in the conversation, either considering the

full-text utterances or only the noun chunks. The cosine similarity is computed on sentence transformers

embeddings from the RoBERTa model10.

BERT classifiers. We employ the BERT bidirectional transformer network [20] to perform utterance clas-

sification as a cascade of two binary classifiers (Figure 2 (left)). The BERT model we use is fine-tuned on

MS-MARCO and is publicly available as part of the Hugging Face transformers library11. We train the SE

vs. non-SE classification layer on top of this BERT model by using binary cross-entropy loss and a sigmoid

6https://github.com/microsoft/LightGBM
7https://spacy.io/usage/linguistic-features
8https://tagme.d4science.org/tagme/
9https://huggingface.co/transformers/model_doc/bert.html#bertfornextsentenceprediction

10https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens
11https://huggingface.co/nboost/pt-bert-base-uncased-msmarco
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Table 3: Sentence-level features used for the SE vs. non-SE GBDT classifier.

Numerical features Binary features

Utterance length Is it a complete sentence?

Number of tokens Is there a question mark?

Number of noun chunks Is it a what phrase (e.g., “what is”)?

Number of question words (e.g., what, where) Is there a question word (e.g., what, where)?

Number of question phrases (e.g., “how much”)? Is there a question phrase (e.g., “how many”)?

Number of named entities (detected by Spacy) Is there a named entity (detected by Spacy)?

Number of named entities (detected by TagMe) Is there a named entity (detected by TagMe)?

Number of nouns Is there a noun?

Number of adjectives Is there an adjective?

Number of comparative adjectives Is there a comparative adjective?

Number of adverbs Is there an adverb?

Number of comparative adverbs Is there a comparative adverb?

Number of pronouns Is there a pronoun?

Number of 3rd person pronouns Is there a 3rd person pronoun?

Is there a cue phrase (e.g., “tell me about”)?

activation on the output. The classifier is trained for 5 epochs by employing a learning rate of 5× 10−5. We

also use a validation set to stop the training process whenever no more gain over the loss is observed. The

validation set is generated by randomly sampling 20% of the utterances in the training set.

The FT vs. PT classifier is trained in two different ways. In the first implementation, we employ the same

methodology used for training the SE vs. non-SE, but differently from the previous case, here we exploit as

training examples only the utterances that are not labeled as SE in the ground truth, leaving the training set

with 1,096 utterances. In the second implementation, FT vs PT classification exploits the available context

given by all the previous utterances of the conversation. In this case, we use BERT for a sentence pair

classification task, where one sentence is the context built as a concatenation of all the previous utterances

of the conversation, and the second sentence is the current utterance to be classified as FT or PT. We call

this classifier “BERT with Context” (BERTctx). As before, we exploit 1,096 utterances for training the

network and randomly sample 20% of the training set to be used as validation set during training. The best

performance of the classifier on the validation set is observed after 6 epochs using a learning rate of 1×10−4.

BERT multi-label classification. We also employ the same BERT model fine-tuned on MS-MARCO to per-

form multi-label utterance classification. Unlike the previous cascade of BERT binary classifiers, we train

one single classifier that, given an utterance, provides the class that the utterance most likely belongs to (Fig-
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Table 4: Conversation-level features used for the FT vs. PT GBDT classifier

Description Type

Turn in the conversation Numerical

Is it after a SE utterance? Binary

Distance from the last SE utterance Numerical

Likelihood after first utterance Numerical

Likelihood after previous utterance Numerical

Cosine similarity with the first utterance Numerical

Cosine similarity with the previous utterance Numerical

Cosine similarity with the first utterance (using only noun chunks) Numerical

Cosine similarity with the previous utterance (using only noun chunks) Numerical

ure 2 (right)). To do so, we train a multi-label classifier on top of BERT by using a categorical cross-entropy

loss and a softmax activation as an output layer. We call this classifier “Multilabel BERT” (BERTmlt). We

employ in this case all the 1,564 labeled utterances as training set and the remaining 194 utterances as test

set. We train the classifier for 51 epochs by employing a learning rate of 5× 10−5. As in the previous case,

we also use 20% of the training set as validation set to perform early stopping of the training process.

4.3. Classification Results

We experimentally evaluated the utterance classifiers discussed above. Table 5 reports the classification

performance in terms of F1 score and weighted F1 score. Moreover, for each classifier, we also report the

number of instances (support) for the three classes in the test set, i.e., SE, FT, and PT, and the number of

misclassification errors for each class.

The GBDT and BERT classifiers work in a cascade, i.e., the first binary classifier discriminates between

SE and non-SE utterances, and those classified as non-SE are then provided to the second stage of the cascade

for FT vs PT classification. To avoid bias, we report an evaluation in isolation, where the evaluation of the

performance of the second classifier is not biased by the misclassifications of the first binary classifier. The

SE vs non-SE classifiers are assessed on all the 194 utterances in the CAsT test set. On the other hand, the

FT vs PT classifiers are evaluated on the subset of utterances in the test set labeled as FT or PT, i.e., 126

utterances.

SE vs. non-SE classification. When looking at Table 5 we first observe that the classifiers predicting the

SE class are in general the best performing ones. Specifically, for both the GBDT and BERT cascades, the

results confirm that the SE vs non-SE classification task is easier task than the FT vs PT one. The highest

performance for the first element of the cascade is achieved by the BERT classifier that achieves F1 scores
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of 0.87 and 0.93 on the SE and non-SE classes, respectively. The weighted F1 score of the BERT SE vs

non-SE classifier is 0.91. Here, the overall performance increases due to the low number of wrong predictions

recorded for the non-SE class, i.e., 10 instances out of 126 (7.9%). This result confirms that BERT is robust

to type I errors (false positives), i.e., non-SE utterances classified as SE ones. Moreover, the BERT classifier

provides also the best robustness w.r.t. type II errors (false negatives), i.e., 8 SE utterances out of 68 (11.8%)

classified as non-SE. The GBDT SE vs non-SE classifier achieves lower performance than the BERT one. The

number of errors increases to 20 for the SE class and 18 for the non-SE class, while the weighted F1 reaches

0.80, with a drop of 12%.

FT vs. PT classification. Regarding the second classifier of the cascade, i.e., FT vs PT, we observe a reduction

of performance for both BERT and GBDT solutions. This is somehow expected as deciding whether an

utterance is FT or PT is more difficult than deciding whether it is self explanatory or not. The reason for

that resides in the nature of SE utterances, where the context is always clearly provided, while FT and PT

utterances show an increased level of ambiguity that is reflected also in the classification results. The best

performance on this task is achieved by the BERTctx classifier with 0.75 of weighted F1 while GBDT and

BERT score 0.73 and 0.65, respectively. The error rate for BERTctx is significantly lower than GBDT and

BERT for the FT class, i.e., only 8 misclassifications instead of 13 and 23, respectively. Regarding the PT

class, BERTctx shows a worse performance than GBDT and BERT, as it misclassifies 23 utterances out

of 57 while the former two misclassify 13 and 21 utterances, respectively. The reason why BERTctx and

GBDT outperforms BERT is that the latter receives as input only the text of the current utterance. It

thus does not have information on the previous utterances in the conversation. GBDT, however, has specific

conversation-wise hand-crafted features that model some property possibly discriminating between FT and

PT utterances, e.g., the propensity of observing PT utterances towards the end of a conversation rather than

at the beginning. This observation lead us to the introduction of BERTctx, a BERT-based classifier that

exploits the entire conversation to better target the FT vs PT utterance classification. Results confirm the

intuition as BERTctx outperforms, in terms of weighted F1, the two former competitors. Moreover, we recall

that this assessment is performed in isolation. Thus, the second stage of the GBDT classifier could be also

affected in a production scenario by wrong conversation-level features introduced by classification errors of

the first stage of the classification cascade.

Classification cascade results. As previously mentioned, the results reported in Table 5 refer to an inde-

pendent evaluation of the different binary classifiers designed but do not provide us with direct information

about the performance of any cascade built from the combinations of the two binary classifiers. Hence, in

Table 6 we present the performance of our GDBT, BERT, and BERTctx classifiers when integrated into a

cascade classification process. Moreover, in the same table we report also the performance of the single-stage

multi-label BERT classifier introduced above.
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Table 5: Classification performance for the GBDT, BERT and BERTctx utterance classifiers. We report the results in terms of

F1 score, weighted F1 score and the number of misclassifications for each class.

Classifier Class Support (%) # misclassifications F1 F1 (weighted)

GBDT (SE vs non-SE)
SE 68 (35%) 20 0.72

0.80
non-SE 126 (65%) 18 0.85

GBDT (FT vs PT)
FT 69 (55%) 13 0.77

0.73
PT 57 (45%) 21 0.68

BERT (SE vs non-SE)
SE 68 (35%) 8 0.87

0.91
non-SE 126 (65%) 10 0.93

BERT (FT vs PT)
FT 69 (55%) 23 0.68

0.65
PT 57 (45%) 21 0.62

BERTctx (FT vs PT)
FT 69 (55%) 8 0.88

0.75
PT 57 (45%) 23 0.60

As shown in Table 6, the best F1 value for SE utterances classification is obtained with the BERT classifier

at the first stage of the cascade, i.e., 0.87. For the FT and PT classification, the best performance are obtained

deploying the BERTctx classifier at the second stage of the cascade: 0.73 and 0.67 for FT and PT, respectively.

The best performance obtained by considering the three classes are confirmed by the F1 metric weighted

on all classes, namely 0.76. Compared to the best classifier cascade, the BERTmlt classifier shows worse

performance as we observe a lower F1 score for all the three classes, as well as on the weighted F1 score.

Our conversational IR pipeline end-to-end evaluation uses the BERT-BERTctx cascade as its performance

exceeds that of the other experimented classification methods.

5. End-to-End Evaluation

We now present an end-to-end evaluation of the effectiveness of our conversational IR architecture by

comparing its performance against state-of-the-art competitors.

5.1. Experimental Settings and Baselines

For first-stage retrieval we use Indri12. We index the three collections of the CAsT dataset with Indri

by removing stopwords. We experiment with and without stemming, and we observe better results with

12https://www.lemurproject.org/indri.php
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Table 6: Classification performance for different combinations of GDBT, BERT, and BERTctx classifiers into a cascade classi-

fication process, together with a single-stage multi-label BERT classifier.

Classifier F1 per class
F1 (weighted)

Stage 1 Stage 2 SE FT PT

GBDT GBDT 0.72 0.58 0.56 0.62

BERT GBDT 0.87 0.65 0.62 0.72

GBDT BERT 0.72 0.53 0.55 0.60

BERT BERT 0.87 0.61 0.59 0.70

BERT BERTctx 0.87 0.73 0.67 0.76

BERTmlt 0.83 0.53 0.41 0.60

the Krovetz stemmer. We experiment with several Indri querying methods (e.g., TF-IDF, BM25, inQuery);

we achieve the best retrieval performance with the Indri language model with Dirichlet smoothing with

parameter µ = 2, 500. On all the runs but one (hereinafter CAsT baseline), pseudo-relevance feedback

(PRF) was enabled. Specifically, for PRF we use the RM3 algorithm [15] using 20 keywords taken from the

top 20 results and a balanced language model mixture, i.e., γ = 0.5.

Regarding the second-stage neural re-ranker, we follow the state-of-the-art methodology based on relying

on a robust contextualized language model pretrained on a large text corpus and then on performing minimal

fine-tuning of the model for the considered ranking task. Despite of its simplicity, this approach was shown

to provide excellent ranking effectiveness across different information retrieval tasks [34, 37, 57]. Specifically,

we use the solution proposed by Nogueira and Cho [37] to re-rank the top K1 results from the previous stage.

The model fine-tunes the BERT base pre-trained model [20] for re-ranking on the MS-MARCO passage

retrieval dataset. Consistent with previous results, we choose K1 = 200 since smaller and larger cutoffs

(50 and 1, 000 documents) provide worse end-to-end performance [25]. For each query, the top documents

retrieved by the first stage are provided as input to the re-ranking step, together with the query rewritten

by the utterance understanding component (see Fig. 1). The scores returned for these documents by the

neural stage are then used to re-rank them and compute the end-to-end performance metrics.

We explore different settings for our utterance rewriting strategies with the purpose of finding the best

methodology for the automatic enrichment of conversational utterances with the proper context. We choose

some of the best combinations of utterance rewriting strategies for which we discuss our findings in Sec-

tion 5.2. We compare the performance of both first-stage retrieval and end-to-end retrieval of our proposed

best combinations with the following baseline methods.

• CAsT baseline: CAsT 2019 provides a simple baseline consisting of queries generated from utterances
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by applying stopword removal and AllenNLP co-reference resolution.

• Query: the same CAsT queries as in the CAsT baseline are processed, using PRF and the Indri

language model with Dirichlet smoothing.

• First Query: given a conversation, the current query, qi, is expanded with the first-turn query, q1. This

is done to perform a simple query rewriting (e.g., q1 + qi).

• Context Query: given a conversation, the current query is enriched with the first query and the one

appearing in the previous turn (e.g., q1 + qi−1 + qi).

• Plain Utterance: utterances provided by CAsT which represent the original user requests, i.e., without

performing any rewriting.

• CoRef1,2: co-reference resolution finds all the linguistic expressions that refer to the same real-world

entity in a natural language text. We experiment two different models for co-referencing: (1) the

AllenNLP co-referencing model [22, 30], and (2) the neuralcoref model from the Transformers library13,

which are applied to the original utterances to produce the queries to process.

• First Topic [36]: given a conversation, the current utterance is expanded with the main conversation

topic extracted from the first-turn utterance. We rewrite the current utterance by replacing the explicit

pronouns (e.g., “Can it kill you?” becomes “Can Red Bull kill you?”) as well as adding the context

to the utterance in case of implicit reference (missing pronoun, e.g., “How much can you drink in a

day?” will be “How much can you drink in a day? Red Bull.”).

• Topic Shift [36]: the strategy is similar to First Topic, but it also includes a Context on Cue step which

aims at identifying context changes on the basis of some cues. We extract the latest context from cue

and add it to the current utterance covering both implicit and explicit references cases. In some cases

we might decide to keep or remove the first context of the conversation, leaving just the current focus

topic, if different from the first.

• Context [36]: the strategy is based on the previous two strategies First Topic and Topic Shift, but it

also includes the context collected with the help of a Context Binder methodology applied to all the

previous utterances in the conversation. The strategy tries to keep all the possible context information

offered by all previous utterances. As in the previous case we might decide to either keep or remove

the first context of the conversation, given by the first utterance.

13https://github.com/huggingface/neuralcoref
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We compare all the above methods with our novel strategies discussed in Section 3.3, namely Standard,

Enriched, Last SE, First and last SE, First or last SE. These rewriting techniques were used in combination with

the utterance labels automatically generated by the cascade of BERT binary classifiers (described in Sec. 4)

as it yields the highest classification performance.

Moreover, for the evaluation purposes we introduce three other supervised strategies based on some

human support. More specifically, two of these strategies, GT Last SE and GT First or last SE are analogous

to Last SE and First or last SE, but rely on the golden standard used for training the classifiers instead of

labels from the automatic classifier. These two supervised strategies allow us to understand how much the

classification errors may jeopardize the quality of the proposed automatic utterance rewriting strategies.

Lastly, we asked the same human assessors who labeled the utterances to manually rewrite them. The

result of this run (Manual Utterance) can be considered an upper bound for retrieval performance as manual

rewriting should ideally outperform any automatic system.

5.2. Results and Discussion

The performances of the proposed utterance rewriting methods in comparison to the baselines detailed

above are reported in Tables 7 and 8. Specifically, Table 7 refers to the effectiveness of the first-stage retrieval

based on Indri, while Table 8 shows the end-to-end performance of our entire conversational IR pipeline,

where the top 200 candidates retrieved by the first stage are scored by the second-stage neural re-ranker.

In both the tables, we evaluate the effectiveness of our system with traditional IR metrics: Mean Average

Precision (MAP), Mean Reciprocal Rank (MRR), normalized Discounted Cumulative Gain for cutoff at 3

(nDCG@3), and Precision for cutoffs at 1 and 3 (P@1 and P@3). The use of such small cutoffs is common

for the conversational IR tasks since the user expects to receive one crisp answer on the top of the list rather

than a long list of potentially relevant results. For assessing the performance of the first-stage retrieval

components, we introduce in Table 7 also the metric Recall for cutoff at 200 (R@200) as an additional metric

providing us information about the quality of the candidate set given as input to the second-stage neural

re-ranker. For all methods and a given metric, we assess the statistical significance of the results by using a

two-sample t-test with Bonferroni correction [43]. Results are considered significant at p < 0.01.

By looking at Table 7, reporting the results of the experiments conducted for assessing the performance

of first-stage retrieval, we can observe that the proposed utterance rewriting methods outperform by a

significant margin most of the baselines considered. All our methods perform well on the first stage. In

particular, the performance of Last SE across all metrics except P@3 is slightly superior with respect to the

other strategies for first-stage retrieval. It exhibits an MRR and P@1 of 0.5713 and 0.4855, respectively. Last

SE shows also better performance compared to the baselines, i.e., First Topic and Topic Shift [36], although

the difference is not statistically significant for all metrics.

Despite the good performance measured for our automatic methods deployed on the first stage, if we
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Table 7: First-stage retrieval performance. The best results for each metric are reported in bold. We highlight with the

superscript a statistical significant differences at p < 0.01 between all methods and our best-performing method Last SE

according to the Bonferroni-corrected two-sample t-test. Analogously, statistically significant differences between ground truth

methods (GT Last SE and GT First and/or last SE) and Manual Utterance are indicated with the the superscript b according to

the Bonferroni-corrected two-sample t-test.

First-stage Retrieval

MAP MRR nDCG@3 P@1 P@3 R@200

CAsT baseline 0.1299a 0.3178a 0.1477a 0.2254a 0.2428a 0.2939a

Query 0.1741a 0.4216a 0.2181a 0.3353a 0.3218a 0.3928a

First Query 0.2091 0.4931 0.2663 0.3988 0.4008 0.4588

Context Query 0.1903a 0.4709 0.2315 0.3565 0.4008 0.4263a

Plain Utterance 0.1416a 0.3483a 0.1735a 0.2849a 0.2694a 0.2920a

CoRef1 0.1691a 0.4203a 0.2148a 0.3410a 0.3218a 0.3772a

CoRef2 0.1845a 0.4308a 0.2209a 0.3526a 0.3430a 0.3818a

Context 0.2053 0.4701a 0.2401a 0.3757 0.3680a 0.4496

First Topic 0.2286 0.5543 0.3041 0.4682 0.4644 0.4604

Topic Shift 0.2274 0.5513 0.3017 0.4509 0.4605 0.4680

Standard 0.2296 0.5396 0.2917 0.4566 0.4412 0.4797

Enriched 0.2329 0.5482 0.2964 0.4624 0.4412 0.5033

Last SE (a) 0.2444 0.5713 0.3072 0.4855 0.4566 0.5071

First and last SE 0.2358 0.5563 0.2975 0.4682 0.4605 0.4835

First or last SE 0.2339 0.5526 0.3018 0.4682 0.447 0.5011

GT Last SE 0.2678b 0.6139b 0.3357b 0.5318b 0.4933b 0.5345b

GT First and last SE 0.2489b 0.5770b 0.3149b 0.4913b 0.4817 0.5049b

GT First or last SE 0.2758 0.6258b 0.3513 0.5434 0.5145 0.5498

Manual Utterance (b) 0.2978a 0.6859a 0.3828a 0.6127a 0.5491a 0.5771a
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look at the performance of the GT methods based on the classification ground truth, we see that there

is still margin for improvement. We note that the two rewriting strategies exploiting the labels in the

golden standard, all ground truth based methods, GT Last SE, GT First and Last SE and GT First or Last

SE, perform better than our best automatic methods based on the classifier outcome. This means that the

classification errors introduced by the classifier cascade discussed in Section 4 impact the effectiveness of

our utterance rewriting methods, although the impact on the performance is not statistically significant at

p < 0.01 according to the Bonferroni-corrected two-sample t-test. Increasing the accuracy of the context-

identification classifiers is likely to result in an improved effectiveness of the conversational IR solution and

is going to fill the performance gap measured for automatic classification.

Furthermore, we highlight that the performance of the Manual Utterance supervised method is quite close

to those of GT Last SE and GT First or Last SE, especially in the case of GT First or Last SE which presents

statistically significant differences from Manual Utterance only for MRR (as highlighted by the superscript

b), while for all other metrics there are no statistical differences between the two methods.

For example, the performance gap between Manual Utterance and GT First or Last SE is limited to about

three points in percentage of MAP, nDCG@3, P@3 and Recall@200. This relatively small difference with

respect to an optimal manual rewriting method allows us to claim that the proposed modelling of the

utterance understanding problem based on SE, FT and PT classes is sound and the associated rewriting

strategies are effective and well designed.

Complementary considerations and insights can be derived when looking at the end-to-end performance

reported in Table 8. Here we can see much higher effectiveness figures than with first-stage retrieval, once

more witnessing the importance of a re-ranking step based on complex machine-learned ranking models [13,

19, 31]. The BERT-based neural re-ranker seems to exploit better than the first-stage ranker the proposed

rewriting strategies. If we look at the values reported in bold in the table we can observe that First and Last

SE is the best performing method for what regards MAP, MRR and P@1, P@3 metrics. For example First

and Last SE achieves the highest reported values for MRR and P@1 of 0.7330 and 0.6512, respectively, while

in terms of NDCG@3 the best performance is 0.4484 corresponding to Last SE.

However, it is worth noting that, due to the relatively small number of utterances in the test set, the

performance differences between First and Last SE (a) and the other proposed automatic rewriting methods

are not statistically significant. The same holds for First and Last SE (a) and the previously proposed methods

First Topic and Topic Shift, although we see improvements for all evaluation metrics. The superiority of First

and Last SE method stems from the ability of the BERT ranker to identify the proper context information

in the query and the candidate documents. This characteristic likely reduces the impact of some of the

classification errors since instead of selecting which enrichment to add, either first or last SE, a method that

considers both, first and last SE, proves to be overall advantageous. On the other hand, when looking at the
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effectiveness of the methods based on the ground truth, we note that GT First or Last SE outperforms the

other GT methods, resulting in MRR, nDCG@3, P@1 and P@3 figures that are not statistically different

from those achieved with Manual Utterance (b). Thus, as observed for the first-stage results, also on the

second stage we have an important margin for improving the effectiveness of our conversational IR pipeline by

enhancing the classification accuracy of the context identification component. We see that the performance

gap between the methods using automatic classification and the ground truth remains almost constant for the

first and second stages, thus suggesting that the performance benefit (penalty) obtained on rightly (wrongly)

classified utterances is almost independent of the ranking model adopted.

To summarize, the findings presented validate our proposed conversational IR pipeline described in

Figure 1. That is, using our proposed utterance rewriting component, including BERT-based context clas-

sification and utterance rewriting leveraging context information extracted from the first and/or last self-

explanatory utterances in the conversation, we improve the effectiveness of both the first-stage retrieval and,

more critically, the whole end-to-end system performance as compared with existing approaches.

We now present an analysis of the performance based on conversations for the best performing rewriting

method highlighted by the end-to-end evaluation of the previous section. As we can see from Table 8, the

method First and last SE has the best performance for most of the metrics. We pick this method for analyzing

in detail its performance per conversation. For this analysis, we use nDCG@3 as it is often employed for

measuring the performance of conversational IR systems, in particular, it has been used in CAsT for the final

ranking of the participants’ turns. The idea is exploring how some conversations can be more difficult than

others. As we can see from Figure 3, some of them are tricky leading to lower performance in term of end-to-

end retrieval. In particular, we observe that conversations 54 and 69 have nDCG@3 values equal to 0.10 and

0.13, respectively. These low values stem from misclassifications at critical points of the conversation. For

example, in conversation 69 about sleeping problems, the misclassification occurs at a lower turn, and the

wrong topic is propagated to the follow up utterances. In particular, at turn 5, the utterance “Is melatonin

bad for you?” is predicted as PT instead of SE. So, the approach of First and last SE does not use the newly

introduced topic “melatonin” as the utterance is not classified as SE and propagates the topic “jet leg.” This

mistake is repeated in the rest of the conversation where “melatonin” is missing. Conversation 54 is about

Washington D.C. Although in this conversation, most of the utterance labels are predicted correctly, there

is a misclassification at turn 6 “What is the best time to visit the reflecting pools?” Indeed, the utterance is

predicted as PT instead of FT, so the approach propagates fist topic (“Washington D.C.”) and previous topic

(“Spy museum”) increasing the noise in the results.
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Table 8: End-to-end retrieval performance. The best results for each metric are reported in bold. We highlight with the

superscript a statistical significant differences at p < 0.01 between all methods and our best performing method First and last SE

according to the Bonferroni-corrected two-sample t-test. Analogously, statistically significant differences between ground truth

methods (GT Last SE and GT First and/or last SE) and Manual Utterance are indicated with the superscript b according to the

Bonferroni-corrected two-sample t-test.

End-to-End Retrieval

MAP MRR nDCG@3 P@1 P@3

CAsT baseline 0.1316a 0.4002a 0.2089a 0.3064a 0.2987a

Query 0.1666a 0.4723a 0.2660a 0.3547a 0.3624a

First Query 0.2095a 0.5945a 0.3195a 0.4884a 0.4477a

Context Query 0.1905a 0.5624a 0.2997a 0.4535a 0.4147a

Plain Utterance 0.1408a 0.4605a 0.2791a 0.3953a 0.3682a

CoRef1 0.1797a 0.5563a 0.3474 0.4795a 0.4405a

CoRef2 0.1906a 0.5718a 0.3483 0.5000 0.4554a

Context 0.2098a 0.6315 0.3692 0.5291a 0.4961a

First Topic 0.2335 0.6763 0.3897 0.5954 0.5453

Topic Shift 0.2330 0.6801 0.3967 0.5872 0.5523

Standard 0.2403 0.7058 0.4411 0.6337 0.5756

Enriched 0.2455 0.7194 0.4425 0.6395 0.5814

Last SE 0.2500 0.7284 0.4484 0.6453 0.5853

First and last SE (a) 0.2507 0.7330 0.4343 0.6512 0.5988

First or last SE 0.2434 0.7200 0.4472 0.6453 0.5814

GT Last SE 0.2680b 0.7557 0.4584b 0.6802 0.6143b

GT First and last SE 0.2588b 0.7291 0.4303b 0.6337 0.6066b

GT First or last SE 0.2786b 0.7717 0.4742 0.6977 0.6318

Manual Utterance (b) 0.3055a 0.8006 0.5167a 0.7168 0.6763
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Figure 3: Per-conversation analysis: nDCG@3 averaged over all utterances for each single conversation using First and last SE.

6. Conclusion

We investigated the problem of utterance understanding and rewriting for conversational search. We

designed automatic methods that, using information derived from the whole conversation, enrich utterances

likely to be answered poorly by an IR system optimized to process self-contained queries lacking context

information. We designed a fully-fledged conversational system structured as a three-step cascade architec-

ture. Our contribution focuses primarily on the utterance understanding component of such an architecture.

This component has the task of performing linguistic analysis on the current utterance and choosing how

to rewrite it to improve the end-to-end effectiveness of the conversational system. The proposed rewriting

strategy is driven by a classifier that aims at understanding if the utterance is self-explanatory or it misses

explicit references to the conversation context. In this latter case, the classifier also helps to identify which

context is more suitable for enriching it, given the previous utterances in the conversation.

We conducted a comprehensive experimental evaluation of the performance of our solution by adopting

the CAsT 2019 framework [18]. First, we assessed the performance of different supervised binary and multi-

label classification models trained to automatically associate one of the three class labels, i.e., SE, FT or PT,

to the utterances processed by the conversational search architecture. The analysis considered either the

accuracy of the classifiers in isolation and when integrated in the conversational system, where an error of

the first binary classifier (SE vs. non-SE) affects also the result of the second classification (FT vs. PT). In

our context identification task, the experiments conducted showed the superior performance of a cascade of

two binary classifiers based on the BERT bidirectional transformer over those based on GBDT ensembles

trained on hand-crafted features. Specifically, the best performance was achieved by a BERT-BERTctx binary
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classification cascade with a weighted F1 score of 0.76.

We then compared the retrieval effectiveness of our method to state-of-the-art competitors and baselines.

By using IR metrics commonly used for conversational search, we measured both the performance at the

first retrieval stage and in an end-to-end setting, where first-stage candidates are re-ranked by a state-of-the-

art neural model based on BERT. Our experimental results showed that adding context to the utterances

based on the predictions of our classifiers is crucial for the effective retrieval of relevant documents when the

reference to the topic of the utterance is obfuscated or totally missing. In detail, experiments showed that

pseudo-relevance feedback is beneficial as it further expands the query with keywords extracted from the top

K results allowing an improvement of recall. On the other hand, neural re-ranking provides an important

boost in precision at very short cutoffs. Results showed that our best approach achieves an improvement of

0.4855 (+215%) for P@1 and 0.4566 (+188%) for P@3 at the first-stage retrieval and of 0.6512 (+213%) for

P@1 and 0.5988 (+200%) for P@3 at the neural-based re-ranking stage w.r.t. the CAsT provided baseline.

The improvement for nDCG@3 is instead of 0.3072 (+208%) at first-stage retrieval and 0.4484 (+215%) at

neural re-ranking stage, respectively.

By comparing the performance of our automatic methods with those based on the golden truth, we

observed a margin for improving the effectiveness of our conversational IR pipeline by enhancing the clas-

sification accuracy of its context identification component. On the other hand, the supervised methods

using the classification labels performed very similarly to the upper bound established by manually rewrit-

ten utterances. This observation, together with the relatively poor end-to-end performance measured for

the simpler baselines reported, prove that enriching utterances with the proper context is mandatory for

retrieval effectiveness since also complex contextualized models alone, e.g., BERT, are not sufficient for

utterance understanding, and deserve further investigation.
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