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1 Supplemental methods10

1.1 Variable reference11

Each of these variables is defined at every timestamp t. For clarity in the text, we do not use the12

subscript t except when summing over timesteps.13

• N is the number of nodes or buses in the network. We assume every node has a load attached,14

so this is also the number of loads.15

• NG is the number of generators in the network, here equal to the number of quantities we trace16

through the network (NT or the number of tracers in the derivation given in the supplement).17

• P ∈ RN×NT (MW) is bilateral delivery18

• PD ∈ RN×NT (MW/MW) is downstream delivery density19

• g⃗ ∈ RNT (MW) is the generation vector20

• l⃗ ∈ RN (MW) is the load vector21

1.2 Terminology reference22

• Bilateral delivery (MW): Power delivered from a single generator, or from all generators23

connected to a bus, to a single load in a single timestep.24

• Downstream delivery density (MW/MW): Power delivered from a single generator G to a25

single load L in a single timestep, normalized by the load at L.26

• Upstream: Conceptual term referring to viewing delivery from the perspective of a load looking27

”upstream” to see which generators serve the load28

• Downstream: Conceptual term referring to viewing delivery from the perspective of a generator29

looking ”downstream” to see which loads it serves30

• Bilateral: Conceptual term referring to any metric on the level of a single generator/load31

relationship32
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• Delivery, deliverability: Terms used here and in previous work with a range of definitions,33

generally attempting to capture something about generator/load relationships. To distinguish34

when we are talking about flow-based delivery/deliverability, we use the terms ”physical delivery”35

and ”physical deliverability”36

• Physical delivery: Conceptual term referring to all bilateral delivery relationships across a grid37

as calculated using power flow tracing. Can be summarized using delivery distance or regional38

connectivity metrics.39

• Physical deliverability: Conceptual term referring to whether power can be delivered between40

a generator and load, as determined using power flow tracing.41

• Expected deliverability (% or fraction): A cutoff-based metric to measure physical deliver-42

ability, defined in text.43

• Delivery distance (distance units, here km): Metric to measure physical delivery, defined in44

text.45

• Regional connectivity: Metric calculated using graph modularity to measure physical delivery46

in a boundary set, defined in text.47

• Boundary set: Boundaries defining regions which together cover the grid without overlap.48

• Region: One of the regions defined by a boundary set.49

1.3 Tracing a vector of quantities50

The equations here are extended from those in Kang et al. 2015.51

We start with the tracer intensity EG ∈ RNG×NT where NT is the number of tracers in the system.52

We then calculate53

RG = PG × EG (1)

where PG ∈ RN×NG is the injection matrix for N nodes and NG generators. Each element PGjk = p54

if generator k is connected to node i and power injection from generator k to node j is non-zero, else55

PGjk = 0.56

We calculate57

PN = diag
(
ζN+K ×

(
P ′
B

PT
G

))
(2)

where P ′
B ∈ RN×N describes the power flow between each pair of nodes in the network. For each58

element P ′
Bij :59

• P ′
Bij = p, P ′

Bji = 0 if there is active power flow from i to j60

• P ′
Bij = P ′

Bji = 0 otherwise.61

We can then calculate the downstream delivery density PD ∈ RN×NT :62

PD = (PN − P ′T
B )−1 ×RG (3)

Instead of a single vector PD with length N as in Kang et al. 2015, we now have a matrix where63

each row j describes the intensity (in units of tracer / MW consumed at node) of tracer j.64

1.3.1 Bilateral delivery from downstream density65

Delivery from generator i to load j can be calculated from delivery density by scaling by the load at j:66

Pi,j = PDi,j × lj (4)
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1.3.2 Application to generator tracing67

The algorithm described above can be applied to any quantity associated with electricity generation,68

including fuel type (eg solar, wind, NG, etc), generator type (eg combined cycle, CHP, etc), generator69

location, or generator emissions (including CO2, NOX, PM2.5, etc).70

To trace delivery from every generator in the grid, we use the algorithm above and set the variables71

as follows: NT = NG; and EG is an identity matrix, since each generator injects 100% of its net72

generation.73

1.3.3 A note on power flow tracing theory74

The central assumption of power flow tracing, used here and throughout the power flow tracing litera-75

ture, is that power is uniformly mixed on each line and at each node Bialek and Kattuman 2004. While76

this assumption is intuitive, it is not actually provable in reality, since the power from a solar plant77

(for example) is identical to the power from a natural gas plant. There is therefore no way to directly78

measure how much of the power serving a load “came from” the solar plant; instead, the source of the79

power serving a load is a virtual attribute that must be derived from the power flow (which can be80

measured) and the perfect mixing assumption.81

1.4 Models82

1.4.1 PyPSA-Eur83

In Europe, we use the PyPSA-Eur model Hörsch et al. 2018. The PyPSA-Eur model is widely used,84

with 165 citations and an active user community. It uses real transmission topology data sourced from85

ENTSO-E and generator location and capacity data from the aggregated across sources Gotzens et al.86

2019.87

However, because it is mostly used for capacity expansion modeling and research, there has been88

relatively little work to benchmark the model to a specific year, although the model does use 202089

generator capacities. In addition, using real transmission line location data scraped from maps has90

resulted in some regions with unrealistic transmission constraints, especially near large population91

centers like Paris. The PyPSA-Eur team recommends using a clustered version of the model, where92

nodes are aggregated and lines between them combined, to avoid these transmission constraints. Here,93

we use the model clustered to 1024 nodes, the most nodes recommended by the PyPSA-Eur team.94

1.4.2 Breakthrough model of Eastern Interconnect95

In the US, we use the Eastern Interconnect of the Breakthrough energy model Wu et al. 2021. The96

Breakthrough authors benchmarked their model to actual generation data, ensuring that the model97

topology and parameterization, including line capacities, marginal costs, and capacity by fuel type,98

were in line with actual data. The model is benchmarked to two existing years, 2016 and 2020, and99

has two hypothetical future cases for 2030.100

In this work we use the 2020 grid configuration. Although already slightly out-of-date given the101

ongoing expansion of wind and solar capacity in the US, the 2020 model is current enough to capture102

delivery patterns that still exist on today’s grid.103

The Breakthrough model has two drawbacks for our application. First, unlike PyPSA-Eur, it is104

a synthetic model, and does not represent the actual topology of the transmission grid. Although it105

was designed such that that the overall behavior of the grid aligns with reality, including when broken106

down by region, the underlying data is not based on real data. For example, there is no relationship107

between the model generators and lines and real generators and lines.108

A second and more minor drawback is that the Breakthrough network is developed and available in109

the Matpower framework. For consistency with PyPSA-Eur, we use the PyPSA modeling framework110

in this work. In translating the Breakthrough network from its original Matpower format to PyPSA,111

we make several assumptions when forced to translate between incompatible Matpower and PyPSA112

models:113

1. Line types: Line types are required for PyPSA-Eur network simplification functions which we114

apply to the Breakthrough network, but are not included in the Matpower Breakthrough model.115
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We assume one line type per parameter population in the Breakthrough Matpower network, and116

use the median parameters of each population to parameterize each line type.117

2. Marginal cost functions: The Matpower Breakthrough model uses quadratic generation cost118

functions, while PyPSA accepts only linear marginal costs (and optionally a separate start-up119

cost). We assume the marginal cost of each generator is the derivative of the quadratic generation120

cost function when the generator is operating at capacity.121

1.4.3 Open source model limitations122

Both models share some limitations common among most open source grid models. First, renewable123

generation and load profiles are not specific to our target year, 2020 (Breakthrough uses 2016 profiles,124

while PyPSA-Eur uses 2013 by default). Second, load is distributed uniformly across nodes by popu-125

lation, which ignores the effect of loads unrelated to population, for example data centers. Third, both126

models we use are transmission models. PyPSA-Eur is limited to lines at or above 220 V, while the127

Breakthrough includes lines as low as 60 V. However, neither network includes distribution networks.128

Practically, this makes these models easier to work with, since including distribution networks would129

increase model size and complexity by orders of magnitude. However, it means that do not consider130

distribution-level generation assets. Next, these models are limited to the generators and loads within131

their bounds, and do not consider electricity traded with other networks.132

1.4.4 Model validation133

The models we use include renewable profiles but no generation data for dispatchable generators. This134

is because the models are designed to support capacity expansion research, for which 2020 generation135

profiles would not be relevant. To get full generation data, we configure each model to estimate the136

2020 grid and run a linear optimal power flow (L-OPF) in PyPSA to dispatch the model’s generators137

in all 8760 hours of the year. OPF dispatches generators to meet model demand while respecting the138

system’s constraints (including but not limited to transmission constraints, the operational constraints139

of each generator, security constraints) and while minimizing the total cost (where cost can, depending140

on the grid, include a carbon cost). This is standard practice when using these and similar models,141

and we perform validation to ensure our dispatch is realistic. However, we do not expect to capture all142

of the behavior of real-world dispatch systems, and there is no 1:1 correspondence between modeled143

hours and the actual state of the grid in specific hours of 2020.144

We ran validation (Figure S2) to compare modeled fuel mix over the course of the modeled year145

to actual 2020 generation. 2020 generation data comes from OGE Miller et al. 2023 in the EI and146

Eurostat in Europe. Fuel types are within reasonable errors to actual generation. Future research147

and validation may improve model performance when compared to real data. However, we do not148

expect the models to perfectly match the 2020 generation because of the limitations discussed above.149

Instead, our goal is to approximate the overall patterns of dispatch closely enough to capture power150

flow patterns and trends across the network.151

The OPF approach also comes with limitations. First, we may not capture operational constraints152

or deviations from optimal dispatch, for example, ISOs individually running OPF to dispatch their153

generators or US coal plants self-scheduling by bidding in at lower than their operational costs are154

not captured. Additionally, some limitations stem from the OPF implementation, which prioritizes155

computational efficiency. First, we run linear OPF (LOPF) instead of a full nonlinear OPF, which156

means that line losses are not considered in our dispatch or power flow results. Second, we run each157

day of the model year in parallel, and disregard generator startup and shutdown costs. This may result158

in unrealistic dispatch patterns for generators with high startup costs. Future work may explore the159

Breakthrough OPF approach, which is to run OPF on each day sequentially and constrain each day’s160

OPF run to start with the end state of the prior day.161
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2 Supplemental discussion162

2.1 Robustness of results to clustering163

As discussed in the main text methods, we cluster both models to 1024 nodes. Because the European164

model covers a larger area than the Eastern U.S. model, its resulting node density (5019 km2) is lower165

than that of the Eastern U.S. model (4581 km2). However, because the original European network166

is at a lower resolution (limited to higher power lines) than the original U.S. model, fewer original167

model nodes are aggregated to each clustered model node in the European model (5.3 original nodes168

per clustered node) than in the Eastern U.S. (68 original nodes per clustered node). See Table S2.169

To test the impact of these varying clustering levels on our results, we explore an additional grid,170

the Texas interconnect. The model we use is part of the same original model as our Eastern U.S. model,171

and we use the same configuration. We select this grid because it is small enough to run unclustered.172

We run physical delivery analysis on the unclustered Texas grid and on versions clustered to 512, 128,173

and 37 nodes. These clustering levels range across the node densities in the clustered models used174

in our main results (Table S3). We create four arbitrary regions, dividing the grid along its median175

latitude and longitude, to test our regional and boundary-set level metrics (Figure S16).176

Nodal delivery distance. We find that spatial patterns of upstream (Figure S15) and down-177

stream (Figure S14) delivery distance show consistent spatial patterns and magnitudes across clustering178

levels. Note that in an earlier version of our delivery distance metric, we explored using average deliv-179

ery distance (in the final metric we use median). We found that average delivery distance magnitudes180

were sensitive to the level of clustering, perhaps because in less clustered networks, a generator will181

deliver to a higher number of nearby nodes.182

Regional metrics. We find that between-region patterns of median delivery distance and expected183

deliverability are generally consistent across clustering levels, with some exceptions (Figure S17). Sys-184

tematic changes in the magnitude of expected deliverability are discussed below in ‘Boundary set level185

metrics’.186

In delivery distance, we find that the regions with the highest downstream delivery distance (region187

B) and the highest upstream delivery distance (region D) are the same across all clustering levels, except188

the most clustered 37-node model. This indicates that there is a minimum resolution needed to get189

accurate delivery distance results.190

We believe inconsistencies in regional results between clustering levels are largely driven by nodes191

which are in different regions in higher resolution models being clustered together in lower resolution192

models (Figure S16). Future work could improve this by using models where nodes are never clus-193

tered across a boundary. In the current models, European nodes are never clustered across country194

boundaries. U.S. nodes have no boundary-related guarantees during clustering.195

Boundary set level metrics. The magnitude of boundary set metrics (expected deliverability196

and regional connectivity) varies systematically with clustering (Figure S18). Deliverability increases197

with increased clustering, since the network has fewer overall nodes and each pair is more likely to pass198

the same delivery cutoff. Modularity decreases with increased clustering, since fewer nodes mean that199

there are fewer strong bilateral delivery relationships between close-by nodes that have been clustered200

into a single node. Because these changes are systematic and should happen uniformly across the201

network with clustering, we do not expect them to affect the relative performance of boundary-set202

level metrics.203

2.2 Robustness of results to model dispatch204

We know from comparison of our modeled dispatch to real data (Figure S2) that coal and oil dispatch205

have some systematic error in both networks, with natural gas overdispatched relative to coal when206

compared to ground truth data. To evaluate the potential impact of this or other differences in dispatch207

between modeled and real data, we compare the European physical delivery metrics of the model used208

in our main results with a model whose fuel prices have been altered to shift coal and natural gas209

dispatch (Figure S19). The modified network has lignite dispatch 20 % higher than in the original210

network, and CCGT (natural gas) dispatch 10 % lower.211

Note that we do not use this altered dispatch in our main results, even though at the category212

level it better matches actual 2020 dispatch, because the change to fuel prices was arbitrary and may213

not accurately reflect dispatch in time and space, even if the annual total dispatch is closer to ground214
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truth. For the results presented in the main text, we rely on validation by the teams that developed215

each model, including the fuel prices.216

We find that regional metrics are sensitive to changes in dispatch, with delivery distance (Fig-217

ure S21) being the most sensitive and expected deliverability (Figure S20 being sensitive in some218

regions (in particular, the Balkans). We evaluate both metrics on the European country boundary set.219

These sensitivities to dispatch are likely due to spatial biases in coal and natural gas resources. With220

increased coal dispatch, regions with more coal will have more generation and therefore longer down-221

stream delivery distances and potentially higher deliverability, while regions with decreased natural222

gas generation will see the opposite effect. This sensitivity means that caution should be taken when223

evaluating regional metrics on models with known discrepancies from real-world data. Even with this224

sensitivity, broad trends in delivery distance and expected deliverability, for example, longer delivery225

distances in Scandanavia compared to mainland Europe, are preserved.226

Boundary set level metrics (regional connectivity and load-weighted average expected deliverability)227

are very robust to changes in dispatch (Figure S22). This may be because the regional effects described228

above average out at the boundary set level, resulting in the same relative conclusions. This gives us229

confidence when evaluating boundary sets, even on models which may differ somewhat from the real-230

world systems they represent.231

2.3 Correlations between delivery distance and grid variables232

We explore correlations between delivery distance and nodal and area-average generation, load, ex-233

ported generation, and line capacity.234

The analysis here is limited to an exploration of two-way linear relationship strength using corre-235

lation. Future work could include using a PCA analysis and linear regression to test whether combi-236

nations of these or other explanatory variables could explain more of the variance in physical delivery237

than the individual correlations considered here. Another direction for future work is to use an experi-238

mental approach where a specific feature of the grid model is changed to explore the resulting changes239

to delivery distance.240

The correlation between delivery distance and each variable is generally small, with the largest241

magnitude around 0.4, meaning that at least 60% of the variance in nodal delivery distance is not242

explained by any individual explanatory variable. The nodal-level grid features are generally more243

predictive of delivery distance than area-average features, with the only exceptions happening at the244

smallest aggregation radius (50 km). This may mean that the heterogenaity in delivery distance is245

best explained by differences in the characteristics of individual nodes, with regional patterns playing246

less of a role.247

Downstream delivery distance has relatively strong relationships with load and exported generation248

that are consistent across spatial averaging scales and across our two grid models.249

Across both grids, downstream delivery distance is positively correlated with generation at or close250

to (in the Eastern Interconnect) the node and negatively correlated with generation in the area 150-300251

km from the node. This may be because regions that have lots of generation over a large area are252

more likely to also have large load centers, which is negatively correlated with downstream delivery253

distance.254

Upstream delivery distance has a negative correlation with both generation and exported gener-255

ation, indicating that when a region has a lot of generation, or more generation than load, its loads256

are more likely to be served by nearby generation. The relationship between upstream delivery dis-257

tance and load is smaller and varies in sign between the two grids, indicating that it may be a poorer258

predictor of delivery distance.259

Line capacity is the most variable of the grid features we explored, with correlations that vary260

in sign and magnitude between the two grid models and across spacial scales. This may indicate261

that line capacity may not be a good predictor of delivery distance on its own, and a more nuanced or262

operational metric, like line congestion or through-node power flow, may be a better tool for explaining263

nodal physical delivery.264

2.4 Evaluating boundary proposals in Germany and Denmark265

Our regional physical delivery metrics could also be used to evaluate proposed changes to regions.266

Germany and Denmark provide examples of how physical delivery metrics could be used to evaluate267
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proposed changes to boundaries. Germany is currently one bidding zone (which also includes Luxem-268

bourg). There are multiple proposals to divide the country into bidding zones which more accurately269

reflect transmission constraints across the country. We find support for these arguments when looking270

at delivery distance across Germany (See Figure S9b), which is only 100 km. While splitting Germany271

into two bidding zones (Panel B, “German Proposal”) would not lengthen the delivery distance in272

either new bidding zone, reducing the size of the bidding zones would bring each more in line with273

the actual delivery of electricity. When we consider expected delivery (Panel A), we see that splitting274

Germany into two bidding zones would slightly increase expected deliverability, with 67.6 % and 64.5%275

of load-generator pairs in each of the two new bidding zones now deliverable (deliverability cutoff 1kw276

and 168 hours).277

Denmark (red bars of Figure S9) currently has two bidding zones, one for each of Eastern and278

Western Denmark. We see that these bidding zones currently score very differently from one another,279

with Eastern Denmark much more deliverable and Western Denmark having longer delivery distances.280

This trend appears to be caused by stronger directional patterns in power flow in Western Denmark281

decreasing deliverability but increasing delivery distance. Combining the bidding zones would cause282

a neutralizing effect (i.e. the scores on both metrics are between the scores of the original bidding283

zones).284

Comparing Denmark and Germany demonstrates the variability in delivery and deliverability be-285

tween regions, even when using the same set of boundaries. Denmark (across proposed and actual286

bidding zones) has longer delivery distances than German, even though it is a smaller country. It also287

has higher expected deliverability. These differences can be even more extreme across some balancing288

authorities (BAs) in the US, which are extremely variable in size, ranging from individual townships289

in some Florida BAs to multi-state BAs in the middle of the country.290

Note that the analysis here does not consider operational changes that would result from changes291

to bidding zones, which can be significant Brouhard et al. 2023.292
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(a) 1kw, 24 hours cutoff (b) 1MW, 24 hours cutoff (c) 1kw, 168 hours cutoff (d) 1MW, 168 hours cutoff

Figure S1: Regional cutoff-based deliverability across four cutoff values (Cp = 1kw and 1 MW; Ct =
24 and 168 hours). Relative relationships between regions remain stable, though stricter cutoffs result
in lower overall cutoff-based deliverability scores.
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(a) Europe (b) Eastern interconnect

Figure S2: Comparison of 2020 ground truth and model fuel mixes over the model year. Fuel categories
are different because each comparison uses the more granular possible category matching between
ground truth and model categories.
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(a) Time 1, Delivery distances to DE1 17 (b) Time 2, Delivery distances to DE1 17

Figure S3: Cumulative consumption and delivery from node DE1 17 at two timestamps. The blue
curves correspond to downstream delivery distance, or the distance traveled by power from generators
at DE1 17. At a given distance x from DE1 17, yblue% of power generated at DE1 17 remains to
be consumed at more distant loads. The red curves correspond to upstream delivery distance, or the
distance traveled by power serving the load at DE1 17. At a given distance x from DE1 17, yred%
of power generated at DE1 17 has been generated at that distance or further. The median delivery
distance is indicated by the horizontal line at 50%. At distances close to the node (0-100 km for the
upstream delivery distance curves), there is significant delivery from or to nearby nodes, resulting in
the steps seen here, each of which corresponds to a large amount of consumption of the node’s power
(downstream) or generation for the node’s load (upstream). a corresponds to the first row of main
text Figure 1, while b corresponds to the second row of main text Figure 1.
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(a) Number of hours where nodes de-
liver at least 1kwh to DE1 17

(b) Deliverable nodes to un-
der a 24 hour, 1kwh cutoff

(c) Deliverable nodes to un-
der a 168 hour (1 week),
1kwh cutoff

Figure S4: Bilateral deliverability from node DE1 17. a shows the count of hours over the model year
where each node delivers at least 1 kwh to the load at DE1 17. b and c shows the nodes (green) passing
a 24 and 168 hour cutoff, respectively.
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Figure S5: Violin and box and whisker plots of median nodal delivery distances across the US Eastern
Interconnect and European grids.
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(a) EI generation
(Spatial average)

(b) EI load (Spatial
average)

(c) EI exported gen.
(Spatial average)

(d) EI line capacity
(Nodal)

(e) European genera-
tion (Spatial average)

(f) EUR load (Spatial
average)

(g) EUR exported
gen. (Spatial average)

(h) EUR line capacity
(Nodal)

Figure S6: Generation, load, excess generation (generation - load), and connected transmission capacity
across Eastern Interconnect (EI) and European (EUR) grid models.
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(a) EUR, downstream delivery distance (b) EUR, upstream delivery distance

(c) EI, downstream delivery distance (d) EI, upstream delivery distance

Figure S7: Delivery distance across the US Eastern Interconnect and European grids. Bands show
95% CI, calculated using a Fisher transformation and z test.
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(a) States (b) Balancing Authorities (c) NERC regions

Figure S8: Regional variability across boundaries in the US grid.
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(a) Expected deliverability (b) Upstream delivery distance

Figure S9: Expected expected deliverability (1kw, 168 hour cutoff) and upstream delivery distance
across existing and proposed bidding zones in Germany and Denmark.
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Figure S10: Downstream (left) and upstream (right) perspectives of delivery.
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(a) European grid (b) Eastern Interconnect

Figure S11: Regional expected deliverability scores (x) compared to median regional downstream
delivery distances (y) and mean between-node distances (marker size) across our two grid models.
Small regions towards the upper left of the graph have low deliverability relative to their delivery
distance, indicating that directional biases in power flow may influence deliverability. Labels are
centered immediately above the corresponding point.
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(a) European grid (b) Eastern Interconnect

Figure S12: Standard deviation in regional connectivity scores (red) and expected deliverability scores
(blue). For regional connectivity scores, which are calculated at every time stamp and averaged to show
an overall score, we show variability over model time. For expected deliverability, which is calculated
in each region and averaged to the boundary set, we show variability over regions in each boundary
set (weighted by annual regional load). Note that these are not error bars on the average socre itself,
instead, they indicate the variability of data averaged over.
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(a) Downstream delivery distance (b) Upstream delivery distance

(c) Downstream delivery distance (zoomed) (d) Upstream delivery distance (zoomed)

Figure S13: Median upstream (red, left) and downstream (blue, right) delivery distances for each
country at two map zoom levels.
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(a) Original network (b) Clustered to 512 nodes

(c) Clustered to 128 nodes (d) Clustered to 37 nodes

Figure S14: Downstream delivery distances across three levels of clustering in the Texas grid. Node
color indicates the median distance traveled by power serving generators at that node.
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(a) Original network (b) Clustered to 512 nodes

(c) Clustered to 128 nodes (d) Clustered to 37 nodes

Figure S15: Upstream delivery distances across three levels of clustering in the Texas grid. Node color
indicates the median distance traveled by power serving that load.
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(a) Original network (b) Clustered to 512 nodes

(c) Clustered to 128 nodes (d) Clustered to 37 nodes

Figure S16: Example Texas boundaries under four levels of clustering
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(a) Downstream delivery dis-
tance

(b) Upstream delivery distance (c) Expected deliverability

Figure S17: Regional delivery distance and deliverability across clustering levels using arbitrary grid
boundaries in Texas. While the strongest trends are consistent over clustering levels, the highest level
of clustering (to 37 nodes) produces significant changes in regional metrics.
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Figure S18: Boundary set level metrics in Texas across clustering levels.
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Figure S19: Compare generation between the Europe model used in the main text (blue) and the
model with altered dispatch used for evaluating metric sensitivity to dispatch (red).
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Figure S20: Differences between expected deliverability (using country boundary set) after altering
generation, as a percentage of the expected deliverability scores of the model used in the main text.
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(a) Main text dispatch (b) Altered dispatch

(c) Main text dispatch (zoomed) (d) Altered dispatch (zoomed)

Figure S21: Median upstream (red) and downstream (blue) delivery distances for each country in
the modeled dispatch used in the main text (left) and altered dispatch (right). See Figure S19 for
differences in dispatch between models. Delivery distance is the most sensitive of our three metrics to
dispatch.

29



PR
EP
RI
NT

(a) Expected deliverability (b) Regional connectivity

Figure S22: Boundary set level metrics across
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EUR 0.25 31.71 0.00
0.50 80.26 49.55
0.75 133.29 91.35
0.90 196.12 133.52
0.99 371.42 289.20

US 0.25 42.62 0.00
0.50 84.41 63.40
0.75 139.19 106.13
0.90 200.14 148.03
0.99 342.05 240.94

Table S1: Upstream and downstream delivery distance quantiles in the EI and European grid
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Network
Original node den-
sity (km2/node)

Clustered
node density
(km2/node)

Ratio of clustered
to original nodes

Eastern In-
terconnect

66 4581 68

Europe 952 5019 5.3
Texas 198

Table S2: Resolution of Eastern Interconnect, European, and Texas networks. The first two are used
in the results, the Texas network is used only in clustering tests. Texas clustered node density and
ratio depend on the level of clustering, and are shown in Table S3
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Clustered
node density
(km2/node)

Ratio of clustered
to original nodes

512 772.6 3.9
128 3090.4 15.6
37 10691.2 54.1

Table S3: Resolution of three clustered versions of the Texas network (512, 128, and 37 nodes, re-
spectively). These span the resolution of the networks used in our main networks (Table S2) and are
used along with the unclustered Texas network to test the impact of clustering on physical delivery
measurements.

33


	Supplemental methods
	Variable reference
	Terminology reference
	Tracing a vector of quantities
	Bilateral delivery from downstream density
	Application to generator tracing
	A note on power flow tracing theory

	Models
	PyPSA-Eur
	Breakthrough model of Eastern Interconnect
	Open source model limitations
	Model validation


	Supplemental discussion
	Robustness of results to clustering
	Robustness of results to model dispatch
	Correlations between delivery distance and grid variables
	Evaluating boundary proposals in Germany and Denmark


