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Abstract1

We use power flow tracing to measure the phys-2

ical delivery of power between all generators3

and loads in models of the European and East-4

ern U.S. transmission grids. We believe this5

is the first work to measure physical delivery6

on high resolution models of real transmission7

grids. Physical delivery analysis can inform the8

integration of delivery requirements into clean9

energy procurement guidelines, such as those10

in the Greenhouse Gas Protocol (GHGP) stan-11

dard, to support credible claims. We propose12

three new metrics to summarize physical deliv-13

ery across a transmission grid: delivery distance14

(median distance traveled by power), expected15

deliverability (generator/load pairs which meet16

a physical delivery cutoff), and regional con-17

nectivity (which uses modularity, a metric from18

graph theory, to summarize how well bound-19

aries align with physical delivery). We evaluate20

these metrics across Europe and the Eastern21

U.S.. We find that the distance and direction22

traveled by power is highly variable, and can23

be partially explained by patterns of power flow24

from large generation centers towards large load25

centers. We evaluate how existing boundaries26

align with physical delivery and find that bid-27

ding zones and countries in Europe and states28

in the Eastern U.S. perform better than other29

options.30

Introduction31

Electricity generation accounts for a large frac-32

tion of the world’s greenhouse gas emissions,33

contributing to the climate crisis. Governments34

and electricity consumers are increasingly inter-35

ested in procuring clean electricity, and under-36

standing where electricity is delivered can be a37

useful input for credible and effective procure-38

ment guidelines. However, definitions of deliv-39

erability vary widely through the academic lit-40

erature and often do not consider the physics41

of electricity delivery. We use delivery based42

on power flow tracing as a simple, physics-43

grounded approach which can provide granular44

insights into electricity delivery.45

Renewable energy markets46

Electricity consumers are increasingly inter-47

ested in tracking their carbon footprint using48

accounting standards such as the GHG pro-49

tocol1 and reducing their emissions through50

the voluntary procurement of carbon free elec-51

tricity.2 While some point to the sheer vol-52

ume of clean energy transactions as an indi-53

cator of the success of this voluntary market54

model,3 others4,5 have criticized the voluntary55

market as greenwashing which fails to deliver56

the promised grid decarbonization.557

In addition to the fast-growing voluntary58

market, governments are increasingly introduc-59

ing standards for clean energy procurement in60

their jurisdictions, sometimes including stricter61

location requirements than voluntary procure-62

ment guidelines.6,763

Grid operators dispatch generation resources64

to balance load across time and location while65

maintaining system security and keeping the66

grid’s components within their operational lim-67
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its.8 Traditionally, voluntary procurement has68

not attempted to match the time or loca-69

tion of procured generation with the buyer’s70

load. One emerging voluntary procurement71

approach, 24/7 procurement, aligns electricity72

procurement with the times and locations when73

a buyer is consuming electricity.9 Modeling sug-74

gests that 24/7 matching in the US and Euro-75

pean grids, paired with location matching based76

on operational regions, would reduce system77

emissions over annual matching, which is the78

current status-quo.10,11 Given that the grid is79

balanced in both time and space, defining the80

right location matching criteria for 24/7 match-81

ing is key for procuring energy that aligns with82

a specific load.83

Defining physical delivery and de-84

liverability85

Just as 24/7 is the principle that under-86

pins temporal matching of clean energy sup-87

ply with demand, deliverability underpins loca-88

tional matching. Conceptually, deliverability is89

the the ability of generated electricity to serve90

a load through the grid’s transmission and dis-91

tribution network. The simplest deliverability92

approaches treat electricity as uniformly mixed93

(a “copperplate” model) within either a syn-94

chronous grid (eg, the Eastern, Western, and95

Texas interconnects in the US) or an opera-96

tional region (eg, balancing areas in the US).97

Other approaches attempt to identify which98

loads could be impacted by a generator, in-99

cluding both delivery directly from that gener-100

ator and second-order changes in power flows101

due to that generator. Blumsack et al. 12102

use electrical distance to define “deliverable”103

zones. Congestion-based approaches to deliv-104

erability similarly attempt to define deliver-105

able zones, often based on locational marginal106

prices (LMPs), as regions within which there107

are no congestion constraints limiting the deliv-108

ery of generated electricity.13 Neither approach109

guarantees that generators will actually deliver110

power to a given load, and may not be stable111

over time.112

Congestion-based delivery rules for procure-113

ment have been shown to reduce system emis-114

sions. For example, Ricks et al. 14 show, us-115

ing a small example system, that a congestion-116

based deliverability requirement is important117

for building new renewable projects to minimize118

emissions from hydrogen production loads. One119

limitation of congestion-based deliverability in120

real-world procurement is the use of LMP prices121

to determine deliverable zones,15 which are an122

indirect metric that can be affected by factors123

other than congestion. Physics-based defini-124

tions of congestion could be used alongside the125

physical delivery metrics developed in this work126

to give a fuller picture of both the physical de-127

livery of dispatched, existing generation (phys-128

ical delivery) and the potential for the delivery129

of additional generation (congestion-based met-130

rics).131

Finally, some approaches use power flow to132

define deliverability. Power flow measures the133

time-varying magnitude and direction of power134

along each of a grid’s lines and buses. Kirschen135

et al. 16 is an early example of this approach,136

where the “domain” of a generator is all loads137

downstream on an acyclic power flow dia-138

gram. Achayuthakan et al. 17 proposed extend-139

ing power flow tracing, originally designed to140

trace transmission costs,18 to trace power from141

generators to loads. Since delivery based on142

power flow tracing is derived from the grid’s143

underlying physics, we refer to it as physical144

delivery to distinguish it from other definitions145

of deliverability.146

In this work, we measure the physical delivery147

from generators to loads on models of the Eu-148

ropean and Eastern US transmission grids, and149

propose three new metrics for summarizing and150

analyzing physical delivery. Our physical deliv-151

ery findings on real grids can serve as a founda-152

tion for future work on designing markets and153

accounting protocols that align participant in-154

centives towards grid decarbonization.155

Methods156

We extend the algorithm of Kang et al. 19 , which157

used a matrix formulation of power flow trac-158

ing to track one feature through a power grid,159

and the conceptual approach of Achayuthakan160
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et al. 17 , which applied power flow tracing to161

measuring the physical delivery of electric-162

ity. (Algorithm provided in supplement sec-163

tion 1.3.) We believe we are the first to apply164

this approach to high-resolution models of real165

transmission systems, perhaps because of com-166

putational and analytical challenges created by167

data volume and complexity (representing de-168

livery over a model year in Europe requires ap-169

proximately 200 GB of data).170

Node-specific metrics171

Bilateral delivery172

Bilateral delivery describes the volume of power173

delivered from each generator to each load in174

the network. We call these relationships bilat-175

eral delivery relationships to distinguish them176

from metrics which aggregate over many gener-177

ator/load pairs.178

Bilateral delivery at time t is represented by179

a matrix Pt ∈ RNG×N , where each element Pi,j,t180

describes the delivery in MWh between gener-181

ator i and load j at time t. NG is the number182

of generators in the system, and N is the num-183

ber of buses (each of which could have a load).184

Note we exclude the subscript t for simplicity185

of notation except when aggregating over time.186

We can look at bilateral delivery from either187

the upstream perspective, where we focus on a188

single load and ask which generators contribute189

to it; or the downstream perspective, where we190

focus on a single generator and ask which loads191

it serves (Figure S10).192

Bilateral delivery relationships are complex193

and three-dimensional, with a scalar value for194

every generator, load, and time combination195

in the model. While this data richness allows196

for nuanced evaluations of an individual node’s197

generation and load, it can make it difficult to198

draw insights across the entire network. To ad-199

dress this, we introduce three aggregate met-200

rics, expected deliverability, delivery distance,201

and regional connectivity (Table 1).202

Although each metric provides valuable in-203

sights in the two grid models we consider in this204

work, each has limitations. We see these met-205

rics as a starting point for future refinement to206

better explore the full range of insights available207

from bilateral delivery data.208

Delivery distance209

Delivery distance is the median distance trav-210

eled to each load or from each generator in211

the network; measured at every timestamp or212

aggregated over time. The delivery distance213

from a generator is downstream delivery dis-214

tance, and is the the median distance traveled215

by power from the generator, or equivalently216

the distance traveled before 50 % of the gener-217

ation from a generator has been consumed. The218

delivery distance to a load is upstream delivery219

distance, and is the distance within which 50220

% of the power to serve a load was generated.221

We use the median instead of the mean because222

we found in sensitivity testing that average dis-223

tances were sensitive to the resolution of a grid224

model. Using the median has the additional225

advantage that the metric could be extended in226

the future to look at other delivery quantiles,227

for example, the distance within which 90 % of228

power is consumed.229

Here, we use the straight line distance in230

kilometers between each node pair as our dis-231

tance function fd(), but our definition of de-232

livery distance can be used with any distance233

metric. Two potentially relevant metrics could234

be an electrical distance metric, a simple ver-235

sion of which measures the impedance between236

two buses on a network;20 or electrical line dis-237

tance in km. We use kilometers here because of238

its simplicity and relevance for procurement de-239

cisions, where electrical distance and topology240

data may not be available.241

The downstream delivery distance d for a gen-242

erator i with generation gi (MW) is:243

min d

s.t.
∑N

j=0 1dPi,j ≥ 1
2
gi

(1)

where we sum over the delivery to all loads244

in the network. Here 1d is an indicator variable245

determining whether node ni falls within d of246

n:247

1d :=

{
1 if fd(i, j) < d,

0 otherwise
(2)
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Table 1: Proposed metrics

Metric Definition Scale Units Range Benefits Drawbacks

Delivery

Power
delivered
from each
gen to each
load

Bi MWh
0, max
g/l

Represents nuanced
behavior of all Bi pairs

Difficult to draw gen-
eral conclusions

Delivery
distance

Median
distance
traveled by
power

g/l,
R

km
0,
500B

Intuitive. Definition at
each gen/load enables
network-wide analysis

Relatively sensitive to
model clustering and
dispatch. Ignores di-
rectional trends.

Expected
Deliver-
ability

Percent of
Bi pairs
above a
cutoff

Bi,
R,
BS

% 0, 100
Easy to compare re-
gions and boundary
sets

Requires arbitrary
choice of cutoff. Ig-
nores magnitude of
delivery.

Regional
connec-
tivity

Modularity
of a BS on
the deliv-
ery graph

BS - 0A, 1

Summarizes bilateral
delivery. Accounts
for magnitude and
direction of delivery.

Limited to BS-level
analysis. Less intu-
itive.

Bi = bilateral (each generator and load pair), BS = boundary set, R = region, g/l = generator or load
A Theoretically modularity can be as low as −1/2, but this is not possible in these graphs and boundaries,
since the graphs are strongly connected locally and weakly connected at greater distances
B The longest distances in our models were under 500 km, but larger distances are theoretically possible

4



PR
EP
RI
NT

The upstream delivery distance for a load k248

is similar, but we now sum over all generators249

m in the network to determine the minimum250

distance within which those generators provide251

at least 50 % of the load at k:252

min d

s.t.
∑NG

m=0 1dPm,k ≥ 1
2
lk

(3)

Expected Deliverability253

For some applications, it may be useful to de-254

termine whether electricity can be physically255

delivered between a generator/load pair. We256

call this concept physical deliverability, to high-257

light that the user is interested in the potential258

of physical delivery during normal grid opera-259

tion, not the magnitude of that delivery. We260

note that physical deliverability differs from261

other definitions of deliverability, for exam-262

ple, congestion-based deliverability, which ask263

whether a generator could ramp up (or be built)264

to meet a load, regardless of whether power is265

physically delivered between the pair.266

We propose expected deliverability as a met-267

ric for measuring physical deliverability. Ex-268

pected deliverability is defined using two cut-269

offs, Cp, which describes the amount of power270

for a generator-load pair to be considered “de-271

liverable” in a single hour, and Ct, which de-272

scribes the number of hours during the model273

year where the power cutoff must be met. One274

limitation of this metric is that because we only275

model one year, we do not capture all possi-276

ble grid states, and may miss some deliverable277

generator-load pairs.278

We describe whether a generator g and load l279

meet the cutoff Cp in a single hour t using the280

indicator variable 1Cp :281

1Cp :=

{
1 if Pl,g,t > Cp,

0 otherwise
(4)

We then determine whether g and t meet the282

cutoff over the model year using the indicator283

variable 1Cp,Ct :284

1Cp,Ct :=

{
1 if

∑
t 1Cp > Ct,

0 otherwise
(5)

Note that this definition focuses on the down-285

stream perspective. This allows us to answer286

questions like “where is generator x deliverable287

to?”. Because of the asymmetry between up-288

stream and downstream bilateral relationships289

(see Results), upstream and downstream ex-290

pected deliverability may not always be the291

same. It is possible to formulate upstream ex-292

pected deliverability, but we leave the explo-293

ration of this additional metric to future work.294

Unlike delivery distance, which is a physical295

delivery metric that looks at the distance within296

which most power is served, expected deliver-297

ability looks at the widest extent traveled by298

even a small portion of power from a generator.299

Although the two are conceptually different, we300

do expect some alignment between the metrics,301

with generators with longer downstream deliv-302

ery distances having larger expected deliverabil-303

ity ranges.304

Regional metrics305

As recent legislation demonstrates,6,7 regions306

are a common and useful way to define pro-307

curement requirements. The regional metrics308

we propose provide quantitative evidence for309

the relative ability of existing boundary sets to310

accurately represent underlying physical deliv-311

erability.312

While the metrics introduced above are use-313

ful for evaluating delivery and deliverability in314

specific cases, individually analyzing every vol-315

untary clean energy market transaction for de-316

liverability may not be practical. As recent leg-317

islation demonstrates,6,7 regions within which318

generation is considered deliverable are a com-319

mon and useful way to define procurement re-320

quirements. In this section, we introduce how321

the above metrics can be aggregated to evalu-322

ate physical delivery and deliverability within323

a single region or a set of regions defined by a324

boundary set.325

Each aggregation prioritizes different features326

of the underlying bilateral delivery relation-327

ships.328
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Aggregating delivery distance329

To aggregate delivery distance to the region, we330

take the median of the delivery distances for331

all loads (upstream delivery distance) or gener-332

ators (downstream delivery distance) over the333

region. This provides regional delivery distance,334

a descriptive statistic of physical delivery in a335

region, which can be contextualized by com-336

parison to measures of region size. Here, we337

compare regional delivery distance to the aver-338

age between-node distance in a region. More339

complex metrics, for example mean between-340

node distance weighted by load size, could be341

explored as more robust measures of region size.342

Aggregating expected deliverability343

Regional expected deliverability measures how344

likely a random generator/load pair is to pass345

a given expected deliverability cutoff. Regional346

expected deliverability is measured as MR/NR,347

whereMR is the number of generator/load pairs348

in region R meeting the cutoff out of NR total349

generator/load pairs in R.350

For the results shown here, we use a cutoff351

of 1 kW delivered in at least 168 hours (equiv-352

alent to one week of hours) of a typical year353

(≈ 0.3% of hours). While the choice of cut-354

off is arbitrary, sensitivity testing comparing355

results under four cutoffs found that the rel-356

ative performance of regions is robust over cut-357

off choices, although expected deliverability de-358

creases as cutoffs become stricter (Figure S1).359

Very strict cutoffs (eg, tens of MW of power360

over months of the model year) may benefit361

smaller regions or be sensitive to the number362

of nodes in a region. Following these findings,363

we use a cutoff in the middle of the range we364

tested, and focus on comparative results which365

are robust to cutoff choice.366

Measuring regional connectivity with367

modularity368

Modularity is a metric from graph theory used369

to measure the quality of a set of boundaries370

dividing a graph. Conceptually, modularity371

compares the connectedness of each region in372

the graph to what the expected connectedness373

would be if edges were randomly distributed.374

In our application, boundaries that group sec-375

tions of the network where generators and loads376

have high delivery to one another perform well,377

while boundaries that divide those sections or378

have many generators and loads which do not379

deliver to one another score poorly. Modular-380

ity is powerful because it can summarize all bi-381

lateral delivery connections on a network with-382

out reducing each connection to true/false (as383

with expected deliverability) or to a median dis-384

tance per generator or load (as with delivery385

distance).386

To calculate modularity, we first construct387

a graph of all bilateral delivery relationships.388

Note that this is no longer the topology of the389

underlying grid; instead, it represents the bilat-390

eral delivery Pi,j of each generator, load pair i, j391

as an edge.392

Once we have defined the graph, we calculate393

modularity:21394

1

2m

∑
ij

[Pij − γ
kikj
2m

]δ(ci, cj) (6)

Where m is the total number of edges, ki is395

the degree of node i, and δ(ci, cj) = 1 if and396

only if i and j are in the same region. We397

call this bilateral delivery-based modularity re-398

gional connectivity.399

Regional connectivity has several drawbacks.400

It is likely unfamiliar to many power systems401

experts and has no natural units, which may402

limit interpretability. Also, we currently cal-403

culate modularity only for the entire bound-404

ary set, so we cannot identify which regions are405

most responsible for good or bad performance406

of a boundary set’s regional connectivity.407

Models and data408

The proposed methods require a complete net-409

work topology, along with generation, load, and410

power flow data. We use open source models of411

the European22 and U.S.23 (Eastern intercon-412

nect only) power grids, clustered to 1024 nodes.413

We use model parameterizations which approx-414

imate the behavior of the 2020 grid, and run415

linear OPF for each day of the model year to416
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generate generator profiles and power flow re-417

sults. See supplement section 1.4 for more de-418

tail on our model configuration.419

We compare our modeled dispatch to actual420

2020 dispatch from OGE24 and Eurostat (sup-421

plement section 1.4.4) and find that all fuel cat-422

egories are within 20% of their actual dispatch.423

These errors in dispatch may impact some re-424

gional metrics but we do not expect them to al-425

ter our conclusions, which focus on trends and426

relative metric performance which are robust to427

changes in model dispatch (supplement section428

2.2).429

Model limitations430

Our models mirror the overall behavior of the431

2020 grid but do not capture the actual historic432

behavior of the grid at specific hours. This lim-433

its our analysis to trends and typical behavior,434

which can be captured by the models, rather435

than temporally specific results.436

We cluster both models to 1024 nodes be-437

fore analysis. In the European model, clus-438

tering is necessary to avoid unrealistic trans-439

mission constraints near large population cen-440

ters. Although clustering is not required in the441

Eastern U.S. network, we cluster the Eastern442

U.S. network for consistency with the Euro-443

pean network and for computational feasibility.444

We performed sensitivity testing of our met-445

rics to clustering (supplement section 2.1), and446

found that while clustering has systematic im-447

pacts on some of our metrics (more clustered448

grids have uniformly higher deliverability and449

lower regional connectivity), clustering in most450

cases does not impact the relative performance451

of boundary sets or regions. Exceptions oc-452

cur when a grid is so highly clustered that it453

no longer accurately captures spatial patterns454

of delivery, or when clustering combines nodes455

with very different characteristics across bound-456

ary borders, neither of which we observe in the457

models used in our results here.458

An additional limitation specific to the East-459

ern U.S. network is that it is a synthetic model,460

designed to replicate the behavior of the U.S.461

grid in a spatially granular manner but not462

based on real transmission topology. Bench-463

marking by the Eastern U.S. team23 gives us464

confidence that our overall results, including465

regional analyses, will accurately represent the466

U.S. grid, but insights at a single node or line467

may not be accurate.468

Regions and boundary sets469

We evaluate our region and boundary set-level470

metrics on three boundary sets on each grid.471

Each boundary set defines a set of regions which472

uniquely and completely cover the grid. In473

the Eastern U.S., we consider balancing au-474

thorities (“BAs”), states, and NERC regions475

(NERC is a standard setting body whose Re-476

gional Entities cover the US). In Europe, we477

consider interconnects (or synchronous grids),478

countries, and bidding zones. By comparing479

metrics across boundary options, we are able480

to provide insights about which existing bound-481

aries are more aligned with underlying physical482

delivery.483

These boundary sets have varying histories484

and relationships to the underlying grid. For485

example, in the US, state boundaries do not de-486

fine the operational boundaries of the grid, but487

they can affect the resource mix on the grid488

through policy. On the other hand, BAs are489

directly aligned with electricity markets in the490

U.S., but given the history of how regulated and491

deregulated regional markets developed, BAs492

can cover a single city or multi-state regions.493

This complexity means that physical delivery494

and deliverability can vary widely between and495

within regions.496

Results497

Bilateral delivery498

The core result of our physical delivery anal-499

ysis is bilateral delivery relationships between500

every load and generator pair in the network.501

An example of these relationships for a sin-502

gle node, DE1 17, is shown in Figure 1. DE1503

17 is a Northern Germany node with a variety504

of generators and a small load. While limited505

in scope, analysis of individual bilateral deliv-506

ery relationships will lay the foundation for un-507
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(a) Time 1, Down-
stream delivery

(b) Time 1, Upstream
delivery

(c) Time 2, Down-
stream delivery

(d) Time 2, Upstream
delivery

Figure 1: Example delivery to and from north-
ern Germany node DE1 17 over two time
stamps. Grey nodes receive (left) or serve
(right) less than 1kw to DE1 17. Color indi-
cates volume of power served or received as a
percentage of DE1 17 generation (left) or load
(right). Left panels show delivery from gener-
ators at DE1 17 (darkest green) at an exam-
ple timestamp. Right panels shows delivery to
loads at DE1 17 (darkest red). Note that we
do not highlight lines here, because power flow
tracing of generators does not provide data on
the path traveled by power serving a specific
load. The lower panels show delivery at a times-
tamp 10 hours after the upper panels.

derstanding the dynamics shaping broader pat-508

terns of delivery across our models.509

Bilateral delivery relationships are highly510

variable in time and space. The two rows of511

Figure 1 are separated by only 10 hours, yet512

the primary direction of power flow has shifted513

between the two timestamps, from west-to-east514

in the first time stamp to east-to-west in the515

second timestamp. These large shifts are not516

due to the activity of DE1 17 alone; instead,517

they’re the result of the behavior of the entire518

system.519

Delivery distance520

Single-node delivery distance521

Delivery distance from generators at a node522

(downstream delivery distance) and to the load523

at a node (upstream delivery distance) summa-524

rize the spatial extent of bilateral relationships.525

Figure S3 demonstrates how delivery distance is526

derived from the bilateral relationships of DE1527

17, the node shown in Figure 1, by looking at528

the cumulative delivery to and from the node529

over distance. The delivery distance curves in530

Figure S3 are typical, with most power con-531

sumed close to the node where it is generated532

but a long tail of smaller delivery to or from533

more distant nodes.534

The median distance traveled by power from535

generators at DE1 17, 205.2 km, is the same536

between the two timestamps shown here. This537

is a typical downstream delivery distance for538

this node (its median downstream delivery dis-539

tance over the model year is 203.1 km). The540

median upstream delivery distance changes be-541

tween the timestamps, from 50.7 km in the first542

timestamp to 0 km in the later timestamp. A543

delivery distance of 0 km indicates that at least544

half of the power serving the load at this node545

was generated at this node, but it does not546

mean that no power serves the node from fur-547

ther away, as visible in Figure 1d.548

Using delivery distance to understand549

spatial trends550

While the median delivery distances of both551

models are similar (upstream 80.2 km in Eu-552
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U.S.
(b) Upstream, U.S.

(c) Downstream,
Europe

(d) Upstream, Europe

Figure 2: Downstream (left) and upstream
(right) delivery distances for the the Eastern
interconnect and European grids. The results
are spatially binned to provide easier visualiza-
tion of regional trends.

rope and 84.4 km in the Eastern Interconnect;553

downstream 52.9 km in Europe and 62.4 km in554

the Eastern Interconnect), there is large vari-555

ability in delivery distance within each grid556

model. 1. Downstream delivery distance has an557

IQR range (75th percentile - 25th percentile)558

of 91 km in Europe and 106 km in the East-559

ern interconnect (Figure Figure S5, Table S1).560

This variability has implications for clean en-561

ergy procurement informed by physical deliv-562

ery, since the radius of generators delivering563

to a load is dependent on the location of the564

load. The delivery distance relevant for a spe-565

cific load could be located on a map of deliv-566

ery distances (such as Figure 2) or found us-567

ing a load-specific delivery analysis. Alterna-568

tively, regional summaries of delivery distances569

could guide a procurement policy based on re-570

gion boundaries similar to current protocols.6,7571

Because delivery distance provides a scalar572

summary of physical delivery at each network573

node, we can easily relate delivery distance to574

potential drivers of physical delivery defined at575

the network nodes. While not directly appli-576

cable to procurement, this makes delivery dis-577

tance a useful tool for understanding physi-578

cal delivery. Here, we explore whether four579

simple drivers of power flow, specifically nodal580

and area-averaged annual generation, annual581

load, annual excess generation (“exports”), and582

transmission capacity, shown in Figure S6, af-583

fect physical delivery as measured by delivery584

distance.585

Although the predictive power of each vari-586

able is generally small (maximum magnitude587

0.4), we find significant and consistent corre-588

lations between downstream delivery distance589

and two explanatory variables, load and ex-590

1Note that the statistics here are of the median dis-
tance for each generator across the model year, which
allows us to look at the range of typical distances across
generators and locations. Statistics of the entire set of
delivery distances across all hours would show a wider
range. Note also that when we take the median across
generators, we treat each generator equally, regardless
of its capacity or dispatch over the model year, which
means our metrics reflect the typical generator, not the
typical generated MW. Since delivery distance is posi-
tively correlated with generation, a weighted median of
downstream delivery distance would be longer.
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ported generation. Downstream delivery dis-591

tance is negatively correlated with load, indi-592

cating that where there are large load centers593

near a generator, that generator’s power is more594

likely to be consumed nearby. The opposite re-595

lationship is true of exported generation, indi-596

cating that when generation exceeds load, ei-597

ther at a specific node or across the region close598

to the node, generation from that node is likely599

to travel further. Both of these relationships600

become weaker when we consider larger spatial601

averages of the explanatory variables, indicat-602

ing that the grid closest to the node has the603

largest impact on that node’s physical delivery604

(Figure S7). These results support the intuitive605

idea that the relative location of load and gen-606

eration centers is an important driver of physi-607

cal delivery, a relationship which we leverage to608

explain regional trends seen in other metrics.609

Expected deliverability610

Single-node expected deliverability611

Bilateral deliverability abstracts away the vol-612

ume of delivered power, but unlike delivery dis-613

tance, it preserves directional biases in delivery.614

A 1kw power cutoff Cp is shown in each panel615

of Figure 1, where nodes which are not deliv-616

erable to DE1 17 in the two example hours are617

shown in grey. Physical deliverability for this618

node over the entire model year is shown in Fig-619

ure S4, which demonstrates how the patterns of620

delivery seen in Figure 1 are preserved by ex-621

pected deliverability. Since both the east- and622

west- direction delivery patterns from DE1 17623

are seen in multiple hours over the model year,624

those regions are included in expected deliver-625

ability regions, while uncommon patterns, like626

power flowing north into Scandinavia, are not.627

Regional expected deliverability628

Regional expected deliverability provides quan-629

titative evidence for the relative physical deliv-630

erability of regions. When combined with re-631

gional delivery distance, the two metrics can632

provide nuanced insights of regional physical633

delivery patterns.634

Regional expected deliverability is a function635

of region size, delivery distance, and directional636

biases. Where regions of similar size have sim-637

ilar directional power flow patterns, differences638

in delivery distance explain differences in re-639

gional expected deliverability. For example,640

Vermont and New Hampshire, two neighboring641

states in the northeast U.S., are close in size642

(95.2 km average inter-node distance in Ver-643

mont, 88.1 km in New Hampshire) but Vermont644

has a longer downstream delivery distance (63.6645

km to New Hampshire’s 30.1 km). The result-646

ing regional expected deliverabilities are 99 %647

in Vermont, where most nodes are within the648

median downstream delivery distance, but only649

74 % in New Hampshire (Figure S11).650

Many regions, however, have diverging ex-651

pected deliverability and delivery distance, in-652

dicating that expected deliverability is captur-653

ing asymmetric patterns of delivery not re-654

flected by delivery distance. This illustrates the655

importance of comparing multiple metrics, each656

of which highlights a different feature of the un-657

derlying bilateral delivery data, to understand658

physical delivery trends. For example, in Eu-659

rope, Sweden has a strong directional bias in660

delivery, with generation in the northern part661

of the country usually traveling south towards662

larger load centers in southern Scandanavia or663

mainland Europe. This leads to low expected664

deliverability in northern Sweden bidding zones665

and increasing deliverability towards the south666

as directional biases in power flows lessen. From667

north to south, deliverability scores for SE-1,668

SE-2, and SE-3, and SE-4 are 43.8 %, 38.5 %,669

59.3, and 100 % respectively. This trend runs670

opposite to median downstream delivery dis-671

tances in these regions (Figure S11 (b)), which672

are longer in the north where generators are673

further from large load centers (from north to674

south, median regional delivery distances are675

335.2 km, 363.4 km, 98.9 km, and 61.3 km).676

The large regional differences within Swe-677

den are masked when considering Sweden as678

a whole, which has a 48.3 % expected deliver-679

ability. This illustrates a risk of regional phys-680

ical delivery metrics: where physical delivery681

is heterogeneous within a region, a region-level682

statistic will not accurately reflect the physical683
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delivery environment of all loads and generators684

within that region.685

Evaluating boundaries686

At the boundary set level, we evaluate phys-687

ical delivery using expected deliverability and688

regional connectivity. Expected deliverability689

considers only whether physical delivery meets690

a certain threshold, while regional connectivity691

considers the magnitude of all bilateral delivery692

relationships.693

In Europe, modularity and deliverability694

scores agree, with bidding zones and countries695

performing similarly and much better than in-696

terconnects (Figure 3a). The differences be-697

tween bidding zone and country scores are698

smaller in magnitude than the variability of699

scores across regions or model time (Figure700

S12). The similarity between expected deliver-701

ability and regional connectivity suggests that702

both reflect the underlying bilateral delivery of703

generators and loads in the network.704

In the Eastern Interconnect model, the705

boundary set options score similarly overall,706

but there is more deviation between the two707

boundary level metrics (Figure 3b). The largest708

discrepancy is in NERC regions, which score the709

best out of the boundary options on regional710

connectivity and the worst out of the options on711

the deliverability metric. This may be because712

the relatively large size of NERC regions results713

in lower average deliverability, even though the714

physical delivery relationships within them are715

still strong relative to the grid as a whole, re-716

sulting in a higher regional connectivity score.717

States, by contrast, score well on both deliver-718

ability and modularity. To better understand719

these differences between modularity and de-720

liverability, future work could break down the721

modularity score to identify which specific re-722

gions have deviating modularity and expected723

deliverability.724

Summarized to the boundary set level, phys-725

ical delivery metrics can obfuscate significant726

deviations in performance between regions.727

BAs in the US are an extreme example of this728

(Figure S8) In Florida (the Southeastern U.S.),729

BAs can be as small as a single town. These730

(a) European grid (b) Eastern Interconnect

Figure 3: Boundary deliverability and modu-
larity scores in the European and US grids.

small BAs are highly deliverable, with deliver-731

ability scores of 75-100%. Elsewhere, large BAs732

like PJM have much lower expected deliverabil-733

ity (18.12 % for PJM). The low load-weighted734

average BA deliverability score, 32.3 %, reflects735

the relative prominence of large, low deliver-736

ability ISOs, but obfuscates the fact that some737

smaller BAs actually have very high deliverabil-738

ity.739

Discussion and conclusions740

We extend existing power flow tracing algo-741

rithms17,19 to trace bilateral delivery between742

generators and loads in power networks. Build-743

ing on this, we define three new metrics for744

measuring physical delivery and deliverability:745

delivery distance, expected deliverability, and746

regional connectivity.747

Using these metrics, we explore how physical748

delivery varies across models of the U.S. East-749

ern Interconnect and the European grid. We750

find that most electricity is delivered close to751

where it is generated, with the median deliv-752

ery distance across both grids 82.3 km. Physi-753

cal delivery patterns can be partially explained754

by familiar characteristics of power grids, with755

power traveling towards large load centers.756

We evaluate physical delivery and physical de-757

liverability at the level of regions and bound-758

ary sets, since these are relevant categories for759

policy and procurement applications. Regional760

and boundary-set level physical delivery met-761

rics can sometimes obscure within- or between-762

region variation in physical delivery.763

Despite this challenge, we find that countries764
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and bidding zones perform better on physical765

delivery metrics than synchronous grids in Eu-766

rope. This may be because the smaller sizes767

of countries and bidding zones relative to syn-768

chronous grids is in better agreement with the769

short delivery distances we see throughout both770

network models. In the US, the three op-771

tions (BAs, NERC regions, and states) per-772

form similarly, with states slightly outperform-773

ing the other options using the median of our774

two metrics. This may be because states are775

the best compromise between NERC regions776

(which are relatively large) and BAs (which777

have highly variable physical deliverability be-778

tween regions).779

Future work: Aligning procurement780

boundaries with physical delivery781

We focus on existing boundaries because they782

can feasibly be incorporated into procurement783

requirements. However, our metrics could also784

be used to evaluate changes to boundaries. We785

applied our metrics to potential bidding zone786

changes in Germany and Denmark, and showed787

that splitting Germany into two zones would788

improve its deliverability, while combining Den-789

mark into one zone would not substantially im-790

pact its deliverability (See supplement section791

2.4).792

While this work considered only European793

and U.S. electricity grids, open source models794

of grids around the world are available, with795

quickly expanding coverage and quality.25 Ex-796

panding the scope of physical delivery-based797

boundary evaluation to these grids will be es-798

sential for ensuring that findings are broadly799

relevant.800

Future work: evaluating the impact of801

procurement decisions802

We frame physical delivery as a tool for pro-803

curement decision making and policy design. A804

key question in policy design, where the inten-805

tion is to shape the decisions of many actors,806

is what the cumulative effect of those decisions807

will be.808

Capacity expansion modeling has shown that809

24/7 matching paired with location match-810

ing using a ‘copperplate’ deliverability model811

(location matching in either the same mar-812

ket region11 or balancing authority10) improves813

system decarbonization compared to weaker814

matching requirements. Other work has found815

that a congestion-based deliverability require-816

ment is necessary for achieving avoided emis-817

sions when procuring clean energy for hydro-818

gen production Ricks et al. 14 . Capacity expan-819

sion modeling could evaluate the decarboniza-820

tion impact of procurement using physical de-821

livery requirements based on the metrics here822

compared to other deliverability definitions.823

Conclusions824

Physical delivery and deliverability can be a825

data-rich foundation for electricity policy and826

procurement. As electricity consumers work to827

ensure that they are consuming clean electric-828

ity, and policy designers work to create guide-829

lines that will be widely adopted and help fur-830

ther the clean energy transition, an understand-831

ing of the underlying grid physics will be vital832

for informed and effective decision making.833
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