
Design Considerations for
Technical Interoperability in EOSC

Authorship community:

George Kakaletris2,3 (0000-0002-2095-1220), Eva Sciacca1,7,* (0000-0002-5574-2787),
Jean-Karim Hériché2,8 (0000-0001-6867-9425), Wim Hugo2,6 (0000-0002-0255-5101),

Emanouil Atanassov2,4 (0000-0002-7442-7096), Svetlozar Yordanov2,5 (0000-0001-7671-6804)

1 Co-Chair, EOSC Task Force on Technical Interoperability of Data and Services
2 Member, EOSC Task Force on Technical Interoperability of Data and Services
3 Communication & Information Technologies Experts SA (CITE), Greece
4 Institute of Information and Communication Technologies (IICT-BAS), Bulgaria
5 BAS, Bulgaria
6 Data Archiving and Networked Services - Royal Netherlands Academy of Arts and Sciences
(KNAW), Netherlands
7National Institute for Astrophysics (INAF), Italy
8 European Molecular Biology Laboratory, Germany

* Corresponding author: eva.sciacca@inaf.it
** All TF members have had the opportunity to review and edit this document; invitations to
be on the authorship list were open to all

1

mailto:esciacca@oact.inaf.it

Table of contents
Executive summary 4
1. Introduction 5
2. Architectural choices for maximising Services Interoperability & Composability 8
3. Non-architectural interoperability choices 12
4. Aligning Interoperability to EOSC priorities 14

Alignment with Open Science 14
Alignment with Computing e-Infrastructures 16
User alignment 17

5. The Role of Standards 19
6. Regulatory Compliance 21
7. Conclusions 22
Acronyms and Abbreviations 23
Annexes 24
Annex A: Summary of Principles, Guidelines and Recommendations 26
Annex B: Indicative Standards 33

Standards families 33
Standardisation bodies 34

2

3

Executive summary
This document is one of the deliverables of the EOSC Association (EOSC-A) Task Force on
“Technical Interoperability of Data and Services”. Its main aim is to highlight a number of
design principles and suggestions that increase interoperability and composability
opportunities for data, software and services, and it is intended to complement the
forthcoming Task Force deliverable entitled, "A landscape overview of the EOSC
Interoperability Framework: Capabilities and Gaps".

The document introduces design-stage principles, both architectural and non-architectural,
that are commonly met in software design and maintenance best practices, but are in this
case approached from the perspective of EOSC’s technical interoperability. These 21
principles are additionally catalogued in Annex A in tabular form including the guidelines and
recommendations of this report, together with the suggested criteria for satisfying the
respective principles.

The document then proceeds to specify suggestions for the interoperability of EOSC
services, addressing the pillars of Open Science, Cloud Computing and the User. The role of
standards, as the cornerstone of system interoperability, is presented briefly, and Annex B
contains an evidence-based enumeration of the relevant specifications. In the Annex, an
indicative list of standard families, along with sources where common standards are drawn
for EOSC services, is presented. In conclusion, a set of key points is summarised, that
emphasises the need to adopt an interoperability strategy at the time of design of a given
system.

4

1.Introduction
Interoperability is a term that lacks a concrete single definition, the most common one being
“the ability of systems to exchange and make use of information”1, which is altogether too
vague to produce objectively measurable results. More often than not, in the field of
information and communication technologies, interoperability is focused on the definition
and adoption of common data standards and communication protocols which may address
challenges at different levels (the lower ones being foundational, structural and semantic).
This approach, which might have been the way to approach interoperability in earlier eras,
when software was substantially simpler in its interactions and capabilities, does not suffice
today. Having a comprehensible data format and protocol to exchange those data does not
automatically assure that this can be integrated in the processes of a system unless special
measures are taken at time of design. Moreover, interoperability may be a straightforward
task when addressing a single protocol, but it becomes a serious challenge when software is
required to interoperate with processes that are subject to change – with emerging and
continuously evolving systems, or those assuming multiple complementary or competing
protocols.

While interoperability is relevant in all areas of modern software design and implementation
domains, for the European Open Science Cloud (EOSC) it is a foundational requirement. The
reason is that EOSC envisages an ecosystem where barriers for connecting or repeating
steps of scientific processes will be as low as possible to allow all the aspects of Open
Science to flourish. In an ideal future, all processes could be interwoven or daisy-chained into
more complex processes, or accommodate variable component inputs, able to discover and
consume any relevant data form, cross any authoritative domain, utilise any virtualized
resource that may be available to them, all while respecting the terms upon which those
resources are exposed. However, methodologies, instruments, processes, dataforms,
resources, etc., are literally unlimited and continuously evolving, each accompanied by
different operational and technological requirements, which makes it impossible to have one
interoperability solution that fits all. In this landscape, technical interoperability of systems –
the focus of the Task Force (TF) –becomes an architectural challenge rather than a mere
mandate to align specifications.

This document enumerates and describes a set of design principles that may increase the
interoperability and composability of software and services relevant to EOSC. Whether or not
these design principles are so far anticipated by the EOSC Interoperability Framework and
related EOSC projects is the aim of a forthcoming deliverable of the TF entitled, "A landscape
overview of the EOSC Interoperability Framework: Capabilities and Gaps".

1 ETSI Interoperability Best Practices
https://www.etsi.org/images/files/Events/interoperability_best_practices_handbook.pdf

5

https://www.etsi.org/images/files/Events/interoperability_best_practices_handbook.pdf

Note that the present document does not intend to serve as an exhaustive listing of relevant
principles, nor to set rules for the implementation of EOSC services. We recognize that
architecture and software technologies are continuously evolving and that other, competing,
factors may guide the choices of an implementation team. However, the deliverable presents
a valid set of elements for a high-level design strategy to deliver new or enhance existing
EOSC services.

Before jumping into the design principles, we briefly present the guiding principles of the
work presented herein. The first one, with multiple benefits, is the Openness of the software.
The concept of “openness”, itself being an overloaded term, has part of its origin in
interoperability, and in that regard describes the capability of the system to exchange data
with other systems. Another part of its origin is as a reference to a system’s capability to
easily adapt to fulfil the challenge or case applied to it. The term expanded naturally to
include the establishment of requirements for standards (requiring them to be open
themselves), the ability to inspect and evolve software (leading to Open Source), and other
relevant qualities, gradually making "open software" synonymous with software that can be
used without substantial restrictions—although perspectives may vary on what a substantial
restriction may be. Openness has a foundational role in EOSC, as presented in the respective
Open Science alignment section.

Another major general principle that empowers composability and interoperability in the
service-oriented era is the Separation of Concerns2. Initially coined for software (and vastly
applied in object-oriented programming), it found its way into the services domain, leading to
the concept of micro-services, i.e. services that address a single, relatively small set of
responsibilities in a larger system. The Single Responsibility Principle3, if applied as well, can
further decompose software into separable entities or services. Those services, requiring
signalling and data exchange with other services via typical communication channels, force
software designers to define those interactions in a formal manner. Helpful paradigms, such
as RESTfulness, come into play when crafting easily consumed APIs, as they impose
expectations in the call structure, data and control flow among the engaged entities. The
Interface Segregation Principle4 is yet another that may add to the sustainability of
interoperability among systems, minimising the interface where unneeded future conflicts
may occur. Finally, the Design over Performance approach serves as an excellent framework
for creating interoperable and open software. What's even more noteworthy, albeit not the
primary focus of this document, is its ability to foster the development of high-quality

4 Martin, Robert (2002). Agile Software Development: Principles, Patterns, and Practices. Pearson
Education.

3 Robert C. Martin (2018). Clean Architecture: A Craftsman's Guide to Software Structure and Design.
Prentice Hall. ISBN 978-0-13-449416-6

2 TARR, Peri, et al. N degrees of separation: Multi-dimensional separation of concerns. In: Proceedings
of the 21st international conference on Software engineering. 1999. p. 107-119.

6

software, both in its entirety and in individual components. Performance should be tackled
only after design objectives are met when performance is not the only critical factor for the
service itself.

Although the effect of the principles presented here might be multi-dimensional, capturing
other qualities of software and services, it must be noted that design principles for building
performant, robust, scalable, Open Science-facing services are not addressed in this
document, as they assume a different perspective. Complementary information in this
direction may be found within the outcomes of the EOSC Association Task Force on
“Infrastructure for Quality Research Software”.

Finally, it has to be noted that Interoperability is strongly related to “compliance”. This may be
compliance to the terms of the agreement among two (interoperating) parties, or to more
widely established terms (be it “standards” or other specifications’ declarations). And this
compliance may not be restricted to technical subjects that may impact interoperability
designs. For instance, regulatory frameworks or service agreements may introduce
non-technical prerequisites for the integration of systems and the exchange of data among
them.

7

2.Architectural choices for maximising Services
Interoperability & Composability

In the context of this report, “interoperability” focuses on service interactions, i.e. signalling
and data exchanges among software service instances. A service instance is a software
component deployed on virtual or physical hardware, with network connectivity, and
potentially enclosing its data/state, or communicating with another service to accommodate
such needs, if present. In the EOSC ecosystem, the logical element that allows management
of software and resources granted to it by an authoritative domain is the software service.
Composing those services in larger structures, or selectively substituting them as needed,
allows combination, validation, repetition, reproduction, comparison, extension and evolution
of scientific processes, which together serve to address and empower a broad array of Open
Science objectives. In the following paragraphs we present a non-exhaustive list of several
common architectural principles that have a significant impact on interoperability and
composability of software that, when adopted, help to empower software services as
indicated above.

Although this document does not intend to serve as a ruleset for EOSC service implementers,
nor to endorse the adoption of the herein mentioned principles by EOSC services, the authors
consider that listed principles are quite relevant for the introduction of services to the EOSC
ecosystem, as, probably sooner than later, a service will be found that will strongly benefit
from their adoption.

The first architectural principle requires Loose Coupling – in which components are weakly
associated with one another and thus changes in one component affect the existence or
performance of at least one other component, and in which each of the architecture’s
components has or makes use of little to no knowledge of the definitions of the other
components. Service-based architectures often aim to achieve such loose coupling.

Architecturally, there are two major service paradigms: Service Oriented and Microservices
paradigms. The presence of API, a key concept to service interoperability, is orthogonal to
architecture choice, however it is a common (though not mandatory) element in
Microservices’ architectures.

Both architectural paradigms offer the basis to address fundamental integration challenges;
however, microservices’ architectures often avoid being bound to a common Enterprise
Service Bus (ESB) and all of the related technology stack. As such, the microservices’
architecture is the architecture of choice for most cases today. Nevertheless, it is not a
panacea, nor does it address a priori common needs and expectations of geographically
distributed interoperable systems, unless specific actions are taken.

8

Among the interoperability and composability advantages of microservices’ architectures,
two are worth mentioning: the possibility to combine microservices into new arrangements
with minimal assumptions regarding the technology for integration; and their use as
interoperable components thanks to the fact that they tend to carry their own autonomous
interfaces.

Following the API approach, the most prominent one is the REST API5. The REST paradigm6

itself is not an API specification but an architectural approach, as it directs towards stateless
interactions with services. That is, the client and the server need not communicate and
establish a session and some state between them before exchanging messages that can
then act on service resources. Under the REST paradigm, the API follows a formalisation that
dictates that all actions (expressed via verbs) take effect on designated resources. This can
lead some authors to avoid naming those interaction forms as APIs per se, so as to avoid
confusion with the classic notion of service APIs.

Although REST APIs are natively supported by all major programming and runtime
frameworks today, they are not a universal solution, and service implementers should
balance the pros and cons in every case:

● Well-known standards pre-date the REST API paradigm and are not likely to follow it in
many cases, thus the implementer should choose accordingly.

● Resource-oriented interactions do not come as natural in all cases, and may lead to
complex multi-resource addressing calls. Although REST APIs can address this
problem with composite resource designs, this may be overkill for very complex
systems and over-design for extremely simple systems.

● Interactions such as queue messaging, common in scalable distributed systems, are
not an area where REST excels, and different approaches are commonly utilised.

The predominant data types to use for exchange are JSON and XML, with binary data
exchanged either encoded or as part of multipart messages. The REST paradigm is
commonly considered tightly bound to JSON format because Single Page Applications
(SPAs) are usually built on top of those APIs, where JSON comes as a natural choice.
However, as APIs are not solely targeted against SPAs, and the compactness and modern
tooling around JSON are not the only priorities in implementation, XML is also a well justified
choice. This is despite the added complexity to process and persist it efficiently and the
larger volume of exchanged traffic it typically generates. Reasons to support XML include its
expressiveness (elements, attributes, namespaces, comments), strong foundations on
supporting standards (xpath, xquery, xml schema, xsl, xslt), an arsenal of technologies to
facilitate its processing, and its presence in numerous standards as baseline representation

6 FIELDING, Roy T.; TAYLOR, Richard N. Principled design of the modern web architecture. ACM
Transactions on Internet Technology (TOIT), 2002, 2.2: 115-150.

5 REST Principles and Architectural Constraints: https://restfulapi.net/

9

https://restfulapi.net/

of their data structures. Having said that, one must note that JSON and XML are not
comparable standards as they serve different needs; however, they do have a common area
of applicability, which is data exchange among services.

Reuse don’t Redo is a general approach to software design which has substantial impact on
interoperability. Using existing software enhances the chances that existing benefits are
realised, including those impacting positively interoperability, such as the support of other
data types or well-known standards beyond the ones strictly targeted by a particular usage
scenario. Reusable software tends also to have documentation and formal specifications,
which both empower interoperability and composability. Additionally, reused software that is
actively maintained offers good opportunities for future alignment to protocol changes or
expansion into new ones if these can be gained for little “cost” (be it effort, risk, or direct
monetary cost).

It has been previously mentioned that compliance is among the cornerstones of
interoperability. Compliance with technical standards is one case, the most common in IT
engineering, but it does not come without challenges. Navigating and selecting among those
can be a challenge of its own for several reasons. For instance, a few domain standards may
not be as “firm” as expected, offering several optional elements, or different profiles, and
thereby leave it to the discretion of the designer to define the level of compliance and to
account for its cost in effort. Reuse greatly helps to address this challenge. There are cases
where there are no domain-specific standards either, in which case the designer has to either
opt for some emerging specification or go for a custom (preferably REST) interface
specification.

A common mistake in interoperability scenarios is to assume that implementing a single
(open) standard or profile is adequate to address the interoperability expectations of service
consumers exclusively. The principle “One Size Does Not Fit All”7 is well suited for
interoperability, since different consumers, managers or producers of information may
require different flows or different data and interaction models. Under this principle, a service
designer should carefully select the standards applicable in a domain, their flavours and
alternative manifestations, and make informed implementation choices dependent on the
consumers, managers or producers engaged in the designer’s adoption roadmap. Great
choices that usually come with minimal cost, when proper reusable software is utilised, give
support to alternative data formats or alternative APIs, etc.

7 “One Size Does Not Fit All in {DB} Systems”, Andy Palmer, 25th Large Installation System
Administration Conference (LISA 11), 2011.
“One size does not fit all: a grounded theory and online survey study of developer preferences for
security warning types”, A. Danilova et Al, ICSE '20: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020.

10

Portability is not per se related to interoperability, however it strongly relates to
composability, as it reduces restrictions that determine the ability of a service component to
operate in an e-infrastructure. When designing portable software for EOSC, one thing that one
must have in mind is not the Operating System independence, which is more or less
guaranteed nowadays, with a few restrictions, but the e-infrastructure independence.
Assuming that an e-infrastructure may provide a particular storage type or model, or some
specific yet well-known API, may turn out to be a constraint when a component is called into
a different integration scenario. Admittedly, a service needs to make baseline assumptions
on its dependencies, thus the design principle here is to place those assumptions at the least
restrictive level for portability and interoperability.

A choice that has to be made and respected in the long run is that of API versioning. There
are good guidelines, embedded in standards or in paradigms (e.g. REST), that dictate how a
service designer should handle API versioning so that software evolves without hindering the
interoperability of older consumers. However, this does not come without a cost, as all APIs
need to be maintained in code and, what is worse, when the model of a service evolves
substantially, supporting an older API may not be economically feasible. Such a necessity
eventually leads to changes that break backward compatibility with interoperating service
consumers.

Pluggability/extensibility is a way to enhance opportunities to reuse software in an
integration scenario without undo intervention. Design-stage adoption of a pluggability
strategy appropriate for the technology at hand can give future adopters the ability to extend
or revise how a system operates to accommodate certain integration scenarios. A holistic
pluggability/extensibility approach that would allow deep adaptation of a software’s
capabilities and behaviour (spanning all of its layers and entities) would require considerable
investment in the design stage, while targeted pluggability/extensibility, on the other hand,
could address the needs of the software to adapt to very specific challenges that may arise
in the future, and would require substantially less design-stage effort.

11

3.Non-architectural interoperability choices
Several non-architectural choices may impact or support the interoperability of a service. In
the context of EOSC, where services need to act on a set of both general and domain-specific
regulatory/legal frameworks, serve the Open Science mandate and support cross-discipline
collaboration in a trustworthy, dependable manner, the following options can serve as a
starting point for further, case-specific consideration.

Aside from the compliance with technical standards already mentioned, compliance with
regulatory specifications (which may themselves be non-technical standards) is also
becoming common. The reasons for this are that (a) more and more human environments
(social, enterprise, government, research, etc.) are now transferred almost completely into
virtual environments, which have become the keepers of significant sensitive or confidential
data, as well as enablers of crucial processes; and (b) service value chains have become a
common way of doing business (in general, not specifically for profit) that needs to be
regulated and validated in a number of ways. Without regulatory specifications, both data and
processes are placed at risk, potentially impacting essential segments of human processes.
Under this wider perspective, interoperability is not only limited by the technical ability of
services to interoperate, but also by the ability of humans to agree on and comply with a
common regulatory framework. Such frameworks may refer to data protection (e.g.
compliance with the General Data Protection Regulation, GDPR, or enforcement of a specific
data-at-rest protection or isolation policy), service-level or quality-of-service agreements (e.g.
service operation at 99.9999% availability), financial terms (e.g. maximum rate of charge per
CPU cycle), etc., and may come in various forms from various sources.

Regarding API evolution, as a service evolves, its APIs may need to drop compliance with
prior specifications, which causes obvious problems for its adopters. To address this
proactively, service managers should set policies for backward-compatibility maintenance,
long-term support APIs, etc., that would allow a service client to follow its evolution without
the constant need for maintenance. Nevertheless, any client will have to catch up after older
API versions are rendered obsolete for the service, but this should happen at a slower rate.
Here, the need for clear documentation of API evolution policy is required, alongside the
necessary documentation of the API itself and its evolution.

Presence and quality of documentation is another facilitator of interoperability. Having
up-to-date, trustworthy information, easily accessible by service integrators, greatly enhances
the chance that a service will be included in an interoperability scenario, provided that it
supports the features required by its producers, managers and consumers. Delivering the
documentation in a feature-rich online repository and making it freely available is a must, and
should be a minimal requirement within the Open Science ecosystem that this report targets.
However, there are many more aspects to documentation that should be embedded in the

12

software production lifecycle. Documentation, ideally, should cover everything about the
software in both human-readable and machine-actionable modes: policies, APIs, algorithms,
static structure of the code, etc. Depending on the technology stack selected for software
implementation and delivery, there might be more or fewer tools available to support a
documentation strategy. Yet it is always a good strategy to start with “self-documented”
elements. Writing code with meaningful elements (class, variable, method…), names and
short-logic threads, conforming to conventions for both naming and design (e.g. applying
patterns), always helps minimise and even eliminate the need for documentation of code.
RESTful API conventions are a good example of a paradigm-specific strategy that minimises
the documentation burden. Manually writing documentation for coding artefacts is not
commonly favoured by developers since, apart from the effort it requires, such
documentation easily drifts out of sync with actual code logic. It is easier, however, to
document and maintain synchronisation with types and APIs, especially if conventions are
respected, as the tools to support this are quite mature across platforms. Tools that
reverse-engineer code to produce documentation can support the documentation process to
a certain degree, while static code analysis can provide insight to how documentation and
code structure strategies are carried out by an implementation team. A Test-Driven
Development strategy is also an indirect method to document software, widely appreciated
(but in some cases opposed) by implementation teams.

Licensing and access to software code itself can be a barrier (or a facilitator) of
interoperability. Imposing restrictive access rights on the use of software, on the visibility
and/or reuse of its source code or on the adoption of an interface/specification, can
substantially limit the willingness of a consumer to utilise the software or the resulting
service in their integration scenarios.

However, not all software may be licensed in a fully open/free manner for several reasons,
including cascading intellectual property rights (IPR), a financial sustainability strategy or due
to the objective costs incurred by its usage. Even when licensing restrictions apply, software
acting in the Open Science ecosystem should be transparent about its internal workings,
especially when it is responsible for translating scientific processes.

13

4.Aligning Interoperability to EOSC priorities
Interoperability is an open field, and the approach taken is ultimately defined by the scope of
the system. However, in the context of EOSC, there are a few priorities that technical service
interoperability should address: Open Science, computing e-Infrastructures, and the user
(including either the producer, manager or the consumer). Additionally, a service should
address regulatory compliance with inscriptions of the respective EU framework, which will
not be extensively covered in this document. In the following paragraphs we make short
references to key areas that a system designer should consider for interoperability when
delivering EOSC-enabled services.

Alignment with Open Science
The essence of EOSC is to empower Open Science practices and processes across the
pantheon of modern e-Infrastructures, and thus it is fair to say that Open Science is more
than just a priority for EOSC. EOSC poses a number of requirements on services and data,
many related to interoperability. Interoperability is in general referring to complex and
heterogeneous systems, yet in this document we mostly limit the scope to software services.
This report has already touched on design choices that improve services’ interoperability and
enhance their suitability to empower Open Science processes; the focus of this section shifts
to FAIR data’s interoperability impact on design choices, as data FAIRness is one of the pillars
of the practice of Open Science.

Provisioning for data to be exchanged in service interactions is an element of interoperability
analysis, however it is common that interoperability of data is considered independently. The
FAIR principle serves as more than mere data interoperability guidelines, and in one way or
another, all four elements of FAIRness lead down to interoperability directives, despite only
the “I” explicitly naming it as such. A non-exhaustive list of those areas where interoperability
comes into play are provided below:

● Persistent identifiers (PIDs) forms, allocation, assignment and resolution
● Metadata schemata and their semantics
● Controlled vocabularies and vocabulary services
● Data formats
● Metadata registration
● Metadata consumption
● Machine actionable metadata
● Data registration
● Data consumption (domain or data-type specific protocols)
● Data discovery (search, harvesting, retrieval)
● Reproducibility and traceability (including provenance)

14

● Linkages to the real world (e.g. to be able to reproduce experiments in labs)
● Licencing (“as open as possible, as closed as necessary”) and control (“decentralised

as possible, centralised as necessary”)

Services acting in EOSC and dealing with data/metadata consumption/provisioning need to
meet one or more of these challenges, and this should be accomplished through
interoperability with existing systems. Here we must clarify that “data” in the area of Open
Science can be very heterogeneous in nature: Sensing, observation, model and simulation
data, to name a few, are commonly considered research data, while artefacts such as
research publications are commonly treated in a similar way. Yet, educational resources,
documents, and even software itself, can be considered data according to the FAIRness
principles. Each of these require quite different mechanisms to capture their description,
publication/announcement, discovery, reference, consumption, etc. Standards in the field are
numerous and address several different aspects of the FAIR principles (SRU, OAI, OAI-PMH,
Handle, DOI, DC, LOM, several ISO standards and RFCs, etc.). Adoption of one over another
depends on the field and services at hand, especially when referring to domain-specific data
and metadata formats, service endpoints, etc. However, there are some practices that greatly
enhance interoperability or inclusion of a service in more complex flows, including, for
example:

● Offering the means to locate and retrieve data directly from controlled catalogues and
certified repositories (or gateways), and to consume them for any type of processing
offered by the service. Using PID resolution or other methods for locating required data
is a good practice, too.

● Offering the ability to directly deposit the products of a process onto appropriate
catalogues and data hosting entities, taking care of the generation of respective
metadata and issuing of PIDs. This approach can handle the automatic generation of
all provenance information assuming it has a good knowledge of the inputs supplied
and the process performed to deliver a data product.

● Offering metadata in simplified or alternative formats, which enhances the ability of
repositories to list data products offered by a service. Such an example could be to
offer DC metadata representation beside the richer domain-specific WCS for Earth
Observation datasets, allowing them to be listed into global catalogues. Similarly, for
instance, a service offering metadata in EDM alignment, over a more focused, elaborate
or extended schema (e.g. LIDO, CARARE, CIDOC-CRM, etc.) would allow them to be
listed in cultural heritage digital assets aggregators.

● Delivering data via simple protocols (e.g. https) and in simplified forms (e.g. a standard
binary file). This makes it easier for service users to utilise the service’s products in
additional forms.

If the service is itself a repository, complying with the aforementioned standards for
identification, depositing, retrieval and aggregation, as well as with the domain-specific

15

standards, is essential for the repository’s alignment and interoperability with other EOSC
services.

Managing data licensing presents a significant challenge. To tackle this problem, employing
machine-readable licenses that can be readily utilized and acted upon through clearly defined
API services is crucial. However, incorporating and applying these provisions within
automated workflows for generating derivatives, which involve multiple components beyond
the original data licensing, such as funder rules, algorithms and software restrictions,
supervisory entity regulations, and more, remains a complex and open-ended subject.

Licensing of the software itself, and the resulting services, is essential to empower
interoperability from a design perspective, intensified as it is within the Open Science
environment, since licensing is often a deciding factor for integration scenarios where
interoperability comes into play.

Finally, one of the most crucial aspects of aligning with Open Science is the openness of
software. This not only emphasises the software's interoperability capabilities but also
ensures transparency in its functioning. Such transparency plays a vital role in integrating the
software into dynamic, well-documented, and reproducible processes.

Alignment with Computing e-Infrastructures
Another pillar of EOSC is cloud-based infrastructure, and, for this, interoperability is less
formalised through standards. Service integration, with a few exceptions, is mostly based on
open specifications followed by several engaged systems with respect to network, storage
and compute resource allocation for carrying out projects or processing tasks.

The ability of services to consume resources on the e-infrastructures, i.e., in a sense
effectively interoperating with them, is essential to meet the demand for computational and
storage requirements that may change over time. It is more of an architectural choice for
service implementers to pick mechanisms, or even execution models, that do not hinder their
portability capabilities, but rather allow them to interoperate with the platforms offered by
Infrastructure Providers. Employing queues with workers (or other distributed processing
models), workflow management systems or operating directly on a computational platform
are a few examples of such choices.

Using a container engine (e.g. Docker, Kubernetes) and numerous supporting elements
around it for the deployment and management of the services, networking, storage as well as
response to load, has become the common practice for virtualizing resources and
streamlining their utilisation. This elevates the relevant specifications to prominence, nicely
serving the need for portability across e-infrastructures, even if they are not yet globally
adopted.

Attempting to formalise this aspect, we can identify a number of standards/specifications:

16

● Containers images definition, such as Open Container Initiative (OCI) Image
Specification and Docker Image Manifest (the two being very similar);

● expression of topologies or dependencies among components, such as TOSCA, pod
definition, etc.

And technologies for:

● Container execution engines, e.g. containerised, Kubernetes, Docker and Singularity;
Singularity, for example, suited bare-metal HPC clusters, which play a significant role
in the EOSC ecosystem;

● technologies for microservices/applications deployment/management on containers
or cloud infrastructure, such as Helm for Kubernetes, Ansible, etc.

Depending on the e-infrastructures at hand, a number of higher-level platforms to utilise
resources may be in place, offered under the Platform as a Service model. Those may be
workload management systems, such as Apache Hadoop and Spark; workflow management
systems, such as Apache Airflow, Dagster, etc.; or lower-level distributed processing systems,
such as Condor HPC. Those platforms raise their own interoperability requirements and
present additional opportunities. An example is the ability of SparkSQL to interact with
numerous types of data sources, offered almost for “free” to the users of the platform.

User alignment
Among the EOSC priorities that need to be considered from the interoperability perspective is
that of “the user” (being either the information producer, manager or consumer of data and
services). Interoperability, from the end-user perspective, boils down to allowing one to
interact with services using the tools available on a given platform without missing out on the
features of the service offering. This may be broken down into several elements that are
nothing more than services and software interoperability:

● Interoperable subsystems to authenticate and authorise the users: independent of the
client access platform (addressed by SSO standards), reaching, if possible/applicable
to the level of a resource.

● Presentation layers capable of operating on any device: as addressed by common
modern web UIs conformant with relevant W3C specifications.

● Integration at the client UI level: addressed by services (commonly
standards-compliant ones) that deliver web accessible content and/or offer reusable
web components for interaction with the content that can be included in client
environments, such as dashboards.

● Delivery of data/content/metadata under protocols easy to consume by user
applications applicable to a domain of interest: addressed by common data types.

17

● Accessibility of content: addressing of accessibility concerns meeting the
specifications for accessibility, for example complying with the ones offered by the
W3C Accessibility Guidelines8.

8 W3C Accessibility Guidelines: https://www.w3.org/TR/wcag-3.0/
18

https://www.w3.org/TR/wcag-3.0/

5.The Role of Standards
“Standards” are specifications that have acquired some sort of formality. They are generally
separated into two classes:

● Formal standards, created through standardisation processes and organisations
(Standards Development Organisations (SDOs)), which are formally maintained,
independent of the degree of their adoption. It is not uncommon for formal standards
to be accompanied by reference implementations supported directly or indirectly by the
SDOs behind the standard.

● De-facto standards that have emerged from established conventions and practices,
e.g. the adoption of APIs with (usually) proper specifications by large audiences. Such
standards are proven to work, and stay around for a long time until the technology and
needs silently surpass them. It is not uncommon that a formal standard emerges
around a de-facto standard.

Those developing and deploying EOSC have already done a lot of work to strengthen and
promote de-facto standards into formal ones. For instance, the Research Data Alliance (RDA)
has been building synergies with SDOs and similar organisations so that RDA
recommendations can either get a fast track to becoming standards, or can be incorporated
into or contribute to standards, common goals and activities. Standards play a foundational
role in the interoperability of services and must be taken into consideration at an early stage
in the development of software and services, as their adoption may impact several design
decisions. For instance, standards may be implicitly dictating technologies to be reused or
software states to be maintained, affecting to varying degrees the technological stack
employed to deliver a specific outcome. Furthermore, standards may not refer to
specifications of interactions among software only, but also to the processes and operations
around them, that may also have an impact on the ability of software services to collaborate.
For instance, services not conforming to certain security standards may not be appropriate
for interoperating in a given scenario, even though, technically, they are able to adequately
interact.

Apart from standards, non-standard specifications have a significant role in integration
scenarios. Among these there are:

● Open specifications: specifications that are made available without licensing
restrictions as part of open source software and that usually conform to some
commonly acceptable paradigm (e.g. REST API).

● Proprietary specifications: owned by particular entities and ruled by those entities,
commonly exposed to the consumers of specific platforms.

Services should primarily implement formal and de facto standards, and opt for non-standard
specifications, preferably open ones, if no applicable standards are available. Compliance

19

with standards may be achieved either by reuse or by implementation, with reuse being the
preferred choice, especially when achieved via open, widely adopted solutions.

In Annex B, a short list of indicative standardisation bodies and standards families is
presented. The annex does not intend to extensively cover all domains addressed by EOSC or
software technologies, and should be seen as an example of how a potential lookup for
standards could be shaped for all domains.

20

6.Regulatory Compliance
In the EOSC landscape it is essential that regulatory compliance is guaranteed under
interoperability scenarios. A few examples of such compliance imperatives are mentioned
below:
● GDPR9 compliance requires that services engaged in a flow of data exchanges and

processing are aligned with the directives of the European Law regarding Data
Protection. This requires both legal statements as well as technological precautions for
the handling of data.

● EU Data Act10 additionally defines the rules to facilitate data sharing by companies,
individuals and the public sector, and clarifies who can create value from data and
under which conditions. The Data Act removes barriers to access data, for both the
private and the public sector, while preserving incentives to invest in data generation by
ensuring a balanced control over the data for its creators.

● EU Directive 2019/1024 on open data and reuse of public sector information: research
data was explicitly put under the scope of this regulation. EOSC and its interoperability
efforts will be critical for the implementation of this regulation. Publicly funded
research data shall be re-usable both for commercial and non-commercial purposes
equally.

● Utilisation of EOSC resources does not come openly for all uses. Academic resources
are subject to specific regulatory and ethical restrictions that need to be respected by
consumers. For instance, the generation of commercial profits by such
e-infrastructures may be against the regulations of resource provisioning, which needs
to be examined on a case-by-case basis as some usage scenarios are much more
complex than others.

● Service-Level Agreements (SLAs) shape the requirements for utilising services, as
depending on misbehaving services may hinder the quality of service delivery. EOSC
requirements for TRL as well as provisions for service monitoring and support are two
examples where SLAs can be deal-breakers in this context.

10 The European Data Act: https://www.eu-data-act.com/
9 Regulation (EU) 2016/679: https://eur-lex.europa.eu/eli/reg/2016/679

21

https://www.eu-data-act.com/
https://eur-lex.europa.eu/eli/reg/2016/679

7.Conclusions
In summary, the following salient points are presented:

● Selecting a strategy for interoperability is essential for planning the breadth and depth of
a service or system. The priorities of a system, driven by its domain and functional
requirements and resource constraints, separate what must be done and what can be
done, focusing on those practices that improve the chances for long-lasting
interoperability. Reusing software, building on standards, following an extensibility
approach and, in general, applying best-practices are always helpful in this respect.

● Interoperability needs to be considered at the design stage of a software system and not
left entirely for the later stages in the system’s lifecycle, as interoperability might become
entangled with fundamental flows of a system, or it might require provisioning of
substantial complexity (e.g. extensibility/pluggability mechanisms).

● The domain and the environment in which a system operates commonly raise special
interoperability requirements. Domain- or challenge-specific standards families offered
by established bodies should be prioritised where interactions with other systems are
expected to take place. De facto standards should be considered depending on the
domain and the presence of overlapping active standards. EOSC services are often
found to share approaches for domain-specific interoperability, which is a good starting
point for making choices around standards.

● Substantial challenges for interoperability may be introduced by applicable regulatory
frameworks and SLAs that a service may need to comply or co-exist with. Those may
lead to specific functional, architectural and technological choices that are best
considered as early as possible in the design of software services.

● Interoperability of services in the EOSC ecosystem should serve EOSC’s primary vision,
which is to empower Open Science and the priorities it advocates (data FAIRness,
research reproducibility and repeatability, etc.). On the other hand, interoperability needs
to support the EOSC foundations, including the e-infrastructures that are going to form
its network, and its end-users in the various roles one might have in this ecosystem
(manager, researcher, publisher, consumer, etc.). A starting point for all services in the
ecosystem is their interoperability with the EOSC Core services. More details on these
aspects will be provided in the forthcoming deliverable of the Task Force entitled, “A
landscape overview of the EOSC Interoperability Framework: Capabilities and Gaps”.

22

Acronyms and Abbreviations

Acronym Name

API Application Programming Interface
BDVA Big Data Value Association

CIDOC-CRM
CIDOC - Conceptual Reference Model (CIDOC = International
Committee for Documentation)

DC Dublin Core
DOI Digital Object Identifier
EC European Commission
EDM Europeana Data Model
EOSC European Open Science Cloud
ESB Enterprise Service Bus
ETSI European Telecommunications Standards Institute
EU European Union
GDPR General Data Protection Regulation
HPC High Performance Computing
IETF Internet Engineering Task Force
ISO International Standardisation Organisation
IT Information Technology
IVOA International Virtual Observatory Alliance
JSON Javascript Object Notation
LIDO Lightweight Information Describing Objects
LOM Learning Object Metadata
OAI Open Archives Initiative
OCI Open Container Initiative
OGC Open Geospatial Consortium
PID Persistent Identifier
PMH Protocol for Metadata Harvesting
RDA Research Data Alliance
REST Representational State Transfer
SDO Standards Development Organisation
SLA Service-Level Agreement
SPA Single Page Application
SRU Search Retrieve by URL
SSO Single Sign On

23

Acronym Name

URL Universal Resource Locator
W3C World Wide Web Consortium
WCS Web Coverage Service
XML eXtensible Markup Language

24

Annexes

25

Annex A: Summary of Principles, Guidelines and
Recommendations

The following table summarises the principles, guidelines and recommendations presented
in this document. The first column is a numeric identifier, and sub-numbering indicates
specific subcategories of the same aspect. The second and third column specify the aspect
and a brief description, respectively. The last column indicates the typology, i.e. whether the
aspect refers to a principle or a criterium, derived from the considerations of the TF members
and presented in this document; and a rating (MAY, SHOULD or MUST) to indicate the
urgency required for its adoption. In future versions of this document the table content will be
further verified by community consensus or other external experts.

Aspect Description Typology

1 Openness Open software is more interoperable Principle, SHOULD

1.1 Open Standards
Open software uses open standards
whenever possible

Criterium, SHOULD

1.2 Open Source
Ability to inspect and evolve the
software

Criterium, SHOULD

1.3 Open Licence
Open software is available under one or
more open licences

Criterium, MUST

2
Single
Responsibility

Separation of Concerns – services that
address a single relatively small set of
responsibilities in a larger system

Principle, SHOULD

2.1 API Design
Easily consumed and well-documented
APIs, based on standards such as REST
and SmartAPI

Criterium, SHOULD

2.2 Formalisation
Define interactions between
components in a formal manner

Criterium, SHOULD

3
Interface
Segregation

Minimise opportunity for future conflict
between components

Principle, SHOULD

26

Aspect Description Typology

4
Design over
Performance

Performance should be tackled at a
second level after design objectives are
met, when performance is not the only
critical factor for the service itself

Principle, SHOULD

5
Loosely Coupled
Systems

Components can change without
affecting others, and need not share
state or internal data

Principle, SHOULD

5.1 REST APIs
Enables stateless interactions with
services

Criterium, SHOULD

5.2 Exchange
Uses XML and JSON as a basis of
exchange, with binary data encoded or
in multipart messages

Criterium, SHOULD

6
Reuse don’t
Redo

● Reusing existing software enhances
the chances that existing benefits
are realised, some of those
impacting positively interoperability

● Reusable software tends also to
have documentation and formal
specifications, which both empower
interoperability and composability

Principle, SHOULD

7 Compliance
Compliance with technical standards is
a powerful case, the most common in IT
engineering

Principle, SHOULD

8
One Size Does
Not Fit All

Minimise proliferation and divergence of
standards, but do not limit usability in
doing so

Principle, SHOULD

9 Portability

Relates to composability, as it reduces
restrictions that relate to the ability of a
service component to operate in an
infrastructure

Principle, SHOULD

9.1 Operating Implemented via technologies such as Criterium, SHOULD

27

Aspect Description Typology

System
Independence

virtualisation and containerisation

9.2 Dependencies
Assign dependencies to the least
restricting level or layer

Criterium, SHOULD

9.3
Infrastructure
Independence

Modularisation, separation of concerns,
and service orientation

Criterium, SHOULD

10 API Versioning

Dictate how a service designer should
handle API versioning so that software
evolves without hindering the
interoperability of older consumers

Principle, SHOULD

10.1
REST API
Versioning

Guidelines for version support in REST
APIs

Criterium, SHOULD

11
Pluggability/
extensibility

A way to enhance the opportunities of a
software being reused in an integration
scenario without intervening with its
implementation

Principle, SHOULD

11.1
Design
pluggability

Design-stage adoption of one of the
pluggability strategies appropriate for
the technology at hand improves future
extensibility

Criterium, SHOULD

12
Regulatory
Compliance

Compliance with regulatory
specifications (which themselves may
be standards) is also becoming
common

Principle, MUST

13 API evolution
Maintaining backward compatibility
should be managed via a clear policy

Principle, SHOULD

14
Presence and
quality of
documentation

Having up-to-date, trustworthy
information, easily accessible by service
integrators, greatly enhances the chance
that a service will be included in an

Principle, MUST

28

Aspect Description Typology

interoperability scenario

14.1
Documentation
is available

Documentation is available and easily
accessible

Criterium, SHOULD

14.2
Minimum
documentation
quality

Documentation meets minimum
standards (e.g. OpenAPI/ SmartAPI) for
API services

Criterium, SHOULD

15
As Open As
Possible

Licencing and code access is a barrier
or facilitator for interoperability

Principle, SHOULD

15.1
Use Well-Known
Open Licences

Use one of a suite of well-known, widely
adopted open software licences
whenever possible that are
machine-readable

Criterium, SHOULD

16
Specific
Workflow Best
Practices

Implement the best practices
associated with service elements and
workflow steps in the main research
infrastructure use cases

Principle, SHOULD

16.1
Harvestable
Catalogues and
Registries

Offering the means to locate and
retrieve data directly from catalogues
and repositories (or gateways)

Criterium, SHOULD

16.2
Automated
deposit

Offering the ability to directly deposit
the products of a process on to
appropriate catalogues and data
hosting entities, taking care of
generation of respective metadata and
issuing the PIDs

Criterium, SHOULD

16.3
Simplified
Metadata

Offering metadata in simplified formats Criterium, SHOULD

16.4
Simple Data
Protocols

Delivering data via simple protocols
(e.g. https) and in simplified forms (e.g.
a standard binary file)

Criterium, SHOULD

29

Aspect Description Typology

16.5
Domain-specific
requirements

If the service is itself a repository,
complying with the aforementioned
standards for identification, depositing,
retrieval and aggregation, along with
domain specific ones, is essential for
EOSC alignment

Criterium, SHOULD

17
Cloud-Based
Orientation

Implement those standards and
technologies that support widespread
interoperability in the cloud

Principle, SHOULD

17.1 Containerisation
Use standard approaches such as
Docker

Criterium, SHOULD

18
Platform as a
Service Model

Use this model, with appropriate tools
for workflow, workload, and utilisation
management

Principle, SHOULD

19 User Focus
Implement approaches and standards
that assist users

Principle, SHOULD

19.1 Authentication
● Interoperable methods to

authenticate and authorise the users
● Support single sign-on (SSO)

Criterium, SHOULD

19.2 Presentation

Presentation layers that may operate on
any device: addressed by common
modern web UIs conformant with
relevant W3C specifications

Criterium, SHOULD

19.3 Interoperability

Delivery of data/content/metadata
under protocols easy to consume by
user applications applicable to a domain
of interest: addressed by common data
types

Criterium, SHOULD

19.4 Accessibility
Meeting the specifications for
accessibility, for example those offered
by W3C Accessibility Guidelines

Criterium, SHOULD

30

Aspect Description Typology

20
Existing
standards

Apply existing standards whenever
possible

Principle, SHOULD

20.1
Formal
Standards

Use by preference: standards created by
standardisation processes and
organisations, which are formally
maintained, independently of the degree
of their adoption

Criterium, SHOULD

20.2
De Facto
Standards

Use by preference: standards that
emerged from e.g. adoption of APIs with
(usually) proper specifications by large
audiences

Criterium, SHOULD

20.3
Standards
Formalisation

EOSC should promote the formalisation
of de facto standards

Criterium, SHOULD

20.4
Open
Specifications

Use if no standards are applicable:
made available as part of open source
software without licensing restrictions
and usually conform to some generic
specification (e.g. REST API)

Criterium, MAY

20.5
Proprietary
Specifications

Use as a last resort: owned by particular
entities and ruled by those entities,
commonly exposed to the consumers of
specific platforms

Criterium, MAY

21
Regulatory
Compliance

EOSC services must comply with
regulations and legal obligations in the
EU

Principle, MUST

21.1
GDPR
compliance

Requires that services engaged in a flow
of data exchanges and processing are
aligned to the directives of the European
Law regarding Data Protection

Criterium, MUST

21.2 Fair Use
Academic resources are subject to
specific regulatory and ethical

Criterium, MAY

31

Aspect Description Typology

restrictions that need to be respected by
their consumers

21.3
Academic Use
Only

Some resources are restricted to
academic or research applications

Criterium, MUST

21.4
Service-Level
Agreement

Service-Level Agreements shape the
requirements for utilising services, as
depending on misbehaving services
may hinder the quality of delivery

Criterium, MUST

21.5 Maturity Services are offered at TRL 8/9 Criterium, MUST

32

Annex B: Indicative Standards
This appendix presents an indicative list of standards met in the EOSC ecosystem. By no
means is the list exhaustive or complete. It will be updated following a best-effort principle to
become increasingly inclusive, aiming to eventually become a comprehensive guide for the
reader. The rest of it is structured as follows:

● Standards families: Lists a logical grouping of standards for further usage.
● Standardisation bodies: Lists entities acting on standards responsibilities.
● Standards catalogue: A proposal for listing prominent standards extensively used by

actors in the EOSC ecosystem. This section is intentionally empty in the first version of
this deliverable.

Standards families
Interoperability standards often exist within families that cater to the specific requirements of
a particular technological domain or scientific interactions. Significant standards families
commonly met in the EOSC landscape have to do with:

● Cross-Cutting Standards
○ Security (authentication / authorisation)
○ Usability and accessibility
○ Internet and web standards (linked open data, etc.)
○ Digital content and multimedia representation (MIME Types, type registries, etc.)
○ Others

● Standards Applicable to Research Data Management Systems and Services
○ Data and metadata exchange (OAI-PMH, D-CAT, etc.)
○ Workflow and notifications (Linked notification, etc.)
○ Deposit, curation, preservation, and dissemination (includes licences and access

management, format preservation standards, etc.)
○ Support services (tool and type registries, etc.)
○ Others

● Application and domain-specific standards
○ Data, service, and metadata standards: domain-specific
○ Data, service, and metadata standards: format- and type-specific
○ Others

● Others

33

Standardisation bodies
One or more entities, standardisation promoting groups or consortia, may be acting on a
standards family or on a combination of standards to address a specific cause. Formal
standardisation organisations, such as ETSI, ANSI and ISO, are legal entities established at
national or international level that handle standards through stricter and more formal
methods, often building on or being supported by work of standardisation consortia or
groups. Those entities typically cover wide spectra of standards of very diverse domains.

Besides standardisation groups/consortia and standards organisations that handle the
establishment of formal specifications of standards, other entities that cherry-pick standards
and specifications and issue interoperability and compliance guidelines exist, such as OGC,
IOVA, GA4GH, BDVA, etc. Among those are EOSC-A and RDA. All of these play a significant
role in the adoption of a set of standards or the emergence of new de-facto standards. Under
the umbrella of those groups, the development of new specifications is rather quick and
allows for a rapid cycle of feedback and revisioning/versioning.

The following table summarises a few standardisation bodies, whose work directly or
indirectly intersects with EOSC strategy and developments.

Acronym Description Domain

ANSI

The American National Standards Institute (ANSI) is
a private, non-profit organization that administers
and coordinates the U.S. voluntary standards and
conformity assessment system. Founded in 1918,
the Institute works in close collaboration with
stakeholders from industry and government to
identify and develop standards- and
conformance-based solutions to national and global
priorities.

General

ETSI

ETSI is a European Standards Organisation (ESO), a
non-profit association set up in 1988 by the
European Conference of Postal and
Telecommunications Administrations (CEPT) in
response to proposals from the European
Commission.

General

GA4GH

The Global Alliance for Genomics and Health
(GA4GH) is an international, non-profit alliance
formed in 2013 to accelerate the potential of
research and medicine to advance human health.
Bringing together leading organizations working in

Health, Genomics

34

Acronym Description Domain

healthcare, research, patient advocacy, life science,
and information technology, the GA4GH community
is working together to create frameworks and
standards to enable the responsible, voluntary, and
secure sharing of genomic and health-related data.

IETF

The Internet Engineering Task Force (IETF) is a large
open international community of network designers,
operators, vendors, and researchers concerned with
the evolution of Internet architecture and the smooth
operation of the Internet. It was initially supported by
the federal government of the United States but
since 1993 has operated under the auspices of the
Internet Society, an international non-profit
organization.

Internet

IVOA

The International Virtual Observatory Alliance (IVOA)
was formed in June 2002 with a mission to facilitate
the international coordination and collaboration
necessary for the development and deployment of
the tools, systems, and organisational structures
required to enable the global utilisation of
astronomical archives as an integrated and
interoperating virtual observatory.

Astrophysics,
Astronomy

ISO

The International Organization for Standardization is
the successor to the International Federation of the
National Standardizing Associations (ISA), which
operated from 1928 to 1942, publishing its first
standard in 1951 and currently (as of 2021)
numbering more than 24.000 standards.

General

OGC

Originated in 1994 the Open Geospatial Consortium
(OGC) is an international consortium of more than
500 businesses, government agencies, research
organizations, and universities driven to make
geospatial (location) information and services FAIR -
Findable, Accessible, Interoperable, and Reusable.

Earth Observation,
Planetary body
Observation

RDA
The Research Data Alliance (RDA) was launched as
a community-driven initiative in 2013 by the
European Commission, the United States

Research Data

35

Acronym Description Domain

Government's National Science Foundation and
National Institute of Standards and Technology, and
the Australian Government’s Department of
Innovation with the goal of building the social and
technical infrastructure to enable open sharing and
re-use of data.

W3C

World Wide Web Consortium (W3C) mission is to
lead the World Wide Web to its full potential by
developing protocols and guidelines that ensure the
long-term growth of the Web. It was founded in 1994
and led by Tim Berners-Lee and as of 21 March
2022, W3C had 459 members.

Internet

36

