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ABSTRACT

The need for measurable data from physical assets to actively feed a living Digital Twin (DT) is para-
mount. The requirements and needs that the gathered data should fulfill in order to be practically
implemented in the stream data pipeline are heterogeneous, some of them general and other case-
specific. This article summarizes a set of identified challenges and requirements for a seamless infusion
of well-established Structural Health Monitoring (SHM) systems within DT platforms, without the
objective of solve all of them. This identification is performed based on a review of traditional SHM
systems with a vast array of information sources as well as on the review of techniques for the system-
atic digitalization of existing assets. On the other hand, ten real demo cases belonging to Ashvin, an
H2020 Research and Innovation project, are providing real world testing beds for an active develop-
ment of SHM infused in DT systems. Multiple information sources are studied in those sites, which
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also enriches with more realism, the identification of requirements and challenges presented herein.
These assets provide a perspective to researchers about practical implications of these needs.

1. Introduction

Productivity in the construction sector has a huge margin of
improvement. Global labor-productivity growth in construc-
tion underperforms when compared to other major indus-
tries. On the other hand, the current number of accidents
on construction sites is not acceptable (Selleck et al. 2023).
Within Europe, construction is by far the most dangerous
occupation with a higher rate of fatalities than all other
industries. Safety planning in the construction industry has
always been complex due to the dynamic nature of the con-
struction environment as well as to the interactions between
occasionally disaggregated stakeholders. In both construc-
tion and maintenance phases, the efficiency of the used
resources can be enhanced considerably.

One way to improve this unacceptable situation in the
construction industry is by introducing digitalization and
virtualization. Technological advances are inherently (and
sometimes optimistically) called as improvement enablers in
all sectors. When it comes to Architecture, Engineering and
Construction (AEC) at design, construction and mainten-
ance phases, digitalization based on emerging and estab-
lished technologies 4.0 is also called to be a major enhancer
(Dallasega et al. 2018). Building Information Modelling
(BIM) is established in the sector at advanced levels of tech-
nology readiness. There is, however, still a huge margin for
improvement when it comes to robust, fully digitalized
infrastructure systems in which relevant physical magnitudes
are strongly intertwined with their virtual counterparts.

The Digital Twin (DT), an information system with capa-
bilities beyond BIM, is intended to establish active, timely
connection between physical and virtual realms for decision
making at design, construction and maintenance stages
(Davila-Delgado & Oyedele, 2021). This information system
relies on an adequate development of pipelines of informa-
tion, which are well defined paths that combine and trans-
form measured data to gain specific insight. Even though
advances in sensing, data-gathering techniques, IoT, cloud
technologies and simulation enable the constitution of a
DT, establishing pipelines that traverse these technologies
still present technical challenges from the systems architec-
ture and software integration perspectives. The automation
of the decision-making process is dependent on the level of
readiness of the information pipeline system defined within
the DT.

Structural Health Monitoring (SHM) systems represent
one crucial provider of data related to the behavior and
condition of infrastructure systems. Compared to the DT
paradigm, SHM only provides methods for data gathering
and analysis, however, it does not elaborate about the inte-
gration of both within the same system. Adequate embed-
dedness of cutting-edge SHM systems within DTs will
provide better, more accurate and more varied data to own-
ers, managers, practitioners, designers, and many other
stakeholders in the AEC sector.

As a contribution to this transitional digitization, this art-
icle aims at identifying and summarizing challenges and
requirements for a seamless infusion of traditional as well as
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cutting-edge Structural Health Monitoring systems within
DT platforms. This identification is performed based on:

1. A review on traditional SHM systems with a vast array
of information sources. In addition, the review covers
cutting-edge techniques for the systematic digitization
of existing assets which have never had any virtual
counterpart since their construction.

2. An active development of SHM systems within a pool
of infrastructure assets presently under study within
Ashvin, a European H2020 research and innovation
project (Ashvin, 2020). The project encompasses all
phases (Design, Construction and Maintenance) but
this article is specifically focused on operation/mainte-
nance (O&M) phases. The O&M demo sites included in
the ASHVIN project provide a broader and realistic
perspective to researchers about the needs and the use-
fulness of these systems.

To explain the possible solutions to the identified chal-
lenges and requirements is not in the scope of the present
article as the response would be impracticable in a single
article. The organization of the article is as follows: Section
2 presents definitions and coincidences between SHM and
DT. Section 3 presents a condensed version of the literature
review in which key takeaways are identified. Section 4
presents the demonstrators as well as their singularities for
implementation and development of SHM-DT systems.
Both sections are intertwined in section 5, in which a dis-
cussion about requirements and challenges is addressed.

2. Digital twins and structural health monitoring
systems

2.1. Digital twins

The Gemini Principles (Bolton et al. 2018) define a DT as ‘a
realistic digital representation of assets, processes or systems
in the built or natural environment’. In reports from the
National Infrastructure Commission in the UK, NIC (2017):
‘The DT is effectively a data representation of the infrastruc-
ture that takes real-time and other data into the manage-
ment processes of that real-infrastructural component’.

It is well understood that in both definitions, DT are
understood not only as digital replicas of a real/physical
asset (e.g., a picture, a geometric 3D model or a semantic-
ally enriched BIM geometry), but ‘what distinguishes a DT
from any other digital model or replica is its adequate real-
time connection to its physical counterpart’. By connection,
it is understood that there is an active relationship and asso-
ciation between the physical and virtual realms, that is,
information in one realm enriches another. By real-time, it
is understood that information flows at the time it is
needed, that is, the right-time. Therein lies the complexity
and the vast scope of this concept.

In an attempt for harmonizing definitions for better
understanding of DT for the built environment, Davila-
Delgado and Oyedele (2021) have collected and identified a

set of definitions. A comprehensive overview and system
architectures proposed in the literature for a DT is available
in Davila-Delgado and Oyedele (2021) and Lu et al. (2020).
The next step to be taken in the road to digitalization, in
which existing frameworks such as BIM represent an ideal
baseline, is to connect both realms as profusely (and mean-
ingfully) as possible with many sources of information.

Presently, it is feasible to link physical and virtual assets
through the deployment of a series of data-collection techni-
ques in the physical realm that feed the virtual realm. The
nature of the information is, or can be, multiform. A vast
array of techniques provides nowadays meaningful informa-
tion. Data collection coming from sensors (time-series),
cameras (images, videos, thermal imagery, images that
become point clouds), laser scanners or radars (point clouds
or images) and many other technological advances are ready
to feed infrastructure assets with valuable information. Very
occasionally, all sources of information are disaggregated
and independent. Challenges for their use in Bridge
Maintenance are also identified (Futai et al. 2022; Jiang
et al. 2022; Pregnolato et al. 2022; Shim et al. 2019). As a
matter of fact, new human-infrastructure interfaces for
bridge management are found in academic literature (Omer
et al. 2019).

Therefore, for the ideal development and full beneficial
application of the DT concept, the asset requires a continu-
ous synchronization between the physical and the virtual
realms using contextualized information. This has to be per-
formed through the integration with a wide range of exist-
ing services. Knowledge graphs represent a way of
aggregating data coming from different sources at different
rates as well. The list of parts presented above can also be
defined as a list of stakeholders within an Infrastructure
Management System.

2.2. Structural health monitoring systems

In the context of civil engineering structures, SHM encom-
passes both ‘the observation’ and ‘the analysis’ of a built
asset. A SHM system uses periodically sampled response
measurements. Changes of the material and geometric prop-
erties of infrastructures are monitored and analyzed period-
ically. SHM represents a mature field of knowledge. SHM
aims at managing risks and at taking informed decisions. In
this sense, the observation represents a part of a vaster con-
cept. SHM comprises post-processing and analysis of the
data. Evaluation of the performance of the asset as well as
prognosis are also parts of it. SHM represents a fundamental
layer for decision-making processes in infrastructure man-
agement. In this sense, three aspects are worth pointing out:

e Measurements and analysis allow to validate the design.
It is crucial to check whether the built asset behaves as
planned.

e Measurements and analysis allow to assess the structural
performance. This is carried out along the service-life
and operation of the asset. SHM techniques are oriented
to the identification of sensitive characteristics.



e Measurements and analysis allow to improving asset
management. SHM can help with taking informed based
decisions to managers.

2.3. DT and SHM

In both DT and SHM systems, measurement, analysis and
decisions on the asset are expected. In recent decades, SHM
systems have helped to the decision-making process in
maintenance works. The proportion of existing assets being
presently monitored in a regular basis is, however, small.
With the advent of highly detailed models, BIM, Bridge
Management Systems and ultimately, DTs of the assets,
information can be aggregated in unforeseen manners,
which is called to boost the proportion of monitored assets.
Thus, the massive virtualization of assets represents an evo-
lution of SHM systems in terms of data aggregation and
comprehensiveness.

One can infer that, attending to the definitions presented in
sections 2.1 and 2.2, the new generation of SHM systems
would be embedded into more complex information systems
with much more layers. The procedures provided by SHM are
precisely those required by the layers of information related to
the geometrical and material behavior of infrastructure assets.
Many of the decision-making performance indicators are dir-
ectly related to the condition of the asset. The conundrum
arises: can this new generation of tools for asset management
be applied on a massive scale by managers?

These tools can be impactful and enhancers of the decision-
making process if a certain level of efficiency is achieved. A
vast array of information sources implies a vast set of stake-
holders. Automating pipelines of information for many stake-
holders is a challenge for its own sake. Interaction between
agents may generate that the traditional SHM systems infor-
mation flows require adaption to the DT information system.

Figure 1 illustrates the coincidence of fields, the multiple
pipelines of information as well as the potential interactions
between stakeholders. For instance, field data may be sensor-
based, image-based or remotely acquired. All these types of
information require special treatment for proper embeddedness
in other systems. On the other hand, numerical and geomet-
rical models should be based on consistent data-exchangeable
formats. DT cloud platforms provide a set of interconnected
databases and methods to integrate information from models
(e.g., BIM and structural models) and data sources. They also
make the information available to data infusion/extraction by
third-parties which may also contribute with specific services
such as specific anomaly detection or structural analysis. The
DT of the asset is expected to encompass all stakeholders
seamlessly. The complexity of the information system will
increase with the amount of sources of information that are
gathered in the same twin.

In the research project Ashvin (2020), one crucial aspect
is the identification of requirements and challenges for the
infusion of SHM measurements within DTs. For the sake of
identification, different methodological perspectives are
established: (i) a literature review on existing SHM deploy-
ments, (ii) the development of SHM-FEM-DT systems in

STRUCTURE AND INFRASTRUCTURE ENGINEERING . 3

the form of interoperable applications of measurements,
numerical models and decision-making tools and (iii) the
implementation of exemplary SHM-FEM-DT systems within
a set of ten demonstrators available within the research pro-
ject. This article presents the first part, corresponding to the
literature review together with the study of ten demo cases.
Specific requirements and challenges identified from the
development and implementation of systems in these sites
enrich the review as well.

3. Literature review on data-collection techniques
and tools

3.1. Characteristics of the review

This review is narrow-scoped. Its particular aim is to identify
requirements for digitalization of SHM information and their
implementation in DT platforms, and to foresee challenges for
establishing these requirements. Thus, the identification of the
requirements and challenges for such infusion is the single
research question on this review. Prior to beginning with the
review, two aspects are worth mentioning:

Firstly, it is recognized that SHM systems are usually tailor-
made. SHM systems are deployed on assets that may never be
digitalized during their lifetime. That is to say, the asset may
not have any replica of any kind in the virtual realm.

Secondly, the ability to measure the natural and built
environment has exploded in recent years. A vast array of
possibilities, ranging from simple tailor-made, open-source
IoT-connected sensors to high precision IoT-enabled robust
systems are mature nowadays. Increasingly, measurements
are precisely, efficiently and robustly performed in infra-
structure systems. It is expected that recorded data will not
stop growing in the next years. Nevertheless, a vast array of
information sources such as sensors (contact-based or remote)
and/or imagery, can be used in these deployments. The format
and nature of the results that require processing are source-
dependent, which adds complexity in this development.

As a result, it is important to identify tools and require-
ments from two perspectives: (i) tools for the generation of
the virtual asset itself, which are gathered in section 3.2 and
(ii) data-gathering tools that enable an interaction between
the physical and the virtual realms during operation consid-
ering many sources of information (addressed in section
3.3). Figure 2 summarizes the organization of the review,
where three data-collection sources are listed. For each
source, different methods and thus, specific keywords are
also identified. This organization of the sources allows
designing the survey with a narrow scope but interestingly,
with a comprehensive visualization of multiple pipelines of
information.

3.2. Techniques and tools for the generation of the
virtual asset

The generation of the virtual asset is key. It requires
thoughtful development for the sake of inclusiveness of
many stakeholders. The current standards of practice in
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Figure 1. Integration of needs for SHM systems embedded within a DT platform.

BIM establish among other things, the Level of
Development (LoD). The LoD defines the amount and
degree of building information that needs to be placed in a
BIM Model. This not only includes the level of detail of the
graphical objects but also, the data associated with the phys-
ical characteristics of the objects, their sources, their trace-
ability, their as-built characteristics or singularities and so
forth. To specify a target LoD, catalogs and standards are
available. The LoD specification for Building Information
Models is a well-known reference tool where characteristics
of LoD are defined for multiple elements of buildings and
infrastructure. A DT should also follow a similar categoriza-
tion based on existing Standards in Industry.

Clearly, on top of those layers, DT are expected to have
added features. Embedded sensors, network capabilities,
timely inspection and evolution in time, to mention some of
them. They require proper infusion in existing (and evolv-
ing) frameworks. Even in current design projects being
developed, the generation of virtual assets in the form of
DTs is yet to become a common practice. In addition, many
existing infrastructures and infrastructure systems have
never been virtualized accordingly or even no information is
available at all. Scarce (or not-to-date) information found in
drawings may be the only source of information for those
in charge of this virtualization. For the sake of generating
the virtual asset of existing infrastructure, a considerable

Geometrical
survey
pipelines

Anomaly
detection
pipelines

Sensors

Operators

Physical asset

effort is thus required to spark its Digital Birth and its cor-
responding connection between the physical and the virtual
realms.

Current practice and market available techniques suggest
the process of digitalizing the physical and geometrical
characteristics of an asset by many means. Firstly, trad-
itional creation of virtual geometrical models from draw-
ings. This implies generating an asset that can be used and
expanded by third parties accordingly. Secondly, by means
of digitizing the asset using laser scanning techniques, in
which the reflected radiations of the physical asset are
gathered in the form of point clouds. Thirdly, by digitizing
the asset using cameras, in which the emitted radiations of
the physical asset are gathered in the form of imagery that
is subsequently transformed into point clouds. This
principle has been understood from many measuring
perspectives.

Figure 3 illustrates this specific part of the survey. Three
domains are selected, namely, the digitalization of the asset
from 2D documents (Drawings), the digitation of the asset
using 3D scanning (Lidar, TLS) and the digitalization of the
asset using images (monocular cameras, databases). Specific
academic production that depict methods, algorithms, experi-
mental techniques or developments in each area is reviewed.

First, developing methods and procedures of automatic
extraction of data directly from scanned drawings is a
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From drawings

Generation of the
virtual asset

From point clouds

From images

Sensor data

(data stream)

Operation of the
asset

Figure 2. Organization of the review. Identification of sources of keywords.

Figure 3. Techniques for the generation of the virtual asset.

tremendous task in civil engineering works. Generating
digital models for existing assets with only drawings or pic-
tures represents an interesting alternative for the digitaliza-
tion of assets for maintenance purposes. Manual
digitalization is time-consuming and depends on the tech-
nical expertise of the modeler. Drawings are, however,
numerous for a specific project and are produced with tai-
lor-made detail and type of information presented.

Remote sensing
techniques

(Store database)

Image data

(object database)

Recognizably, automatic reading, identification and geom-
etry generation from 2D drawings are relatively easy tasks
when it comes to digitalizing single elements that require
extrusion. However, complexity scales very fast when mul-
tiple perspectives and scales are to be digitized from draw-
ings with heterogeneous data.

Consequently, when automatic development becomes
impracticable, the digitalization of drawings becomes faster
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Figure 4. From available 2D documentation to an IFC-based BIM model.

using human-power and 3D development from scratch. In
this sense, it should be also taken into consideration the fact
that the physical asset could not perfectly correspond to the
digital replica obtained from design drawings, as errors and
tolerances can appear during the construction process. It is
then preferred to use ‘as built’ documentation. When exist-
ing assets require digitation for a particular maintenance
purpose, it is optimal to use this specific episode of the asset
as its digital spark. Human-power can thus be used more
efficiently in all subsequent episodes of maintenance.

Figure 4 illustrates the procedure. Examples found in the
literature are not numerous. Furferi et al. (2010) developed
3D Pseudo wireframes from 2D orthographic views based
on Boundary Representations (B-Rep) topology. Yang et al.
(2020) presented a semiautomatic Structural semantically-
rich BIM-Model Generation Methodology Using CAD
Construction Drawings. Gimenez et al. (2016) developed an
automatic reconstruction of 3D building models from
scanned 2D floor plans. More recently, Akanbi and Zhang
(2022) presented a generation of BIM models according to
the openBIM standard Industry Foundation Classes (IFC)
from pdf 2D bridge drawings, implementing successive
cleaning and conversions to raster graphics files, vector
graphic files, and tagged data graphic files.

Secondly, 3D scanning techniques are increasingly being
adopted due to their cost- and time-effectiveness when survey-
ing assets geometries from the AEC sector. 3D scanning tech-
niques provide advantageous features during the digital birth
of the asset. Full Scan-to-BIM processes are becoming increas-
ingly sophisticated in the digitalization of assets, where mul-
tiple data pipelines are being established from raw point
clouds to semantically rich 3D models. Attempts from Scan-
to-BIM processes are available in the literature (see Table 1).
These attempts have varied levels of automation and sophisti-
cation. In general, the academic production focuses on specific
types of geometries and construction materials. Nonetheless,
the measurement, digital observation and semantic identifica-
tion of objects without coming into direct contact with them
is readily available for AEC. As a matter of fact, it represents
for a whole generation of civil engineers a set of tools their
ancestors would never had dreamed of.

To complete a digital birth using a scan-to-BIM process,
several steps are needed and are well identified in the litera-
ture. The first part is, obviously, the development of a com-
prehensive geometrical survey that include all relevant asset
elements. To this end, market-driven technological players
offer increasingly sophisticated Terrestrial Laser Scanners
(TLS). TLS are capable of measuring distances between the
sensor and an object at a given space. TLS use two different
principles to calculate the distance: Time-of-flight (ToF) and
Phase Shift (PS). Accuracy, point-density, range and raw
data types are important features that require scrutiny by
the user. The quality of the data source will affect the real-
ism of the digital asset.

On the other hand, point clouds are expected to be pro-
vided by the device in operable form (for instance, lists of
coordinates). The point cloud represents a considerably
large file with lists of millions of elements. Post-processing
of these lists requires programming and computational
geometry tools for proper inspection and subsequent use in
BIM-friendly platforms. Research has been mostly focused
on post-processing algorithms, tools and techniques.
Registration, segmentation and identification are steps of
this specific process (Wang et al. 2020).

When a site/asset is scanned, it is generally performed
from different viewpoints. These point clouds require proper
alignment into a single reference system by means of a regis-
tration process. Common methods for registration are based
on the Iterative Closest Points (ICP) algorithm (Besl &
McKay, 1992). Some of these methods are sensitive to out-
liers that distort the optimization results. Thus, cleansing
tasks such as outlier removal, gap filling and point cloud
density balancing are needed to obtain good registration
results. On the other hand, ICP-based methods only per-
form well when adjacent two-point clouds are sufficiently
close one another. Optimization functions could erroneously
find local minima that do not correspond to correct align-
ments. Therefore, a common practice is to divide the regis-
tration procedure into two steps: (i) a less accurate
registration method is performed to roughly align the geo-
metries (coarse registration) and (ii) ICP-based methods are
used to improve the initial alignment (fine registration).
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Cleansing Registration

Segmentation Identification

Rashidi and Brilakis (2016) Rusu et al. (2009)

Theiler et al. (2014)

Wang et al. (2019)
Chacén et al. (2021)

Pu and Vosselman (2009)
Perez-Perez et al. (2021)
Pierdicca et al. (2020)
Kim and Kim (2020)
Kim and Kim 2021)

After the registration process, a geometric representation
of the asset is obtained. The raw point cloud data requires
organization. In this form, data is accessible but only about
individual, disordered points. Clusters and regions of points
are thus required. This step is called segmentation. Points
that share geometric features are labelled and then grouped.
As a result, regions can now be treated more efficiently.
Many algorithms for segmentation are proposed in litera-
ture. One may classify these methods into 5 categories:
Attribute-based, edge-based, region-based, graph-based and
model-based. Wang et al. (2019) presents a thorough review
of such methods.

Subsequently, it is necessary to generate semantically rich
3D models. For that purpose, the grouped regions are
labelled into object classes, instances, and relations among
them (Tang et al. 2010). This is called identification. In
AEC, these labels are generally associated to Standard BIM
elements. Walls, roofs, floors, pipes, beams, columns, etc.
Many of these objects are readily available as CAD/BIM
objects in commercial Software. Elements are usually identi-
fied using human-codified algorithms. Semantic features
such as size, position, orientation, topology, and density of
the objects within the point cloud are used for this identifi-
cation. These methods are effective and easy to implement
but they are usually site-dependent. Recently, research
regarding automated identification techniques is pointing
towards the use of supervised and unsupervised deep learn-
ing methods. Fully automated, universal scan-to-BIM proc-
esses are not yet achieved. However, semi-automated
solutions combining well-established manual processing and
robust automated routines provide clear advantages when
digitizing structural assets. Figure 5 shows the data pipeline
with corresponding steps. Table 1 displays an organization
of references from each field of research.

Thirdly, with the explosion of high-quality cameras,
unmanned aerial and ground vehicles and smartphones,
massive record of imagery of build assets is expected.
Image-to-BIM is understood as the process of generating
semantically-rich IFC-based BIM models using a set of
images. It is worth pointing out that two steps are identi-
fied. The first step corresponds to the generation of a point
cloud from image interpretation whereas the second step is
the treatment of the point cloud itself (depicted previously).
Focusing on the former, interpretation and understanding
of visual data using computers is necessary. In a recent sur-
vey, Koulalis et al (2022) describe applications, steps and
methods of computer vision in the construction domain.
Such applications use semantic segmentation, pose and
motion estimation, object detection and 3D reconstruction.

Thus, semantic information from visual data can then have
multiple applications in the AEC sector.

3D reconstruction of assets in outdoor spaces is mostly
developed using photogrammetry. Complex structures (from
isolated buildings to entire neighborhoods) can be created
using a monocular camera sensor based on the concept of
Structure from Motion (StM). The SfM method uses a series
of 2D images of an object from a specific area taken by a
moving monocular camera sensor as input to extract fea-
tures and produce high quality 3D structures (Agiiera-Vega
et al., 2018). Market-driven developments with automated
SfM process built-in for 3D modelling are available, but in
many cases, algorithms and procedures are not disclosed. If
many camera sensors are available, multi-view stereo (MVS)
algorithms can construct considerably detailed 3D models
from images. Input is a huge set of calibrated overlapping
images captured from different perspectives, with the ultim-
ate goal to provide implementations of photometric consist-
ency measures, and efficient optimization algorithms. The
success of MVS technologies is gaining ground within the
AEC sector.

Although more popular in other domains such as
robotics, high accuracy Visual Simultaneous Localization
and Mapping (VSLAM) are also used. VSLAM relies on
real-time mapping of the operating environment by estimat-
ing the camera motion and pose. Following the initialization
phase, feature matching and tracking algorithms are com-
bined to calculate the camera pose corresponding to the
reconstructed map that is updated in real-time. Other meth-
ods in contrast to the previously depicted existing methods
are featureless. The pixel-to-pixel matching process is
avoided. The direct image-based and featureless approach to
building modelling from aerial images uses geometric and
photometric properties resulting from the perspective pro-
jection of planar structures. It delivers a three-dimensional
modelling whose results are similar to the ground physical
data. Table 2 summarizes some of the available literature on
this subject.

3.3. Techniques and tools for the operation and
maintenance of the physical asset

To deploy efficient operations and maintenance plans of
infrastructure systems is the ultimate goal of managers. For
this purpose, an ideal scenario is to track a sufficiently rich
stream of measured information during operation to check
for adequate performance. Collecting either too little or too
much data can be detrimental. The former may be insuffi-
cient for proper analysis whereas the latter may generate
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Figure 5. From available point clouds to an IFC-based BIM model.

Table 2. References for computer vision methods.

Visual Simultaneous
localization and
Mapping (VSLAM)

Fuentes-Pacheco
et al. (2015)

Featureless
methods

Multi-view
stereo

Structure from
motion

Hammoudi and
Dornaika (2011)

Furukawa and
Hernandez (2013)

Agliera-Vega
et al. (2018)

more expenses than the managers should afford. In either
case, the virtual realm represents an ideal efficient scenario
for storing, analyzing, visualizing and using this data. This
side of the DT represents the living, easy-to-update instance
of the physical asset.

According to the maturity of the DT, the number of
layers of information that feed the models provide multiple
levels of complexity. In this review, the monitoring techni-
ques available for proper embeddedness within DTs are div-
ided into sensors or contact devices, and non-contact tools
based on digital images or remote sensing.

3.3.1. Sensor-based methods
CIRIA (2020) and COST (2019) provide comprehensive
descriptions of sensors in AEC. More advanced sensors for
application in civil engineering and buildings are reviewed in
Das and Saha (2018) and Wu et al. (2022). The health of con-
crete infrastructures and recent achievements in the field of
sensors developed for monitoring are reviewed in Taheri
(2019). The focus is on sensors developed for monitoring
parameters including concrete temperature, humidity, pH, cor-
rosion rate, and stress/strain. In fact, with these five parame-
ters, most of the damages present in concrete elements can be
monitored.

Several authors identify that data collected by sensors for
construction management are divided into three main groups:

e Structural data: vibrations, strains, displacements or
rotations.

Unstructured pointcloud

T

BIM

o =

Identification

e Environmental data: temperature, humidity, wind data.
o Traffic data: the focus is on collecting traffic loads.

Sensors generally provide data streams with different
sample rates. The physical magnitudes are captured as a
function of time. Data streams require access. IoT platforms
are technologically ready to provide access to data streams
robustly. Subsequently, user-intended platforms for visual-
ization (DTs, BMS) can request JSON objects to these IoT
platforms with specific arrays of collected data. Web services
with data (e.g., environmental) are also technologically ready
to provide information about weather or traffic information
in right time. Table 3 describes the most widely used type
of sensors with relevant applications and references

3.3.2. Image-based methods
One straightforward technique in regular asset inspection is
based on the recording of images. Quality control is a cru-
cial aspect in the construction industry. As it is common
practice to take several hundreds of pictures for an inspec-
tion episode of an asset, one could claim that an enormous
database on different damages exists. Images requires sys-
tematic organization if one needs to maximize their useful-
ness. When images are organized, labelled and grouped,
high-level understanding from digital images or videos may
provide identification of behavior. For this purpose, compu-
tational methods can be classified in two approaches: (i)
heuristics feature extraction and (ii) deep learning.
Heuristics methods are based on applying thresholds or
machine learning classifiers to the output of hand-crafted
filters specified for specific damage types. These methods
are based on features extracted by pixel intensity around
cracks compared to other nearby pixels. On the other hand,
Deep learning has evolved considerably when it comes to
defect detection for a wide variety of visual defects, from
cracks and delamination to corrosion. DL can help detecting
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Table 4. References for CV-based SHM deployments.

CV-SHM Local level Global level
Fields Crack detection in concrete, steel, pavement. Structural response.
Spalling, delamination, rust, bolt looseness. Displacement monitoring
Condition assessment
References Hiasa et al. (2018). Feng et al. (2015)

Watase et al. (2015)
Ali et al. (2022)
Shin et al. (2020)

Chu et al. (2021).

Omar and Nehdi (2017)
Dong and Catbas (2021)
Isailovic¢ et al. (2020)

Abdeljaber et al. (2018)
Azimi and Pekcan (2020)

cracks by means of classification, localization, or segmenta-
tion. Table 4 shows an overview of use of computer vision
based SHM at local (specific location) and global (overall
behavior) levels. Classified object databases are required for
the development of integrated services for image retrieval.
Ideally, these databases should be useful for the owners of
the assets as well as for the developers of computer-vision
recognition methods.

3.3.3. Remote sensing

Occasionally, it is neither feasible nor acceptable by owners
to deploy contact-based techniques. Remote sensing techni-
ques may fill gaps when it comes to data acquisition. For
instance, Terrestrial Laser Scanners, already described in
section 3.2, can be used for monitoring. They provide accur-
ate point clouds that can be systematically registered, seg-
mented and identified.

Another technique is RADAR. The acronym reads Radio
Detection and Ranging systems. By means of a transmitter,
the radio produces an electromagnetic signal that is then
propagated into the space by means of antenna. When this
signal strikes an object, it gets reflected back. The reflected
signal is known to be the echo signal. The receiver then
processes the echoed signal. For finding the range of the
object, the system uses the time taken by the signal to get
reflected. For the target location, an angle is calculated from
the direction of the echo signal to the direction where the
antenna is pointing. For moving objects, the Doppler Effect
is used to calculate the speed and range of such object.

From the perspective of the use of radars with mainten-
ance purposes of assets within the built environment, radar-
based specific technologies are often used as a long-range
data-gathering technique. With radar techniques, the output
from the receiver (for instance, a displacement of a point)
requires flowing to user-defined threshold decision systems.
The academic review is focused on the following radar tech-
niques only:

e Space borne synthetic Aperture Radar (from satellites or
airplanes) or SB-SAR.

e Ground-based synthetic Aperture Radar
ground) or GB-SAR.

(from the

For the former, there is a great interest of retrieving data
collected by publicly available satellite imagery. The poten-
tial information that can be collected by open access hubs

such as Copernicus (2022) is substantial. Subsidence, land-
slides, surface temperature, water levels and many other
phenomena associated with both the natural and the built
environment can be inferred from space-borne imagery.
Programming skills for data extraction from the huge data-
base is necessary.

Ideally, DT platforms should be able to generate specific
requests to such data hubs. Results on specific magnitudes
can be then embedded in the DT accordingly. For instance,
one may request the water level of a river at the specific
location of a bridge in recent years. This information may
be of interest when developing high-level understanding of
the asset. For the latter, with appropriate understanding of
the output data (phase angle and time), very accurate posi-
tions of reflectometers can be obtained. GB-Radars provide
information of position as a function of time. This proced-
ure is suitable for large assets (such as long-spanned
bridges) in which specific points are tracked. These points
are provided with reflectometers for maximizing accuracy of
the measurements. Presently, its use is limited and data-
acquisition systems require post-processing with tailor-made
Software. Table 5 collects references for remote-sensing
techniques worth embedding in DT platforms.

4. Ashvin: Digital Twins as assistants for design,
construction and maintenance of infrastructure
systems. Demo cases

This research is framed on the H2020 project Ashvin
(2020). The projects includes the development of multiple
pipelines of information in quite varied types of infrastruc-
ture systems. Measurements from the physical realm feed
tailor-made DTs of these sites by means of those pipelines
in the form of a platform for the end user. The variety of
demo cases is crucial for the conception of a comprehensive
way of including different types of data. For each of the
demonstration project, varied challenges have arisen. The
strength of the project is the ability to show various types of
structures in different surroundings and conditions.

If the goal for this digitalization is to use such kind of
platform to increase productivity, resource efficiency, and
safety, a vast array of stakeholders need to provide/receive
data seamlessly. Interaction between stakeholders in a more
harmonized data-exchange format is key for leveraging the
benefits of digitization. Digital data stored in digitally sealed
silos may not contribute to improving these interactions



Table 5. References for remote sensing techniques.

STRUCTUR

E AND INFRASTRUCTURE ENGINEERING . 1

Sensor

TLS

GB-SAR

SB-SAR

Description

Data type and output

SHM applications

References

Identifies points in the 3D space
using the travel distance of light
pulses emitted at different sensor
poses (the sensor rotates in the
vertical and horizontal axes during
measurements)

Point cloud
Geometric inspection

Artese and Zinno (2020)
Cha et al. (2019)
Cabaleiro et al. (2016)
Mistretta et al. (2019)
Bueno et al. (2018).

This technique is based on the sam
operational principles of the
satellite SAR interferometry, but
the synthetic aperture of the rad
(SAR) is obtained by an antenna
moving on a rail instead of a
satellite moving around an orbit.

Raw or pre-processed analog-digital

Deformation and vibration
assessments

Huang et al. (2020)

Xing et al. (2020)

Pieraccini et al. (2019)

e The feasibility of using space borne
high resolution synthetic aperture
radar (SAR) data to sense bridge

ar deformations at periodic time
intervals without the need to
install any equipment has been
studied recently

Requires pre-processing provided by
developers
Deformation assessment

Ponzo et al. (2021)
D’Amico et al. (2020)
Qin et al. (2019)
Xiong et al (2021)
Schlogl et al. (2021)

Table 6. Summary of Ashvin demo sites, digital files and sensing techniques.

Demo site Country Stage Virtual Asset Measurements
#1. Railways Bridges Spain Construction-Maintenance IFC-based virtual asset Sensors (strain gauges, accelerometers.
developed from drawings Temperature, LVDTs)
Cameras (Drones for photogrammetry)
Remote sensors (GB-InSar) for tracking seasonal
behavior.
#2. Building renovation Poland Design-Maintenance BIM developed from point Sensors (air quality, thermocouples in walls)
clouds
#3. Airport runway Croatia Maintenance CAD provided by owners CV-based evolution of cracking in pavements
#4. Logistics hall Germany Construction CAD provided by owners CV-based analysis of construction processes
#5. Office Building Sweden Construction BIM provided by construction Sensors (IMU, accelerometers, weather
company (partner) conditions) for tracking equipment.
Remote sensors (TLS) for tracking construction
evolution.
#6. Office Building Spain Construction BIM provided by third party Sensors (strain gauges, accelerometers.
Temperature, LVDTs)
Remote sensors (TLS) for tracking construction
evolution.
#7. Road bridge Spain Maintenance IFC-based developed from Sensors (strain gauges, accelerometers.
drawings Thermocouples)
Remote sensors (TLS) for tracking seasonal
behavior.
Drones for traffic analysis
#8. Footbridges Germany Design BIM models provided by No measurements at design stage
design office (partner)
#9. Stadium roof Germany Maintenance Provided by third party Remote sensors (TLS) for tracking seasonal

#10. Quay wall The Netherlands ~ Construction

From drawings

behavior.
Environmental sensors.
Fiber Optics
Extensometer: Smartec
SOFO (fiber optic based)

anyhow. After examination and understanding of the prob-
lems and challenges of those sites face, the development of
pipelines is enriched with diverse technologies. One deliver-
able of the project (Lukaszewska, 2021) describes the imple-
mentation plan on these demonstration projects.
Summarized information is shown in Table 6. These demo
sites are being under digital twinning (partially or fully)
during the development of the project.

One challenge with this variety is the continuous syn-
chronization, whose rate is use-case dependent. For the case
of construction process, data is required in such a way it
allows decision-making on a daily or weekly basis. Those
decisions within the construction site may improve substan-
tially delays and productivity. On the other hand, for the
case of operation phases, the right time for synchronization
may be very different, ranging from weeks to vyears.
Planning maintenance and reparation spans a larger time

frame. Due to these challenges and the variety of informa-
tion, Knowledge Graphs (Barrasa, Hodler, & Webber, 2021)
and accordingly defined ontologies (Khan et al. 2022) are
being embedded within the DT systems.

5. Requirements and challenges
5.1. Requirements for data gathering tools

Due to the variety of data sources (sensors, images, remote
sensing techniques), there is no such thing as one single
pipeline of information from SHM systems to DTs. To illus-
trate this statement, two examples are described. For
instance, data generated with a strain gauge, an analog
strain sensor that provides very precise voltage signals, can
be directly embedded as a stream of numbers via serial port
into a semantically rich 3D model in real-time in a specific
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Measurement principle.

Strain is related to change

in voltage of a resistor. platform using MQTT.

*Digitized information of time, date, id, specific
location in space and strain levels is formatted
in JSON. Then, results are published to the

loT Platform, integrated in the DT

platform, receives strain data
from one specific sensor at a

specific location in time.

¢ Information is stored adequately for subsequent
retrieval.

Simulation service

requests strain values
and numerical
models from the DT

* Comparisons between measured values and
those numerically obtained can provide
higher level understanding of the behaviour
of the asset whose output is persisted in the

platform. DT.

Figure 6. A minimal pipeline from strain gauges to an IFC-based DT.

¢ Data from satellites at a specific location
is gathered. Years of records can be
accesed in public platforms

¢ Higher-level information from the
measured magnitude is extracted
and sent via web services to the loT
platform

The Digital Twin
receives
aggregated
information

* Decision making tools
based on performance
indicators can exploit
rationally the data

Measurement principle.

Water level of ariver is
related to change in
colors in imagery.

DT Platform receives water
levels at a specific location in

time.

Simulation service

*Water level can be the input for specific
models and predictions related to scour
whose output is sent to the Digital
Twin.

requests water
level information
from the DT

platform.

* Decision making tools The Digital
based on Twin receives
performance

aggregated
information

indicators can exploit
rationally the data

Figure 7. A minimal pipeline from satellite imagery to an IFC-based DT.

computer. However, this requires wires and a computer per-
manently connected. If one provides vaster generality and
practicality for a real asset, the information should flow
wirelessly from the sensor to the cloud using available IoT
protocols such as Message Queuing Telemetry Transport
(MQTT) or Hypertext Transfer Protocol (HTTP). As a
result, the information can flow directly from the measured
point to the virtual point of the semantically rich model.

This particular pipeline of information relates the bits
shown in Figure 6.

Another example of pipeline can be the retrieval, process-
ing, analysis and use of images taken by satellites. Let us
imagine a specific output worth gathering: the water level of
a river at the location where piers of bridges are settled.
This information may be useful when tracking potential
scour-related issues in that asset. The needed output is



straightforward: location, time/date and water level, which
can be stored in a text format. The sample rate may range
from days to weeks, which is enough in this specific
example. The pipeline requires in this case considerable lev-
els of automation in the retrieval and corresponding analysis
of the satellite images coming from open access hubs. This
represents a service in its own with a set of codes, interpret-
ation and use of information as presented in Figure 7.

In all cases, it is required that data-collection techniques
(and the corresponding SHM systems as a whole) are
embedded in vaster information systems, which presumes a
certain degree of accessibility of the data. Encrypted or
locked-in data found in some devices does not facilitate its
embeddedness. In this article, requirements are identified at
two levels, generation of the virtual asset and operation
phase. When it comes to the generation of the virtual asset,
one may list as requirements:

e The reproduction of the asset should ideally follow
standard LoDs and formats (e.g., IFC). Thus, further use
of the virtual asset and further coupling with measuring
techniques is facilitated.

e When digitalizing the asset using reality capture techni-
ques, such as photogrammetry or laser-scanning, access-
ible pointcloud-encoding formats are required for
establishing a proper suite of processes such as registra-
tion, segmentation and identification of geometries.

When it comes to the operation and maintenance of the
asset in which information flows across the physical and vir-
tual realms, one may list as requirements:

5.1.1. Sensors

e Individual sensors require precise location and position-
ing in the asset. In order to feed properly virtual models
with measured data, spatial location requires matching in
both realms. Virtual elements such as beams, columns or
slabs can be enriched in a way (e.g., using IFC tags) that
sensors are coupled to those elements. It is thus impor-
tant to keep track of the real location of the sensors in
the virtual realm as well.

e Sensors can be classified according to their sample rate.
The corresponding treatment is different for high (>10Hz),
as accelerometers, or low sample rates (<10Hz) used for
environmental measurements. It defines considerations of
storage needs and capacities. In addition, edge computing
at various levels is often required (the level of a measure-
ment single node or the level of measurement of one asset).
Information is processed and only key values are trans-
formed into stored output.

e Sensors such as distributed fiber optics provide output
for distributed areas of the asset. Ultra-high sample rates
(in the range of MHz) are needed when used to measure
ultrasonic signals for acoustic emission capabilities. It is
also required to precisely locate these devices at the geo-
metrical model. Desirably, interrogators with open API
capabilities and seamless access to the data are required
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for proper integration into DT platforms. Presently,
existing commercial Hardware-Software systems of fiber
optics lack seamless openness to the data access and as a
result, data cannot be retrieved automatically.

5.1.2. Images

e Images require replicability when used for maintenance. As
a result, cameras require defined locations with sufficient
replicability and overlap. Replicability of image-gathering
also presumes orderly documentation and storage.
Desirably, the spatial location of the camera position
together with available photographic metadata enriches the
versatility within the DT.

e Images provide sensitive data. When it comes to facial
recognition and identification of individuals, image gath-
ering presumes proper data anonymization (face blur-
ring, car number blurring). Sensitive data handling and
encryption is also needed.

e Image gathering is enriched with possibilities provided
by UAS. Condition and SHM on a historical basis pre-
sumes replicability in time. Then deterioration and main-
tenance interventions could be evaluated. For instance,
UAVs used for inspection deliver imagery that can be
used for evaluating the condition of the structures (e.g.
cracks, delamination, water leakage, etc.). For replicabil-
ity, it is necessary to track and to allow reproducibility
and traceability of the visual records as well as the corre-
sponding results over time. Flights using UAVs is feas-
ible under replicable conditions nowadays. It is necessary
to systematically use software for flight planning.
Adjusting critical imaging parameters, such as camera
sensor, flying height, ground speed, forward overlap, side
overlap, ground pixel size & imaging frame rate can be
useful for future purposes. Flight coordinates (for
instance, in the form of .srt files) must also be delivered
systematically for future data-gathering episodes.

e When it comes to data management, accessible object
databases are ideal for DT platforms to retrieve requested
info by the user.

5.1.3. Remote sensing techniques

o Terrestrial Laser Scanners require considerably high
data-gathering capabilities. The formats presently used in
the industry such as E57 or open csv text files such as
Xyz or .ply are considerably populated with information.
As a result, the files require specific transmission treat-
ment if handled within IoT platforms.

e Successive scans performed in time may provide great
value for the behavior of the asset. Replicability is of
great importance. Proper registration methods for spatial
location and referencing to the point clouds are required.

e Results from Ground-based SA-Radars require to be
delivered in open formats (csv, for instance). Since a
considerable post-processing of the signals is often done
using specific Software, it is necessary to embed informa-
tion in DT platforms in the form of accessible files.
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o For satellite geospatial data, the use of open access data
hubs helps public accessibility. Programming capacities
are needed to retrieve specific information of use in asset
management.

In a broader sense, several requirements for feeding with
data more accurately those virtual replicas are identified:

e Redundant information provides robustness to the
system.

e The SHM system should be able to gather data for a
proper damage detection. Identification of incorrect per-
formances or damages as well as their active progression
is key but it is heavily dependent of the asset. For fore-
casting future incorrect performance and for allowing for
a proactive and predictive maintenance, data-gathering
must be in accordance with these damage detection
methods and more importantly, to the future damage
detection algorithms that will populate the market after
the measurements are taken.

e Comprehensiveness is significant. One asset includes
many independent pipelines. Many of them may feed
specific decision-making processes. The analysis of the
gathered data by the SHM system should benefit from
many sources of information.

5.2. Challenges

For the sake of developing comprehensive SHM-enabled
DT, many challenges are identified:

e The main observed challenge is to habilitate different
sources of information. All sources of data should be
linked to specific yet different indicators of the behavior
or condition of the asset. Establishing pipelines of infor-
mation are challenging. Generating multiple pipelines for
the same asset adds complexity.

e In the scenario of multiple sources of information, an
ecosystem of stakeholders arises. This represents a chal-
lenge when it comes to the seamless interaction of
agents. For instance, in the public sector, asset managers
usually use public tendering for procurement. The acqui-
sition of relevant technologies or the development of
tasks involving asset management thus require a compre-
hensive vision. Interoperable systems need to be properly
tendered during procurement.

o Systems will increase in robustness and universality
when DT platform become ubiquitous. This represents a
challenge nowadays. For instance, trained algorithms for
better prediction of damage using images imply the
existence of first generations of algorithms that are yet
under development.

o Assets should be digitalized as soon as required. This is
a tremendous challenge since nowadays, the vast major-
ity of assets do not have their own virtual twin.
However, many assets under inspection are being loosely
or partly digitalized, which represents already quite an
investment. In order to maximize efficiency in asset
management, it would be interesting to use the episodes

in which measurements, analysis and decisions are taken,
as the episodes in which assets are twinned. Subsequent
condition rating episodes may be much more efficiently
used.

e Advanced sensors must be oriented to simultaneously
reduce the power consumption and weight of the SHM
system, to resolve deployment problems, and to improve
operation facilities and the subsequent data analysis and
post-processing.

e Different sensors can have different sampling rates,
meaning that they produce data at different frequencies.
For example, a camera may produce data at 30 frames
per second, while another sensor may produce data at 10
frames per second. In such cases, the data from the sen-
sors must be synchronized to ensure that the informa-
tion is combined correctly.

e One approach to dealing with data that comes at differ-
ent rates is to use interpolation. This involves estimating
the missing data points between the measurements pro-
vided by each sensor. However, this can introduce errors
and may not always be reliable, particularly if there are
gaps or delays in the data. Another approach is to use a
Kalman filter, which is a mathematical technique for
combining noisy measurements to produce a more
accurate estimate. The Kalman filter can handle data that
comes at different rates by predicting the state of the sys-
tem at the next time step based on the current state and
the measurements from all sensors. Another challenge
when dealing with data that comes at different rates is
the issue of time synchronization. Different sensors may
have different time stamps or time offsets, which must
be accounted for to ensure that the data is combined
correctly. This can be particularly challenging when deal-
ing with sensors that are located in different locations or
are communicating over a network.

e The connection between the physical and the virtual sys-
tems with such varied natures in the information
(including simulation) is crucial. Advanced engineering
informatics are called to provide solutions for connecting
different types of data that is presently stored in silos.
For instance, knowledge graphs represent a feasible alter-
native for the connection between sources that come
from different stakeholders.

6. Conclusions

The DT of an asset requires a robust and distributed source
of varied data along the physical twin. Very often, the
nature of the incoming data/information is varied and mul-
tiple. On the other hand, as in other nervous systems, dis-
tributed information requires centralization and processing.
The nature of the asset is also very different and multiple
data-gathering techniques are often needed. Occasionally,
DT requires a massive monitoring capacity. Cost-efficient
sensors will be increasingly required. In this article, identifi-
cation of challenges and requirements of three sources of
data have been studied: (i) Sensors, (ii) Images and (iii)
Remote-sensing techniques. The research question is how



these measuring SHM techniques can be embedded in vaster
DT systems.

SHM-enabled DT must provide monitoring data in a way
that can be integrated within data models that can guarantee
interoperability (ability to effectively, accurately, and consist-
ently communicate and exchange information, within different
information technology systems) among digital systems. For an
adequate and comprehensive performance of the DT, raw data
coming from sensors, images or via remote techniques should
be converted into information that can be used for efficient
decision-making. Establishing Pipelines of information are thus
useful. Raw data is post-processed, analyzed and converted
into valuable performance indicators and as ideally established
in decision making tools. The pipeline is in full accordance
with SHM principles.

A set of technical requirements involving data gathering, data
formats and data use are dissected for different sources of infor-
mation. These requirements are of the utmost importance for
asset managers who usually perform procurement. Guaranteeing
proper interoperability implies establishing Standard requirements
for the technology providers. The requirements identified in this
article can be used and then refined in more specific assets.

On the other hand, big challenges are identified.
Automating pipelines from multiple sources of information on
the same asset is still at developmental stages. The next gener-
ation of virtual replica will be in better shape for robustness
and universality. In the coming years, the integration of agents
of the vast ecosystem with aggregated information will allow a
seamless interaction between multiple stakeholders. Hitherto,
this interaction remains a challenge since technology is ready
for isolated measurements but not for integrated systems.

One specific asset may provide dozens of pipelines. Some
of these pipelines can provide crucial information for a spe-
cific performance indicator. Many others, though, require to
be adequately aggregated using fusion methods to properly
feed a specific indicator. Ideally, the more information is
gathered, the better. It is worth pointing out though, that
over measuring the physical model may be counterproduct-
ive. The focus should remain on outputs that are relevant to
check possible malfunctions of the system or that are neces-
sary for the simulation/prediction of future performance. In
this sense, the measuring system should provide to the vir-
tual replica the necessary input data to accurately derive the
indicators of interest. End users will be key players on the
development of tailor-made, meaningful performance indi-
cators for their specific DT assets in the years to come.
Accordingly, DTs will evolve considerably in the following
years in the construction sector.
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