

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Design and Implementation of New Hybrid Algorithm and Solver

on CPU For Large Sparse Linear Systems

 Ahmet Duran
a,b

*, M. Serdar Celebi
a,c

, Mehmet Tuncel
a,c

, Bora Akaydın
a,c

aIstanbul Technical University, National Center for High Performance Computing of Turkey (UHeM), Istanbul 34469, Turkey
bIstanbul Technical University,Department of Mathematics, Istanbul 34469, Turkey

 cIstanbul Technical University, Informatics Institute, Istanbul 34469, Turkey

July 13, 2012

Abstract

It is important to have a fast, robust and scalable algorithm to solve a sparse linear system AX=B. Many multiscale modelling

applications in science and engineering would like to capture more details of the system that results in more general matrices. In

this work, we consider scalable direct solvers and, in particular, we examine the effectiveness of the SuperLU_DIST 3.0 for

distributed memory and SuperLU_MT 2.0 for shared memory parallel machines. We use test matrices containing randomly

populated sparse matrices in addition to patterned matrices. For randomly populated large sparse matrices, we find that numerical

factorization, symbolic factorization, and consequently wall clock time spike up around the sparsity level of 7. We propose a new

hybrid algorithm utilizing the MPI+OpenMP hybrid programming approach among other modifications to solve large sparse

linear systems so that we can avoid extra communication overhead with MPI within node and we could have a better scalability

than both pure MPI and OpenMP. It combines the advantages of SuperLU_DIST and SuperLU_MT and diminishes some of their

limitations.

Project ID: FP7-INFRASTRUCTURES-2011-2, PRACE-2IP —PRACE - Second Implementation Phase Project

1. Introduction

It is important to have a fast, robust and scalable algorithm to solve a sparse linear system AX=B in many science

and engineering applications. We design and implement new hybrid algorithm and solver for large sparse linear

systems. In this work, we consider scalable direct solvers for various reasons. First, we examine the effectiveness of

the SuperLU_DIST 3.0 for distributed memory and SuperLU_MT 2.0 for shared memory parallel machines among

several sparse direct solvers (see Li et al. [1], Amestoy et al. [2], Schenk and Gartner [3, 4], Duran and Saunders [5],

Duran et al. [6] and references contained therein).

* Corresponding author. E-mail address: aduran@itu.edu.tr.

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

2

SuperLU_MT (see Demmel et al. [7]) has three major steps including a) sparsity ordering, b) factorization that

arranges partial pivoting, symbolic factorization and numerical factorization steps to perform in an alternating

fashion, and c) triangular solution. While SuperLU_DIST uses BLAS 3 for factorization, SuperLU_MT has only

BLAS 2.5 with multiple matrix vector multiplication. Therefore, SuperLU_DIST outperforms SuperLU_MT (see

[8] and [15]) for various sparse matrices.

SuperLU_DIST (see Li and Demmel [9]) uses static pivoting [10] instead of partial pivoting because the

implementation of numerical pivoting is complicated on distributed memory architecture. It is advantageous that

symbolic and numerical factorization steps can be separated due to the static pivoting. On the other hand, the

backward error of a matrix cannot be decreased to machine precision and SuperLU_DIST may be considered for a

certain types of matrices only. Therefore, it is important to determine and classify those matrices where

SuperLU_DIST works well. The maximum matching algorithm (see Duff and Koster [11]) is utilized to maximize

the product of the magnitudes of the diagonal entries for a matrix. SuperLU_DIST can use ParMeTiS [12] or MeTiS

[13] ordering on the structure of A+A
T
 in addition to the multiple minimum degree ordering on the structure of A+A

T

or A
T
A for fill-in reducing preordering. Unlike sequential SuperLU, SuperLU_DIST does not have a COLAMD

option that works well for many unsymmetric sparse matrices to reduce fill-ins.

In this work, we discuss advantages and limitations of the SuperLU solvers. Although the existing versions of

SuperLU are scalable and tuned for many matrices, they are sensitive to tuning and need further customization for

various large sparse matrices. Therefore, we designed and generated a collection of large patterned and random

sparse matrices which are larger than most of those real matrices from the University of Florida sparse matrix

collection [14]. For example, we did sensitivity analysis to several parameters including total number of nonzeros

and degree of sparsity for randomly populated sparse matrices.

We modify the SuperLU solvers in order to improve their scalability via several ways. We propose a new hybrid

algorithm utilizing the MPI+OpenMP hybrid programming approach that combines the advantages of

SuperLU_DIST and SuperLU_MT and diminishes some of their limitations. The remainder of this work is

organized as follows. In Section 2, the test matrices including randomly populated matrices and patterned matrices

are described. Later, the scalability of SuperLU-DIST and SuperLU_MT are discussed and several illustrative

examples are given. Section 3 concludes this work.

2. Methods and results

Many multiscale modelling applications in science and engineering would like to capture more details of the

system without ignoring any important conservation laws as much as possible, resulting in more general matrices.

Therefore we consider a portfolio of test matrices containing randomly populated sparse matrices in addition to

patterned matrices. We generate 30 different randomly populated matrices RAND_30K_3, ..., RAND_30K_100 for

each. Each experiment is done at least four times. We describe the matrices in Table 1 and Table 2, respectively.

2.1. Description of matrices

Table 1. Description of randomly populated matrices

Randomly populated matrices

Name

Order

NNZ

NNZ/N

Condition number

Origin

RAND_30K_3 30000 90000 3 1.20 x 106 UHeM

RAND_30K_5 30000 150000 5 4.22 x 106 UHeM

RAND_30K_7 30000 210000 7 1.76 x 106 UHeM

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

3

Name Order NNZ NNZ/N Condition number Origin

RAND_30K_9 30000 270000 9 2.51 x 106 UHeM

RAND_30K_11 30000 330000 11 8.82 x 105 UHeM

RAND_30K_30 30000 900000 30 1.13 x 106 UHeM

RAND_30K_50 30000 1500000 50 7.03 x 105 UHeM

RAND_30K_75 30000 2250000 75 1.16 x 106 UHeM

RAND_30K_100 30000 3000000 100 3.39 x 106 UHeM

RAND_10K_3 10000 30000 3 7.10 x 105 UHeM

RAND_20K_3 20000 60000 3 3.19 x 105 UHeM

RAND_30K_3 30000 90000 3 1.20 x 106 UHeM

RAND_40K_3 40000 120000 3 3.90 x 106 UHeM

RAND_50K_3 50000 150000 3 1.20 x 106 UHeM

RAND_60K_3 60000 180000 3 2.14 x 106 UHeM

Table 2. Description of patterned matrices

Patterned matrices

Name

Order

NNZ

NNZ/N

Nonzero

pattern

symmetry

Numeric

value

symmetry

Condition

number

Origin

Kind of

problem

7DIAG_1M_545 1000000 5450000 5.45 0% 0% 3.47 x 105 UHeM

BBMAT 38744 1771722 45.73 53% 0% 2.09 x 109 UFMM Computational

fluid dynamics

(CFD)

ECL32 51993 380415 7.32 92% 60% 9.41 x 1015 UFMM Semiconductor

device

EMILIA_923 923136 40373538 43.74 100% 100% UFMM Geomechanical

structural

G7JAC200SC 59310 717620 12.10 3% 0% 1.43 x 1014 UFMM Economic

HELM2D03LOWER_20K 392257 1939353 4.94 0% 0% UHeM

INVEXTR1_NEW 30412 1793881 58.99 97% 72% 2.77 x 1018 UFMM CFD

LHR71C 70304 1528092 21.74 0% 0% 1.56 x 1017 UFMM Light

hydrocarbon

recovery

MARK3JAC140SC 64089 376395 5.87 7% 1% 5.83 x 1013 UFMM Economic

MIXTANK_NEW 29957 1990919 66.46 100% 99% 4.40 x 1011 UFMM CFD

PRE2 659033 5834044 8.85 33% 7% 3.11 x 1023 UFMM Frequency-

domain circuit

simulation

STOMACH 213360 3021648 14.16 85% 0% 8.01 x 101 UFMM 3D electro-

physical model

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

4

Name Order NNZ NNZ/N Nonzero

pattern

symmetry

Numeric

value

symmetry

Condition

number

Origin Kind of

problem

TWOTONE 120750 1206265 9.99 24% 11% 4.46 x 109 UFMM Frequency-

domain circuit

simulation

WANG4 26068 177196 6.80 100% 5% 4.91 x 104 UFMM Semiconductor

device

2.2. Scalability of SuperLU_DIST

The code of SuperLU_DIST has been tested in order to measure the performance scalability of various randomly

populated sparse matrices and patterned sparse matrices up to 512 cores (depending on number of nonzeros and

sparsity level) on the Linux Nehalem Cluster (see [16]) available at the National Center for High Performance

Computing (UHeM).

Table 3. Wall clock time and normalized

speed-up for RAND_40K_3

cores

(meshes)

Wall

clock

time (s)

Speed-up

16 (4x4) 849.69 1.00

64 (8x8) 218.49 3.89

128 (8x16) 117.55 7.23

256 (16x16) 63.21 13.44

512 (16x32) 28.58 29.73

Fig. 1. Speed up for matrix RAND_40K_3

The rich pattern spectrum of matrices and the NP-complete problem of best reordering for minimum fill-in are

important challenges. For example, the code has shown scalable speed-up up to 512 cores for RAND_40K_3 in our

tests as illustrated in Figure 1 and Table 3. While the speed-up for the symmetric matrix EMILIA_923 is close to

ideal up to 256 cores, we observe divergence at 512 cores in Figure 2 and Table 4.

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

5

Table 4. Wall clock time and normalized

speed-up for EMILIA_923

cores

(meshes)

Wall clock

time (s)

Speed-up

16 (4x4) 1472.02 1.00

64 (8x8) 743.29 1.98

128 (8x16) 394.78 3.73

256 (16x16) 217.85 6.76

512 (16x32) 149.63 9.84

Fig. 2. Speed up for matrix EMILIA_923

Fig. 3. Average wall clock time as a function of various sparsity levels for randomly populated sparse matrices.

Table 5. Wall clock time for randomly populated sparse matrices RAND_30K_3, ..., RAND_30K_100 as the sparsity level decreases using

64 core (8x8)

NNZ per row 3 5 7 9 11 30 50 75 100

Wall clock time 61.87 352.10 721.95 583.15 527.20 500.66 465.00 450.08 553.23

For randomly populated large sparse matrices, we find a peak of numerical factorization, symbolic factorization,

and consequently wall clock time for a value of seven nonzeros per row in Figure 3 and Table 5. This may be related

to availability of supernodes. After 7, they decrease gradually as sparsity decreases to 75 with a slow rise at 100

nonzeros per row.

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

6

Table 6. Distribution of wall clock time for randomly populated sparse matrices RAND_10K_3, ..., RAND_60K_3 as the number of

nonzeros increases using 64 core (8x8)

Order 10000 20000 30000 40000 50000 60000

NNZ 30000 60000 90000 120000 150000 180000

Equil time
0.00 0.01 0.01 0.01 0.02 0.02

RowPerm time
0.01 0.02 0.04 0.06 0.12 0.11

ColPerm time
0.82 1.20 1.48 2.05 1.65 2.04

SymFact time
0.06 0.38 1.08 2.11 3.54 5.42

Distribute time
0.06 0.07 0.20 0.20 0.30 0.45

Factor time
0.98 14.65 74.95 212.43 334.01 857.66

Solve time
0.02 0.05 0.11 0.18 0.22 0.33

Refinement time
0.08 0.15 0.26 0.47 0.48 0.70

Total
2.03 16.53 78.13 217.51 340.34 866.73

In Table 6, the numerical factorization time dominates in the distribution of total wall clock time as expected for

the randomly populated sparse matrices with 3 nonzeros per row. We observe that the wall clock time and

consequently total time increases as matrix order and number of nonzeros increase, given fixed sparsity.

 We find that the memory overhead coming from ParMeTiS [12] becomes one of the dominating factors in the

distribution of wall clock time on n-diagonal sparse matrices for certain large numbers of cores. For example, we

generated 7DIAG_1M_545 as a seven diagonal unsymmetric matrix with distances +50000, +100000, +400000, -

200000, -300000 and -500000 from main diagonal having random 5450000 real numbers between 0.5 and 1. The

column permutation time takes 41% of the wall clock time for 7DIAG_1M_545 when 64 cores are used. We find

similar results for this kind of n-diagonal unsymmetric/symmetric sparse matrices while using a number of cores

such as 64. This affects the scalability of SuperLU_DIST negatively. In Table 7, the total time increased from 9.96

s. (16 cores) to 17.38 s. (64 cores).

Table 7. Distribution of wall clock time (sec.) for 7DIAG_1M_545 using ParMeTiS and MeTiS respectively for column permutation

 # of cores (mesh)

4 (2x2)

ParMeTiS

16 (4x4)

64 (8x8)

4 (2x2)

MeTiS

16 (4x4)

64 (8x8)

Equil time 0.09 0.17 0.21 0.09 0.17 0.21

RowPerm time 0.83 0.85 0.88 0.80 0.85 0.88

ColPerm time 3.41 2.30 7.11 10.06 10.29 10.55

SymFact time 0.34 0.17 0.20 0.24 0.25 0.25

Distribute time 1.17 0.64 0.54 0.59 0.41 0.13

Factor time 2.00 2.62 6.07 0.53 0.43 0.55

Solve time 0.92 0.75 0.56 0.25 0.15 0.08

Refinement time 3.09 2.46 1.81 1.04 0.66 0.37

Total 11.85 9.96 17.38 13.60 13.21 13.02

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

7

2.3. Scalability of SuperLU_MT

The code of SuperLU_MT has been tested up to 64 threads for all sparse matrices in the list on a HP Integrity

Superdome SD32B (see [17]), a computing server with shared memory architecture at UHeM. A performance

scalability between 4 (LHR71C, an unsymmetric matrix with low sparsity) and 32 (MIXTANK_NEW, a small

almost symmetric matrix with low sparsity) is achieved depending on the number of nonzeros per row, total number

of nonzero and structural symmetry. For example, the speed up graphs of MIXTANK_NEW and TWOTONE are

represented in Figure 4 and Figure 5, respectively. MIXTANK_NEW has more number of nonzeros than that of

TWOTONE and has a better scalability. These results with different machine are in the line of Demmel et al. [7].

While SuperLU_DIST works well for a symmetric sparse matrix EMILIA_923 with less sparsity, we observe

that SuperLU_MT gives segmentation fault for it and similar large matrices related to memory usage. The

measurements of SuperLU_MT for the patterned matrices from Table 2 are listed in Table 8.

Fig. 4. Speed up graph of MIXTANK_NEW for SuperLU_MT Fig. 5. Speed up graph of TWOTONE for SuperLU_MT

Table 8. Wall clock time for patterned matrices in seconds

Patterned matrices

of threads

1

2

4

8

16

32

64

BBMAT Minimum
548.88 295.77 155.43 90.33 55.88 37.99 27.44

 Average
549.71 296.15 156.24 90.66 56.53 38.27 27.66

 Maximum
550.58 296.32 157.48 90.82 57.06 38.61 27.86

 Speed up
1.00 1.86 3.52 6.06 9.72 14.36 19.88

ECL32 Minimum
1219.38 638.21 362.33 225.55 128.27 86.41 63.50

 Average
1221.05 639.31 362.92 226.02 128.51 86.92 63.97

 Maximum
1221.91 639.81 363.93 226.59 128.70 87.31 64.69

 Speed up
1.00 1.91 3.36 5.40 9.50 14.05 19.09

G7JAC200SC Minimum
352.52 176.76 91.68 48.27 26.51 15.53 11.27

 Average
352.65 177.05 91.99 48.40 26.62 15.57 11.55

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

8

of threads 1 2 4 8 16 32 64

G7JAC200SC Maximum 352.79 177.18 92.34 48.49 26.76 15.61 12.02

 Speed up 1.00 1.99 3.83 7.29 13.25 22.64 30.52

INVEXTR1_NEW Minimum 211.18 108.22 57.05 31.66 18.62 12.69 11.63

 Average 211.25 108.30 57.24 31.75 18.68 12.84 11.84

 Maximum 211.33 108.52 57.42 31.86 18.77 12.90 12.15

 Speed up 1.00 1.95 3.69 6.65 11.31 16.45 17.85

LHR71C Minimum 29.21 15.59 9.33 5.78 3.81 2.84 2.72

 Average 29.28 15.61 9.37 5.82 3.83 2.86 2.80

 Maximum 29.40 15.68 9.41 5.85 3.85 2.88 3.00

 Speed up 1.00 1.88 3.13 5.03 7.65 10.24 10.45

MARK3JAC140SC Minimum 604.50 342.85 214.20 122.16 88.26 71.06 56.66

 Average 605.04 343.29 214.74 122.50 88.42 71.23 57.29

 Maximum 605.65 343.95 215.45 122.95 88.70 71.39 57.69

 Speed up 1.00 1.76 2.82 4.94 6.84 8.49 10.56

MIXTANK_NEW Minimum 806.82 407.13 206.88 108.75 58.27 34.11 24.38

 Average 806.90 407.24 207.68 109.04 58.47 34.20 24.61

 Maximum 807.01 407.49 208.47 109.21 58.74 34.37 24.93

 Speed up 1.00 1.98 3.89 7.40 13.80 23.59 32.79

PRE2 Minimum 15633.23 8256.28 4685.85 2655.72 1597.11 1149.65 845.54

 Average 15651.66 8265.67 4691.67 2657.74 1606.55 1167.28 872.38

 Maximum 15667.32 8272.05 4696.84 2660.19 1614.53 1176.26 891.79

 Speed up 1.00 1.89 3.34 5.89 9.74 13.41 17.94

STOMACH Minimum 764.92 385.73 205.55 112.11 65.85 47.74 45.00

 Average 765.21 392.20 205.88 112.44 66.15 47.89 45.09

 Maximum 765.90 395.59 206.25 112.73 66.35 48.00 45.30

 Speed up 1.00 1.95 3.72 6.81 11.57 15.98 16.97

TORSO1 Minimum 283.62 141.97 78.03 42.29 24.39 17.12 14.17

 Average 284.02 142.37 78.27 42.46 24.48 17.14 15.16

 Maximum 284.51 142.68 78.57 42.55 24.58 17.17 16.15

 Speed up 1.00 1.99 3.63 6.69 11.60 16.57 18.74

TWOTONE Minimum 46.17 24.33 13.22 7.60 3.79 2.96 3.30

 Average 46.22 24.46 13.38 7.61 4.15 3.07 3.37

 Maximum 46.31 24.85 13.51 7.64 4.25 3.10 3.49

 Speed up 1.00 1.89 3.46 6.07 11.15 15.06 13.70

WANG4 Minimum 78.67 39.94 20.57 11.32 6.88 5.43 6.02

 Average 78.74 39.97 20.64 11.36 6.91 5.45 6.15

 Maximum 78.94 40.03 20.69 11.38 6.96 5.51 6.27

 Speed up 1.00 1.97 3.82 6.93 11.40 14.44 12.80

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

9

2.4. Other limitations of SuperLU solvers

Although the existing versions of SuperLU work well for many matrices, they need to be improved for certain

types of sparse matrices. For example, we generated a new unsymmetric matrix HELM2D03LOWER_20K, shown

in Figure 6, which consists of the lower triangular part of a symmetric matrix HELM2D03 from the University of

Florida sparse matrix collection and an upper subdiagonal with 20000 distance from the main diagonal. Although

SuperLU_DIST works well for the matrix HELM2D03on the Linux Nehalem Cluster (see [16]) available at UHeM,

it produces segmentation fault for HELM2D03LOWER_20K. We found the same results with several similar

matrices that we generated.

Fig. 6. Matrix picture of HELM2D03LOWER_20K

3. Conclusions

We believe that there is no unique solver that fits all our needs for every matrices because of the rich pattern

spectrum of matrices and the NP-complete problem of best reordering for minimum fill-in. We need always a better

solver as multiscale modelling develops.

SuperLU_DIST has shown scalable speed-up between 256 and 512 cores for many test matrices. On the other

hand, for randomly populated large sparse matrices, we find a peak of wall clock time around 7 for the number of

nonzeros per row related to the ability to find supernodes. After 7, it decreases gradually as sparsity level decreases

to 100 nonzeros per row. Moreover, we find that the memory overhead coming from ParMeTiS becomes one of the

dominating factors in the distribution of wall clock time on n-diagonal sparse matrices for certain large number of

cores. Furthermore, we generated new unsymmetric matrices which consists of the lower triangular part of a

symmetric matrix and an upper subdiagonal with d distance from the main diagonal. While SuperLU_DIST

performs properly for the symmetric matrices, it produces segmentation fault for the corresponding new

unsymmetric matrices.

The code of SuperLU_MT has been tested up to 64 threads for all sparse matrices in the list on HP Integrity

Superdome SD32B (see [17]) computing server. A scalability between 4 and 32 is achieved depending on the

sparsity level, total number of nonzeros and structural symmetry, as shown by Demmel et al. [7] with different

machine. Finally, we find very large sparse matrices with less sparsity for which SuperLU_DIST works well while

SuperLU_MT gives segmentation fault them related to memory usage.

A. Duran, M.S. Celebi, M. Tuncel, B. Akaydin: " Design and Implementation of New Hybrid Algorithm and Solver on CPU For Large Sparse

Linear Systems”

10

Based on these results, we designed a new hybrid algorithm utilizing the MPI+OpenMP hybrid programming

approach among other modifications to solve large sparse linear systems so that we can avoid extra communication

overhead with MPI within node and we could have a better scalability than both pure MPI and OpenMP.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2011-2013) under grant agreement no. 283493. Computing resources used in this work were

provided by the National Center for High Performance Computing of Turkey (UHeM)

(http://www.uybhm.itu.edu.tr/eng) under grant number 1001682012.

References

1. X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users' Guide, Tech. Report UCB, Computer Science

Division, University of California, Berkeley, CA, 1999, update: 2011.

2. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling,

SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41.

3. O. Schenk and K. Gartner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, 20

(2004), pp. 475-487.

4. O. Schenk and K. Gartner, On fast factorization pivoting methods for sparse symmetric indefinite systems, Electronic Transactions on

Numerical Analysis, 23 (2006), pp. 158 – 179.

5. A. Duran and B.D. Saunders, Gen_SuperLU package (version 1.0, August 2002), referenced as GSLU also, a part of LinBox package. GSLU

contains a set of subroutines to solve a sparse linear system A*X=B over any field.

6. A. Duran, B. D. Saunders and Z. Wan, Hybrid algorithms for rank of sparse matrices, Proceedings of the SIAM International Conference on

Applied Linear Algebra (SIAM-LA), Williamsburg, VA, July 15-19, 2003.

7. J.W. Demmel, J.R. Gilbert, and X.S. Li. An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix

Analysis and Applications, 20(4):915-952, 1999.

8. X.S. Li. Evaluation of sparse LU factorization and triangular solution on multicore platforms. Computing for Computational Science-VECPAR

2008, Springer.

9. X. S. Li and J. W. Demmel, Superlu-dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans.

Math. Softw., 29 (2003), pp. 110–140.

10. L. Grigori, J.W. Demmel, and X.S. Li. Parallel symbolic factorization for sparse LU with static pivoting. SIAM J. Scientific Computing,

29(3):1289-1314, 2007.

11. I.S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal.

Appl. 20 (4) (1999) 889–901.

12. G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel graph partitioning and sparse matrix ordering library, version 3.1. University of

Minnesota, 2003. http://www-users.cs.umn.edu/~karypis/metis/parmetis/.

13. G. Karypis and V. Kumar. MeTiS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing

orderings of sparse matrices, version 4.0. University of Minnesota, September 1998. http://www-users.cs.umn.edu/~karypis/metis/.

14. T.A. Davis, University of Florida sparse matrix collection. http://www.cise.ufl.edu/research/sparse/matrices/.

15. M.S. Celebi, A. Duran, M.Tuncel, and B. Akaydin, Scalability of SuperLU solvers for large scale complex reservoir simulations, SPE and

SIAM Conference on Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs, Istanbul, Turkey, September 3-

5, 2012.

16. http://www.uybhm.itu.edu.tr/eng/inner/duyurular.html#karadeniz

17. nPartition Administrator's Guide, HP part number: 5991-1247B, 1st Edition, February 2007, Hewlett-Packard Development Company.

