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Abstract 

The goal of this work is to evaluate how to parallelize the block cyclic reduction using MPI and OpenMP. This algorithm is used 

to solve elliptic problems much faster than the traditional iterative methods. We explain the parallelism that we exhibit and show 

the performance of the MPI and the OpenMP version that we have made.  

 

"Project ID: give here the project ID"  

1. Block cyclic reduction algorithm 

The goal of this work is to evaluate how to parallelize the block cyclic reduction using MPI and OpenMP. This 

algorithm is used to solve elliptic problems much faster than the traditional iterative methods.  

 

1.1. The cyclic reduction 

For example the finite difference of poisson equation is: 
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The concept of block cyclic reduction is to iteratively eliminate half of the unknowns until there is an only single 

block system which can be solved directly. 

So we have for   such as:           : 
                                                                                                                                  

                                                                                
                                                                                     

 

 

If we multiply the first and third lines by   and the second line by –  , then sum this three new lines, if       

we eliminate the odd unknowns       .   

                        
                                   

 

We have then the same structure for this new linear system with half of the unknowns: 

 

                                                        
                                               

     
   
                           

  

 

 
 

           
              
        
           

            

 
 

 

 
 

  
  
  
 

      

 
 
 

 

 
 
 
 

  
   

  
   

  
   

 

     
   

 

 
 
 
 

 

If we continue after  iterations we have:   
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We continue until        (         and         ), then we have only one block equation in the 

system. 

        
     

  
     

      
 

 

For example with     ,           , we have    unknowns to compute. The elimination scheme is the 

follow  : 

 
 

1.2. Backward substitution 

After solving the only block equation, we compute the « odd » values with the even values that we have 

computed in the previous step. So after this resolution: 

        
     

  
     

      
 

 

We can proceed to the next step with a backward substitution: 
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. We do the step       . We compute for    
                values  
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 For     : 
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And so on. At step k, we have: 

 For     : 
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Then for the step    , we compute the last values : 

 For     : 

         
           

 For                

                 
   

                   

 For            

     
     

  
     
   

      
       

 

 

Again for the example, the backward substitution is shown in this figure (with the same colors) :  

 
 

 

We need now to explain how to compute      ,      and  
    

   
. It can be proved that : 
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This can be also written in a very interesting way: 

       
  

                     
  

  

   

 

With      
     

  
          

 

We have also : 

 
    

   
        

         
     

        
    

     
        

         
     

    

 

The trouble is that this formulation cannot be use because of precision instability [1]. 

1.3. Buneman’s algorithm 

 We choose the Buneman’s variant who give numerically stable results [1]. This algorithm introduces two series 

  and   : 

 For    , For               : 
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 For        , For                 : 

 
    

   
  

    

     
         

  
         

         
     

  
         
     

   
    

     
   

 
    

   
         

         
     

  
         
     

         
    

   
                                

Then we have for              and                : 

 
    

   
      

    

   
  

    

   
 

 

Before the computation of unknowns, we need to compute Buneman’s series   and  . For example for      we 

have to compute the following   : 

 
 

1.4. The algorithm 

In summary, the Buneman’s variant of block cyclic reduction takes the following form : 

1. Computation of Buneman’s series 

For               
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2. Solve the single block equation  

For        

  

         
         
                

  
 
         
        

         
      

 

 

3. Backward substitution  

For             
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End 

 

 

2. Parallelization of the algorithm 

2.1. Two levels of parallelization 

  

In the backward part, we can compute in parallel the unknown solution in the same k-level. For each k-level there 

are           unknowns that can be computed independently. For example  with      : 

 

At level    , unknowns                        and     can be computed in parallel, idem for unknowns  

          and    . In buneman’s part, we can also compute   and   in the same k-level in parallel. For     , 

                                 can be computed independently: 

 

 
 

 

 

We can exhibit parallelism in  «              ». This computation is used a lot in the algorithm. 
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We can also write: 

         

  

   

 

                    

The «       » can be computed independently, so we can distribute the computation of   .  

 

 

2.2. Dependencies 

There are dependencies between unknowns    of level k and level    . This is shown in this graph for     :  

 

                                                                                   

To compute the unknown    we need to known    and   . 

 

 

For buneman’s part, there are also dependencies between   of level k and level k-1. This is shown in this graph: 
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To compute     we need to known           , for    we need              . To summarize, at each level k, 

to compute a    we need to known the 3    on level k-1 that are just below. 

 

 
 

Not all the    computed are used in the backward substitution, in fact we need to known only one    for the 

unknown   . The list of   needed in the example is: 

 

 
This list can be obtained by keeping only the top element of each tower: 

 

 
 

To summarize the association between unknown and buneman’s term is the following :  
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2.3. Number of resolution 

The number of resolution (computation of   ) is different between the two part 

 

Backward substitution 

 

At level k, there is           unknown and for each unknown there is       to compute. So for each level k there 

is                         to compute.  

 

 
 « k » level in bacward substitution                                                                                    

« sk » total number of resolution for a level k 

 « s » number of resolution for an unknown 

Buneman’s part 

 

At level k, there is            and for each    there is         to compute. So for each level k there is 

                                 to compute.  

 

 
 

 

We can see that the number of resolution for buneman is dependent on k but is less than the number of resolution 

for the backward substitution. 

. 

 

2.4. Distribution of computations 

This is an example how we do the distribution of    using 4 processors: 
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 For k=3, each processor compute ¼ of    for unknown   . There is then a reduction to assemble results. 

 For k=2, there are two groups, the first group (rank 0 and 1) compute ½ of    for   , the second one compute ½ 

of    for    . There is then a reduction in each group. 

 

3. OpenMP 

3.1. Data sharing 

The vector of unknown    and the buneman’s series          
 are shared. 

 

!$OMP PARALLELE DEFAULT (NONE) & 

!$OMP SHARED (u, pbu, qbu, … ) & 

!$OMP PRIVATE (i, j, ja, jb, tmp1, tmp2, … ) & 

 

3.2. Worksharing 

Since OpenMP doesn’t support the concept of group (like communicator in MPI), the distribution cannot be done 

using the worksharing constructs ( OMP DO ). So the distribution is done like in MPI using the rank and the number 

of total processor, and computing the bound of the loop j (loop on unknown or buneman’s term) and of the loop l 

(loop on the resolution) 

   

… 

rank = OMP_GET_THREAD_NUM() 

… 

if (nb_thread_by_node == 0) then 

!Cas 1 : one thread compute several node (ja/=jb) 

nb_node_by_thread =((nb_node/nb_processor+1)/2)*2 

jb=(rank+1)* nb_node_by_thread 

ja=rank* nb_node_by_thread +1 

else 

!Cas 2 : Group of threads compute a node (ja=jb) 

jb = (rank/nb_thread_by_node)+1 

ja = jb 

endif 

… 
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… 

! Section 1: 

! “kth” rank in the group of threads 

kth = modulo(rank,nbth) 

 

! Section 2: 

! Number of resolution by thread 

kmod = nb_system/nbth 

! computation of l-range  

 _min = kth*kmod +1 

 _max = (kth+1)*kmod 

 

… 

! Section 3: 

! Resolution 

do   =  _min,  _max 

… 

call CHOLESKY(…) 

… 

enddo 

 

… 

 

 «      » is the number of threads, nbth = nb_thread_by_node 

 «      » is the rank 

  «            » is the number of resolution for a node. 

 «             » is the fonction that compute one   . 

 

 

For the reduction part, again we cannot use the CRITICAL directive, since we want to do reduction inside a 

group of threads, so we use the LOCK routines. Inside a group, threads share the lock, to avoid race condition in 

updating the unknown. 

 

… 

! Allocation of vector of lock  

ALLOCATE ( tab_lock_group(nb_proc) ) 

… 

!$OMP PARALLEL 

… 

! Init of the lock 

!$OMP DO 

do I = 1, nb_proc 

      call OMP_init_lock( tab_lock_group(i) ) 

enddo 

!$OMP END DO 

! ----------------------------------------------------------------------------------------  

… 

! ---------- Reduction ------------------------------------------- 

call OMP_set_lock( tab_lock_group(group_number) ) 

u(:,jk2)=u(:,jk2) – tmp1(:) 
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call OMP_unset_lock( tab_lock_group(group_number) ) 

! -------------------------------------------------------------------------------- 

… 

! ----------- Destroy ------------------------------------ 

do i = 1, nb_proc 

call OMP_destroy_lock( tab_lock_group(i) ) 

enddo 

! --------------------------------------------------------------------------------- 

… 

!$OMP END PARALLEL 

 

 

4. MPI version  

Unlike OpenMP, we have in MPI the concept of group with the MPI communicator. The distribution of 

computation is the same as the OpenMP version.  The main problem for the MPI version is to balance the memory 

print between processor.  

4.1. Memory distribution 

The distribution of unknown is simple, the vector is decomposed as many blocks as there are processor. For 

example with 4 processors we have:  
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 Rank-0 processor manage unknown 1 to 4 

 Rank-1 processor manage unknown 5 to 8 

 Rank-2 processor manage unknown 9 to 12 

 Rank-3 processor manage unknown 13 to 15 

 

For buneman’s series, it is more complicated, we need the          
 associated we the unknown that the 

processor manages, for example: 
 

 
 

But that is not enough, since a processor contributes to determining other unknowns than the one that he manage,, 

for example processor rank-0 help to compute the unknown    , so he used the            . So we choose to keep 

all the           that we need for the backward substitution. For example, again with 4 processors: 

 

 

 

4.2. Worksharing 

We use the MPI communicator to manage the different group of processor, and the reduction is done via the 

collective call              . 
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5. Performance 

Vargas is an IBM Power 6 composed of 112 SMP nodes p575 IH with 32 cores Power 6 per node. 

5.1. OpenMP version 

 Here is the time taken for the OpenMP version, the scalability is good for 16 threads. The scalability is limited 

by the scalability of Buneman’s part, this section is more difficult to load balance. 

  

 

 

 

 

 

5.2. MPI version 

 

Here is the time taken with the MPI version:  

 Time for OpenMP version on VARGAS 

          13 

Compilation flags –qsmp=omp –O2 –qsmp=omp –O2 

Sequential time 15 sec 59 sec 

Nb threads Buneman Time  (s) Resolution Time (s) Total time  (s) Buneman Time (s) Resolution Time(s) Total time (s) 

1 7.090 6.889 13.979 28.89 29.22 58.11 

2 3.990 3.500 7.490 15.95 14.72 30.67 

4 2 .130 1.830 3.960 8.481 7.539 16.02 

8 1.241 1.009 2.250 4.800 4.010 8.810 

16 0.860 0.709 1.570 3.360 2.339 5.699 

32 0.799 0.600 1.399 2.849 1.600 4.449 
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5.3. Speedup comparison 

MPI version on VARGAS 

               

Compilation 

flags 

–qsmp=omp –O2 –qsmp=omp –O2 –qsmp=omp –O2 

Sequential 
time 

15 sec 63 sec Not enough memory 

Nb 

Processor 

Buneman’s 
Time (s) 

Resolution 
time (s) 

Total 
time 

(s)  

Buneman’s 
Time (s) 

Resolution 
time (s) 

Total 
time (s)  

Buneman’s 
time (s) 

Resolution 
time  (s)  

Total 
time 

(s) 

1 7.250 6.780 14.03 30.47 29.49 59.959 … … … 

2 4.010 3.390 7.400 16.67 14 .77 31.42 … … … 

4 2.019 1.710 3.710 8.229 7.429 15.66 … … … 

8 1.129 0.879 1.990 4.440 3.779 8.199 … … … 

16 0.680 0.460 1.129 2.529 1.950 4.469 … … … 

32 0.460 0.250 0.709 1.610 1.049 2.660 … … … 

64 0.349 0.159 0.509 1.149 0.600 1.740 … … … 

128 0.310 0.100 0.409 0.930 0.389 1.320 … … … 

256 0.289 0.078 0.370 0.870 0.289 1.149 459 135 594 

512 0.244 0.056 0.300 0.720 0.360 1.080 440 117 556 

1024 0.289 0.070 0.360 0.690 0.189 0.879 432 110 540 
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6.  Conclusion and outlook 

In conclusion, it’s possible to parallelize the buneman’s variant of the block cyclic reduction, but managing the 

load balance is not easy in buneman’s series computation.  

There is some evolution possible, the task feature of OpenMP should be useful for better managing the 

imbalance. Also there is a Fourier variation that exhibit more parallelism [2]. 
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