

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Multicore parallelization of block cyclic reduction algorithm

Dimitri Lecas
a
, Richard Chevalier

a
,Pascal Joly

b
*

aIDRIS, Bat 506 BP 167, 91403 ORSAY CEDEX, FRANCE

bLaboratoire Jacques-Louis Lions, 4 place Jussieu, 75252 PARIS CEDEX 5, FRANCE

Abstract

The goal of this work is to evaluate how to parallelize the block cyclic reduction using MPI and OpenMP. This algorithm is used

to solve elliptic problems much faster than the traditional iterative methods. We explain the parallelism that we exhibit and show

the performance of the MPI and the OpenMP version that we have made.

"Project ID: give here the project ID"

1. Block cyclic reduction algorithm

The goal of this work is to evaluate how to parallelize the block cyclic reduction using MPI and OpenMP. This

algorithm is used to solve elliptic problems much faster than the traditional iterative methods.

1.1. The cyclic reduction

For example the finite difference of poisson equation is:

With:

1

 Author name : "Paper title" / 000–000

The concept of block cyclic reduction is to iteratively eliminate half of the unknowns until there is an only single

block system which can be solved directly.

So we have for such as: :

If we multiply the first and third lines by and the second line by – , then sum this three new lines, if

we eliminate the odd unknowns .

We have then the same structure for this new linear system with half of the unknowns:

If we continue after iterations we have:

2

 Author name : "Paper title" / 000–000

We continue until (and), then we have only one block equation in the

system.

For example with , , we have unknowns to compute. The elimination scheme is the

follow :

1.2. Backward substitution

After solving the only block equation, we compute the « odd » values with the even values that we have

computed in the previous step. So after this resolution:

We can proceed to the next step with a backward substitution:

After computation of

 et

. We do the step . We compute for
 values

 :

 For :

 For

 For

And so on. At step k, we have:

 For :

 For

 For

3

 Author name : "Paper title" / 000–000

Then for the step , we compute the last values :

 For :

 For

 For

Again for the example, the backward substitution is shown in this figure (with the same colors) :

We need now to explain how to compute , and

. It can be proved that :

with

 For

This can be also written in a very interesting way:

With

We have also :

The trouble is that this formulation cannot be use because of precision instability [1].

1.3. Buneman’s algorithm

 We choose the Buneman’s variant who give numerically stable results [1]. This algorithm introduces two series

 and :

 For , For :

4

 Author name : "Paper title" / 000–000

 For , For :

Then we have for and :

Before the computation of unknowns, we need to compute Buneman’s series and . For example for we

have to compute the following :

1.4. The algorithm

In summary, the Buneman’s variant of block cyclic reduction takes the following form :

1. Computation of Buneman’s series

For

 and

End

For

 For

 End

End

2. Solve the single block equation

For

3. Backward substitution

For

5

 Author name : "Paper title" / 000–000

 For

 End

 For

 For

End

2. Parallelization of the algorithm

2.1. Two levels of parallelization

In the backward part, we can compute in parallel the unknown solution in the same k-level. For each k-level there

are unknowns that can be computed independently. For example with :

At level , unknowns and can be computed in parallel, idem for unknowns

 and . In buneman’s part, we can also compute and in the same k-level in parallel. For ,

 can be computed independently:

We can exhibit parallelism in « ». This computation is used a lot in the algorithm.

6

 Author name : "Paper title" / 000–000

We can also write:

The « » can be computed independently, so we can distribute the computation of .

2.2. Dependencies

There are dependencies between unknowns of level k and level . This is shown in this graph for :

To compute the unknown we need to known and .

For buneman’s part, there are also dependencies between of level k and level k-1. This is shown in this graph:

7

 Author name : "Paper title" / 000–000

To compute we need to known , for we need . To summarize, at each level k,

to compute a we need to known the 3 on level k-1 that are just below.

Not all the computed are used in the backward substitution, in fact we need to known only one for the

unknown . The list of needed in the example is:

This list can be obtained by keeping only the top element of each tower:

To summarize the association between unknown and buneman’s term is the following :

8

 Author name : "Paper title" / 000–000

2.3. Number of resolution

The number of resolution (computation of) is different between the two part

Backward substitution

At level k, there is unknown and for each unknown there is to compute. So for each level k there

is to compute.

 « k » level in bacward substitution

« sk » total number of resolution for a level k

 « s » number of resolution for an unknown

Buneman’s part

At level k, there is and for each there is to compute. So for each level k there is

 to compute.

We can see that the number of resolution for buneman is dependent on k but is less than the number of resolution

for the backward substitution.

.

2.4. Distribution of computations

This is an example how we do the distribution of using 4 processors:

9

 Author name : "Paper title" / 000–000

 For k=3, each processor compute ¼ of for unknown . There is then a reduction to assemble results.

 For k=2, there are two groups, the first group (rank 0 and 1) compute ½ of for , the second one compute ½

of for . There is then a reduction in each group.

3. OpenMP

3.1. Data sharing

The vector of unknown and the buneman’s series
 are shared.

!$OMP PARALLELE DEFAULT (NONE) &

!$OMP SHARED (u, pbu, qbu, …) &

!$OMP PRIVATE (i, j, ja, jb, tmp1, tmp2, …) &

3.2. Worksharing

Since OpenMP doesn’t support the concept of group (like communicator in MPI), the distribution cannot be done

using the worksharing constructs (OMP DO). So the distribution is done like in MPI using the rank and the number

of total processor, and computing the bound of the loop j (loop on unknown or buneman’s term) and of the loop l

(loop on the resolution)

…

rank = OMP_GET_THREAD_NUM()

…

if (nb_thread_by_node == 0) then

!Cas 1 : one thread compute several node (ja/=jb)

nb_node_by_thread =((nb_node/nb_processor+1)/2)*2

jb=(rank+1)* nb_node_by_thread

ja=rank* nb_node_by_thread +1

else

!Cas 2 : Group of threads compute a node (ja=jb)

jb = (rank/nb_thread_by_node)+1

ja = jb

endif

…

10

 Author name : "Paper title" / 000–000

…

! Section 1:

! “kth” rank in the group of threads

kth = modulo(rank,nbth)

! Section 2:

! Number of resolution by thread

kmod = nb_system/nbth

! computation of l-range

 _min = kth*kmod +1

 _max = (kth+1)*kmod

…

! Section 3:

! Resolution

do = _min, _max

…

call CHOLESKY(…)

…

enddo

…

 « » is the number of threads, nbth = nb_thread_by_node

 « » is the rank

 « » is the number of resolution for a node.

 « » is the fonction that compute one .

For the reduction part, again we cannot use the CRITICAL directive, since we want to do reduction inside a

group of threads, so we use the LOCK routines. Inside a group, threads share the lock, to avoid race condition in

updating the unknown.

…

! Allocation of vector of lock

ALLOCATE (tab_lock_group(nb_proc))

…

!$OMP PARALLEL

…

! Init of the lock

!$OMP DO

do I = 1, nb_proc

 call OMP_init_lock(tab_lock_group(i))

enddo

!$OMP END DO

! --

…

! ---------- Reduction ---

call OMP_set_lock(tab_lock_group(group_number))

u(:,jk2)=u(:,jk2) – tmp1(:)

11

 Author name : "Paper title" / 000–000

call OMP_unset_lock(tab_lock_group(group_number))

! --

…

! ----------- Destroy ------------------------------------

do i = 1, nb_proc

call OMP_destroy_lock(tab_lock_group(i))

enddo

! ---

…

!$OMP END PARALLEL

4. MPI version

Unlike OpenMP, we have in MPI the concept of group with the MPI communicator. The distribution of

computation is the same as the OpenMP version. The main problem for the MPI version is to balance the memory

print between processor.

4.1. Memory distribution

The distribution of unknown is simple, the vector is decomposed as many blocks as there are processor. For

example with 4 processors we have:

12

 Author name : "Paper title" / 000–000

 Rank-0 processor manage unknown 1 to 4

 Rank-1 processor manage unknown 5 to 8

 Rank-2 processor manage unknown 9 to 12

 Rank-3 processor manage unknown 13 to 15

For buneman’s series, it is more complicated, we need the
 associated we the unknown that the

processor manages, for example:

But that is not enough, since a processor contributes to determining other unknowns than the one that he manage,,

for example processor rank-0 help to compute the unknown , so he used the . So we choose to keep

all the that we need for the backward substitution. For example, again with 4 processors:

4.2. Worksharing

We use the MPI communicator to manage the different group of processor, and the reduction is done via the

collective call .

13

 Author name : "Paper title" / 000–000

5. Performance

Vargas is an IBM Power 6 composed of 112 SMP nodes p575 IH with 32 cores Power 6 per node.

5.1. OpenMP version

 Here is the time taken for the OpenMP version, the scalability is good for 16 threads. The scalability is limited

by the scalability of Buneman’s part, this section is more difficult to load balance.

5.2. MPI version

Here is the time taken with the MPI version:

 Time for OpenMP version on VARGAS

 13

Compilation flags –qsmp=omp –O2 –qsmp=omp –O2

Sequential time 15 sec 59 sec

Nb threads Buneman Time (s) Resolution Time (s) Total time (s) Buneman Time (s) Resolution Time(s) Total time (s)

1 7.090 6.889 13.979 28.89 29.22 58.11

2 3.990 3.500 7.490 15.95 14.72 30.67

4 2 .130 1.830 3.960 8.481 7.539 16.02

8 1.241 1.009 2.250 4.800 4.010 8.810

16 0.860 0.709 1.570 3.360 2.339 5.699

32 0.799 0.600 1.399 2.849 1.600 4.449

14

 Author name : "Paper title" / 000–000

5.3. Speedup comparison

MPI version on VARGAS

Compilation

flags

–qsmp=omp –O2 –qsmp=omp –O2 –qsmp=omp –O2

Sequential
time

15 sec 63 sec Not enough memory

Nb

Processor

Buneman’s
Time (s)

Resolution
time (s)

Total
time

(s)

Buneman’s
Time (s)

Resolution
time (s)

Total
time (s)

Buneman’s
time (s)

Resolution
time (s)

Total
time

(s)

1 7.250 6.780 14.03 30.47 29.49 59.959 … … …

2 4.010 3.390 7.400 16.67 14 .77 31.42 … … …

4 2.019 1.710 3.710 8.229 7.429 15.66 … … …

8 1.129 0.879 1.990 4.440 3.779 8.199 … … …

16 0.680 0.460 1.129 2.529 1.950 4.469 … … …

32 0.460 0.250 0.709 1.610 1.049 2.660 … … …

64 0.349 0.159 0.509 1.149 0.600 1.740 … … …

128 0.310 0.100 0.409 0.930 0.389 1.320 … … …

256 0.289 0.078 0.370 0.870 0.289 1.149 459 135 594

512 0.244 0.056 0.300 0.720 0.360 1.080 440 117 556

1024 0.289 0.070 0.360 0.690 0.189 0.879 432 110 540

15

 Author name : "Paper title" / 000–000

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35
Comparison between OpenMP / MPI

 on VARGAS (n = 2^13)

S
p

e
e

d
u

p

Number of processus/tasks

 MPI

 OpenMP

 ideal speedup

6. Conclusion and outlook

In conclusion, it’s possible to parallelize the buneman’s variant of the block cyclic reduction, but managing the

load balance is not easy in buneman’s series computation.

There is some evolution possible, the task feature of OpenMP should be useful for better managing the

imbalance. Also there is a Fourier variation that exhibit more parallelism [2].

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-211528 and FP7-261557. The work is achieved using

the PRACE Research Infrastructure resources [give the machine names, and the corresponding sites and countries].

References

1. R.W. Hockney : A fast direct solution of Poisson’s equation using Fourier Analysis. Journal of Asso. Comput. Mach,v 8,1965.

2. B.L. Buzbee , G.H Golub & C.W. Nielson : On direct methods for solving Poisson’s equation. SIAM J. Numerical Analysis,v 7,1970.

16

