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Abstract

We describe a hybrid FETI (Finite Element Tearing and Interconnecting) method based on our variant of the FETI
type domain decomposition method called Total FETI. In our approach a small number of neighboring subdomains is
aggregated into the clusters, which results into a smaller coarse problem. To solve the original problem the Total FETI
method is applied twice: to the clusters (macro-subdomains) and then to the subdomains in each cluster. This approach
simplifies implementation of hybrid FETI methods and enables to extend parallelization of the original problem up to
tens of thousands of cores due to the coarse space reduction and thus lower memory requirements. The performance is
demonstrated on a linear elasticity benchmark.
Keywords Domain decomposition, Total FETI, Hybrid FETI, scalable algorithm.

1. Introduction

The goal of this paper is to describe a hybrid FETI method based on our variant of the FETI type domain
decomposition method called Total FETI [5]. The original FETI method, also called FETI-1 method, was
originally introduced for the numerical solution of the large linear systems arising in linearized engineering
problems by Farhat and Roux [1]. In both FETI methods a body is decomposed into several non-overlapping
subdomains and the continuity between the subdomains is enforced by Lagrange multipliers. Using a theory of
duality, a smaller and relatively well conditioned dual problem can be derived and efficiently solved by suitable
variant of the conjugate gradient algorithm.

The original FETI algorithm, where only the favorable distribution of the spectrum of the dual Schur
complement matrix [2] was considered, was efficient only for a small number of subdomains. So it was later
extended by introducing a natural coarse problem [3, 4], whose solution was implemented by auxiliary projectors
so that the resulting algorithm became in a sense optimal [3, 4].

In the Total FETI method [5] also the Dirichlet boundary conditions are enforced by Lagrange multipliers.
Hence all subdomain stiffness matrices are singular with à-priori known kernels which is a great advantage in
the numerical solution. With a known kernel basis we can regularize effectively the stiffness matrix [6, 13] and
use any standard Cholesky type decomposition method for nonsingular matrices.

Even if, there are several efficient coarse problem parallelization strategies [7], still there are size limitations
of the coarse problem. So several hybrid (multilevel) methods were proposed [9, 8]. The key idea is to aggregate
a small number of neighboring subdomains into the clusters, which naturally results into a smaller coarse
problem. In our Hybrid Total FETI, the aggregation of subdomains into clusters is enforced again by Lagrange
multipliers. Thus the Total FETI method is used on both cluster and subdomain levels. This approach simplifies
implementation of hybrid FETI methods and enables to extend parallelization of the original problem up to tens
of thousands of cores due to lower memory requirements. The positive effect is a reduction of the coarse space,
the negative one is worse convergence rate compared with the original TFETI. To improve it the transformation
of the basis originally introduced by Klawonn and Widlund [11], Klawonn and Rheinbach [10], and Li and
Widlund [12] is applied to the derived hybrid algorithm.

The paper is organized as follows. After introducing a model problem in Section 2, we describe Hybrid
Total FETI method (H-TFETI) in Section 3. The transformation of basis is briefly described and applied to
the derived hybrid algorithm in Section 4. The results of numerical experiments are illustrated in Section 5.

2. The model problem

Let us consider a model problem from the linear elasticity. The isotropic elastic body occupies a domain
Ω ⊂ R

d, d = 2, 3, with the sufficiently smooth boundary Γ. We suppose that its nonempty part ΓU is fixed,
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Fig. 1. Model problem

so the homogeneous Dirichlet boundary condition is used here and the rest of the boundary ΓF = Γ\ΓU is
under the action of the external forces F, so the Neumann boundary condition is considered (see Figure 1).
Generalization to other boundary conditions (symmetry, periodic) is without any complications.

Let cijkℓ : Ω → R and g : Ω → R
d denote the entries of the symmetric elliptic elasticity tensor and a vector

of body forces, respectively. For any sufficiently smooth displacement u : Ω → R
d, the total potential energy is

defined by

J(u) =
1

2
a(u,u)−

∫

Ω

g⊤u dΩ−

∫

ΓF

F⊤u dΓ, (1)

where

a(u,v) =

∫

Ω

cijkℓeij(u)ekℓ(v)dΩ and ekℓ(u) =
1

2

(

∂uk

∂xℓ

+
∂uℓ

∂xk

)

. (2)

Let us introduce the Sobolev space

W = {v ∈ H1(Ω)d : v = u on ΓU}.

The displacement u ∈ W of the body in equilibrium satisfies

J(u) ≤J(v) for any v ∈ W. (3)

Under our assumptions J is coercive that guarantees the existence and the uniqueness of the solution to (3).
We will discretize our problem by low order, conforming finite elements. Let us consider suitable 2D rect-

angular discretization of Ω with a discretization parameter h and denote by Wh ⊂ W the corresponding finite
element space. The associate discrete problem is then to find uh ∈ Wh, such that

J(uh) ≤ J(vh) for any vh ∈ Wh. (4)

Hereafter, we will drop the subscript h.

3. Hybrid Total FETI

To apply the H-TFETI approach to solve problem (4) we first of all tear the body from the part of the boundary
with the Dirichlet boundary condition as in the Total FETI approach. Then we decompose the body into clusters
and the clusters into subdomains, see Fig. 2. Finally, we introduce new “gluing” conditions on the subdomain
interfaces to ensure the continuity of the solution and on the boundaries with imposed Dirichlet data.

Let domain Ω be decomposed into Nc relatively large non-overlapping clusters of diameter Hc and let each
cluster be decomposed into Ns all floating non-overlapping subdomains of diameter Hs. The total number of
subdomains is then N = Nc×Ns. To ensure the continuity of the displacements and of their normal derivatives
across the interface we have to introduce so called gluing conditions.

The resulting quadratic programming (QP) problem reads as

min
u

1

2
u⊤Ku− f⊤u subject to Bu = c, (5)

where

K =









K1

K2

. . .

KN









(6)
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Fig. 2. Hybrid TFETI domain decomposition.

denotes a symmetric positive semidefinite stiffness matrix of order n, B denotes an m× n full rank constraint
matrix, f ∈ R

n is a load vector, and c ∈ R
m is a constraint vector.

The fact that the blocks Ki corresponding to Ωi are positive semidefinite sparse matrices with kernel bases
à-priori known enables us to regularize each block and then decompose it efficiently using the standard (sparse)
Cholesky factorization for non-singular matrices [13, 14]. The load vector f describes the nodal forces arising
from the volume forces and/or some other imposed traction.

The matrix B = [B⊤
g , B⊤

D]⊤ ∈ R
m×n also called jump operator and the vector c = [o⊤, c⊤D]⊤ enforce the

continuity at the interface variables and the Dirichlet data. Typically m, the number of Lagrange multipliers, is
much smaller than n, the number of degrees of freedom. The matrix B is constructed using values {−1, 0, 1} in
such a way, that the values of the solution u associated with more than one subdomain coincide when Bgu = o
and the values of the solution u on the boundary with the Dirichlet condition satisfy BDu = cD. Let us
note that B can be directly assembled to have orthonormal rows only by special treating of the rows of B
corresponding to the nodes shared by more than two subdomains.

The problem (5) has the same structure as in standard Total FETI method and could be solved by this
standard approach. However, to describe the H-TFETI method, we will consider the problem (5) in the form

min
1

2
u⊤Ku− u⊤f subject to

{

B0u = c0
B1u = c1

, (7)

where the equality constraints are split up into two parts. The first part B0u = c0 := o consists of m0 equalities
enforcing the continuity in the subdomain corner nodes of each cluster, while B1u = c1 consists of m1 equalities
enforcing the continuity across the rest of the subdomain interfaces and the Dirichlet condition.

The KKT optimality conditions lead to the saddle point problem





K B⊤
0 B⊤

1

B0 O O
B1 O O









u
λ0

λ1



 =





f
c0
c1



 (8)

or
[

K̃ B̃⊤

B̃ O

] [

ũ

λ̃

]

=

[

f̃
c̃

]

, (9)

where K̃, B̃, ũ, λ̃, f̃ , and c̃ respect the block structure indicated in (8).
The first equation of the system (9) has a solution iff

f̃ − B̃⊤λ̃ ∈ ImK̃, (10)

which can be expressed more conveniently by means of a matrix R̃ whose columns span the null space of K̃ as

R̃⊤(̃f − B̃⊤λ̃) = o, (11)

where

R̃ =









R1
c

. . .

RNc
c

O O O









and Ri
c =







R1,i

...
RNs,i






, (12)

with Rp,i, p = 1, . . . , Ns meaning the pth subdomain of the ith cluster. As the kernel bases of the subdomains
are known à-priori, the blocks Rp,i may be assembled directly from the segments Rk defined for the kth mesh
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node as follows

Rk =

[

1 0 −yk
0 1 xk

]

in 2D and Rk =

[

1 0 0 0 −zk yk
0 1 0 zk 0 −xk

0 0 1 −yk xk 0

]

in 3D. (13)

In order to eliminate the primal variables ũ from the singular system given by the first equation in (9) we use

a generalized inverse matrix K̃+ to K̃ satisfying K̃K̃+K̃ = K̃. It may be easily verified that if ũ is a solution
to the first equation of (9), then there exists a vector α̃ such that

ũ = K̃+(̃f − B̃⊤λ̃) + R̃α̃. (14)

Substituting (14) into the second equation of (9) and using (11), we get

[

B̃K̃+B̃⊤ −B̃R̃

−R̃⊤B̃⊤ O

] [

λ̃
α̃

]

=

[

B̃K̃+f̃ − c̃

−R̃⊤f̃

]

. (15)

Let us introduce the new notation

F̃ = B̃K̃+B̃⊤, g̃ = B̃K̃+f̃ − c̃,

G̃ = −R̃⊤B̃⊤, ẽ = −R̃⊤f̃ ,

so that the system (15) reads as
[

F̃ G̃⊤

G̃ O

] [

λ̃
α̃

]

=

[

g̃
ẽ

]

. (16)

As in standard TFETI we introduce orthogonal projector P̃ = I − G̃⊤(G̃G̃⊤)−1G̃ onto the kernel of G̃.

Applying P̃ to (16) we get

P̃F̃λ̃ = P̃g̃ subject to G̃λ̃ = ẽ (17)

and after homogenization of the constraints we get

P̃F̃λ̃Ker = P̃(g̃ − F̃λ̃Im) for λ̃Ker ∈ KerG̃, (18)

where λ̃Im = G̃⊤(G̃G̃⊤)−1ẽ and λ̃ = λ̃Ker + λ̃Im.

Lemma 1 The matrix P̃F̃ is symmetric positive definite on KerG̃.

Proof Let µ ∈ KerG̃. Then o = G̃µ = −R̃⊤B̃⊤µ = −R̃⊤v, where v = B̃⊤µ. Hence v ∈ ImB̃⊤ ∩ ImK̃. It is
enough to show that σmin(P̃F̃|

KerG̃
) > 0, where σmin(X) denotes the smallest eigenvalue of X. We get

σmin(P̃F̃|
KerG̃

) = min
µ∈KerG̃

µ6=o

µ⊤P̃F̃µ

µ⊤µ
= min

µ∈KerG̃

µ6=o

µ⊤B̃K̃+B̃⊤µ

µ⊤B̃B̃⊤µ
·
µ⊤B̃B̃⊤µ

µ⊤µ
(19)

= min
v∈ImB̃⊤∩ImK̃

v=B̃⊤µ, µ∈KerG̃, µ6=o

v⊤K̃+v

v⊤v
·
µ⊤B̃B̃⊤µ

µ⊤µ
> 0 (20)

using µ⊤P̃F̃µ = µ⊤F̃µ for µ ∈ KerG̃, B̃B̃⊤ = I, and the fact that v⊤K̃+v is independent of the choice of K̃+

iff v ∈ ImK̃. The symmetry is obvious. �

Because of Lemma 1 the problem (18) may be solved efficiently by the PCGP (Preconditioned Conjugate
Gradient with Projectors) algorithm.

In every PCGP iteration we need to compute x̃ = K̃+b̃, where b̃ is a given vector. To do this we solve the
system

K̃x̃ = b̃ ⇐⇒

[

K B⊤
0

B0 O

] [

x0

µ0

]

=

[

b0

d0

]

(21)

by a TFETI based solver again. Using

x0 = K+(b0 −B⊤

0 µ0) +R0β0, (22)

and substituting it into the second equation in (21) we get

[

F0 G⊤
0

G0 O

] [

µ0

β0

]

=

[

g0

e0

]

, (23)
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Fig. 3. Hybrid TFETI

where
F0 = B0K

+B⊤
0 , g0 = B0K

+b0 − d0,

G0 = −R⊤
0 B

⊤
0 , e0 = −R⊤

0 b0,

and

R0 =







R1

. . .

RN






, N = Nc ×Ns. (24)

We note that matrices Rj , j = 1, ..., N in (24) are the same as Rp,i, p = 1, ..., Ns, i = 1, ..., Nc in (12) with
j = (i−1) ·Ns+p. To obtain the full-rank matrix Ḡ0 = −R̄⊤

0 B
⊤
0 we introduce the matrix R̄0, which is obtained

from R0 by deleting the block columns corresponding to the last subdomains of all clusters.

Lemma 2 Let K+ := K−1
ρ be the symmetric positive definite generalized pseudoinverse obtained by the regu-

larization of K introduced in [14]. Then the matrix F0 is symmetric positive definite on R
m0 .

Proof The proof follows immediatelly from the full-rank of B0 and the positive definiteness of the matrix K+.

Let ē0 = −R̄⊤
0 b0. Obviously, using the above lemma and replacing G0 and e0 by G0 and e0 in (23) we get

well defined saddle-point system which can be solved by PCGP again or because of its small size by a direct
solver.

4. Transformation of the basis

As we mentioned reducing the coarse problem leads to a worse convergence rate of our method. To improve it
we can use the transformation of the basis originally introduced by Klawonn and Widlund [11], Klawonn and
Rheinbach [10], and Li and Widlund [12]. The key idea is to modify all primal finite element basis functions
on each subdomain interface within the clusters to have zero averages over the respective face except one nodal
basis function which is defined as average over the respective face. An example of such a modified basis restricted
to the interface is depicted in Figure 4 for the 2D scalar case. We will consider the transformation of the basis
represented by an orthonormal matrix T, which performs the desired change of the basis from the new basis
to the original one over all subdomain interfaces within the clusters and does not change the remaining basis
functions. Originally, this approach was implemented into the FETI-DP system [10] by modifying the stiffness
matrix K. In our alternative approach, the continuity in face average nodes is enforced again by Lagrange
multipliers, i.e. we have new equality conditions in matrix B0.

Let us consider the saddle-point system of algebraic equations corresponding to the original QP problem
(5):

[

K B⊤

B O

] [

u
λ

]

=

[

f
c

]

. (25)

By using the transformation of the basis in the form u = Ty and by multiplication of the first equation of (25)
from the left by T⊤, we obtain

[

T⊤KT T⊤B⊤

BT O

] [

y
λ

]

=

[

T⊤f
c

]

. (26)
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Fig. 4. Functions representing the new basis, one average basis function and basis functions with zero averages over the
edge, 2D case.

Introducing the substitution BT = SB, where S = (BTB⊤)(BB⊤)−1, we can write

[

T⊤KT B⊤S⊤

SB O

] [

y
λ

]

=

[

T⊤f
c

]

(27)

or, equivalently,
[

T⊤KT B⊤

B O

] [

y

λ̂

]

=

[

T⊤f
ĉ

]

, (28)

where λ̂ = S⊤λ and ĉ = S−1c. The regularity of S is obvious. Now, it is enough to multiply the first equation
by T and use y = T⊤u to obtain

[

K TB⊤

BT⊤ O

] [

u

λ̂

]

=

[

f
ĉ

]

. (29)

As it was presented before, the matrix B can be considered in the form B = [B⊤
0 B⊤

1 ]
⊤. The matrix B0

enforces the continuity in the averages (and corners), while B1 enforces the continuity in the remaining interface
variables. Using this, we can write





K TB⊤
0 TB⊤

1

B0T
⊤ O O

B1T
⊤ O O









u

λ̂0

λ̂1



 =

[

f
ĉ0
ĉ1

]

. (30)

This system has the same structure as the system (8) and can be solved in the same way. Note that, the
transformation of the basis is considered only on subdomain interfaces within clusters.

5. Numerical experiments

The proposed massively parallel HTFETI algorithm was implemented in C++ using the PETSc library as a
linear algebra backbone. The code was compiled by the Cray compiler with a MPI library optimized for the
architecture of the HECToR supercomputer at EPCC in Edinburgh. For the scalability tests we chose a 2D
linear elesticity benchmark (see Fig. 5). Particularly, we considered a steel square fixed on the left side and

g

900

9
0
0

Fig. 5. Model benchmark.

deformed only by its own weight. The square was decomposed into the increasing number of subdomains with
a constant number of nodes (121 × 121). These subdomains were organized into clusters per 16 (4 × 4). This
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hierarchy fitted the structure of the hardware - each computing node was formed by two 16-core AMD Opteron
2.3GHz Interlagos processors. All matrices and vectors related only to the clusters are stored directly on the
node occupied by that cluster. Thanks to that, all the operations inside the clusters were done in shared memory
minimizing a communication overhead and the memory requirements are well distributed over the machine.

Subdomains DOFs∗ Iter. Init. [s] Sol. [s] Total [s]
400 11.712.800 115 50 46 96
1024 29.984.768 122 53 47 100
1936 56.689.952 122 53 50 103
4624 135.399.968 127 56 55 110
7744 226.759.808 127 65 61 126

Table 1. Computed results. ∗ DOFs = degrees of freedom.

The results (see Table 6 and Fig. 6) match our original assumptions about the behaviour of the algorithm.
We can notice a substantially higher number of iterations in comparison with the results of the TFETI algorithm
[7] applied to the similar benchmark. This is due to the reduced coarse space working as a preconditioner. The
linear loss of efficiency with rising number of used cores was partly caused by the increasing number of iterations
and partly by increasing hardware overhead (execution of more instructions). On the other hand a problem
with such a number of subdomains would not be possible to solve on the same machine with the original TFETI
algorithm due to memory requirements on the master node.
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Fig. 6. Scalability behavior.

6. Conclusions

The current state of the implementation poses multiple challenges. We would like to increase its effectivity
by using fast direct solvers in shared memory of clusters (such as Pardiso or MUMPS). Besides to that we are
working on thorough numerical analysis of the algorithm and on the development of more efficient preconditioner.
We are planning to implement the proposed method into our FLLOP (FETI Light Layer on PETSc) library
[15].
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