
Grigori Fursin

MLCommons taskforce on automation and reproducibility

cTuning.org github.com/mlcommons/ck cKnowledge.org

Developing a common language to facilitate reproducible
research and technology transfer: challenges and solutions

The 1st ACM Conference on Reproducibility and Replicability

Collective Mind

Why do I care about reproducibility, replicability and technology transfer?

Prequel to this keynote (learning and prototyping phase)

“Reproducing 150 Research Papers and Testing Them in the Real World: Challenges and Solutions”
ACM Tech Talk 2021: learning.acm.org/techtalks/reproducibility

“Collective Knowledge: organizing research projects as a database of reusable components
and portable workflows with common APIs”

Philosophical Transactions of the Royal Society 2021: arxiv.org/abs/2011.01149

This keynote presents a new automation and reproducibility language (Collective Mind)
being developed by the MLCommons task force on automation and reproducibility since 2022:

cKnowledge.org/mlcommons-taskforce

https://learning.acm.org/techtalks/reproducibility
https://arxiv.org/abs/2011.01149
https://cknowledge.org/mlcommons-taskforce

Why do I care about reproducibility, replicability and technology transfer?

My 1st summer R&D project: implement Hopfield Neural Network as a semiconductor device and test in the real world.
Started in 1996.

My original background was in physics and electronics

Why do I care about reproducibility, replicability and technology transfer?

My 1st summer R&D project: implement Hopfield Neural Network as a semiconductor device and test in the real world.
Started in 1996 and finished in 1999 while exposing lots of issues ...

My original background was in physics and electronics before switching to computer science

Why do I care about reproducibility, replicability and technology transfer?

My 2nd R&D project: implement self-optimizing compiler using auto-tuning and machine learning and test it in the real world.
Started in 1999.

Why do I care about reproducibility, replicability and technology transfer?

My 2nd R&D project: implement self-optimizing compiler using auto-tuning and machine learning and test it in the real world.
Started in 1999.

Created cTuning.org platform to crowd-benchmark
programs and crowd-train ML models inside a
compiler to predict the most efficient optimizations.

Why do I care about reproducibility, replicability and technology transfer?

My 2nd R&D project: implement self-optimizing compiler using auto-tuning and machine learning and test it in the real world.
Started in 1999 and finished in 2009 while exposing lots of issues …

Created cTuning.org platform to crowd-benchmark
programs and crowd-train ML models inside a
compiler to predict the most efficient optimizations.

Major problems:

• Not enough information to reproduce related
research papers and build upon them.

• Difficult/impossible to reproduce performance
numbers from the community across continuously
changing software and hardware.

• Unlike physics, no common experimental
methodology and tools to measure and compare
performance (and other metrics) across different
research papers and projects.

• Not enough benchmarks and data sets to train
my models – papers rarely share their artifacts.

2009-2014: persuading community to share and evaluate artifacts for published papers

reproducibility.cs.arizona.edu – weak reproducibility

A comprehensive study of ~600 papers to examine if related code was shared and can be built.

evaluate.inf.usi.ch/artifacts , artifact-eval.org – strong reproducibility

The original and successful introduction of the artifact evaluation process at ACM conferences.

Artifacts are evaluated after papers are accepted and before the camera-ready deadline.

Paper receive the reproducibility badge only if the related artifact is consistent, complete,
well documented and easy to reuse.

cTuning.org – experimented with different incentives to participate in artifact evaluation

Cooperative process between authors and evaluators to learn how to reproduce/replicate results.

Try new publication models with open reviewing: arxiv.org/pdf/1406.4020.pdf , adapt-workshop.org .

Learn how to unify and automate this process particularly for empirical results (performance, power) similar to physics.

Learn how to make it easier to transfer research to production with the latest/different software, hardware and data.

Bruce R. Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller:
Artifact Evaluation for Publications (Dagstuhl Perspectives Workshop 15452). Dagstuhl Reports 5(11): 29-35 (2015)

https://arxiv.org/pdf/1406.4020.pdf
https://adapt-workshop.org/

2014 - established cTuning foundation: a non-profit R&D organization headquartered in Paris

• Goal: connect academia and industry to develop a common methodology and tools
to reproduce research projects and bring them to the real world

• Helped to prepare and unify ACM artifact reviewing and badging methodology:
https://www.acm.org/publications/policies/artifact-review-and-badging-current

• Helped to organize artifact evaluation at 15+ ACM/IEEE conferences including CGO, PPoPP, ASPLOS, PACT, MLSys, MICRO …

https://www.acm.org/publications/policies/artifact-review-and-badging-current

2014 - established cTuning foundation: a non-profit R&D organization headquartered in Paris

• Goal: connect academia and industry to develop a common methodology and tools
to reproduce research projects and bring them to the real world

• Helped to prepare and unify ACM artifact reviewing and badging methodology:
https://www.acm.org/publications/policies/artifact-review-and-badging-current

• Helped to organize artifact evaluation at 15+ ACM/IEEE conferences including CGO, PPoPP, ASPLOS, PACT, MLSys, MICRO …

• Introduced Artifact Appendix and Checklist (was picked up by other conferences including SuperComputing since then)

• https://cTuning.org/ae/appendix.html

• https://cTuning.org/ae/checklist.html Artifact Appendix (up to 2 pages)

1. Abstract

2. Artifact check-list

3. How to obtain?

4. Prepare software

5. Prepare hardware

6. Prepare data sets

7. Prepare models

8. Installation

9. Experiment workflow

10. Evaluation and expected result

11. Notes

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://ctuning.org/ae/appendix.html
https://ctuning.org/ae/checklist.html

Learnings from evaluating artifacts and reproducing results from 200+ research papers

Feedback from the authors

• Still takes a few weeks to prepare artifacts, containers, Jupyter notebooks and write Artifact Appendix

• Still considered as a painful and one-shot experience (even waste of time if researcher doesn’t plan to continue)

• Still need to write their own tools for measurements, experiments and visualization

• Find criteria for artifact reusability is very vague

Feedback from the evaluators
• Can take weeks of painful and repetitive interactions between teams to

• decrypt Artifact Appendices, README files, scripts and containers to understand how to use them

• measure performance outside containers or on a different system with different software and hardware

• visualize, compare and validate results (often manually)

• ensure apple-to-apple comparison of results from other papers with different set of artifacts and tools
(mini-artifact evaluation for other papers)

• Find criteria for artifact reusability is very vague

cKnowledge.org: learnings from validating research projects in the real world

Can take months to prepare for production
and find trade-off between other characteristics and operational costs

(accuracy vs latency vs throughput vs power consumption vs training/usage costs)

Different set of (DevOps/MLOps) tools
Rapidly evolving software and hardware

Different data

Industry doesn’t have time to decrypt numerous papers even
with Artifact Appendix, ad-hoc containers and Jupyter notebooks

If it doesn’t work within 30 min, will unlikely want to fix it

Can traditional workflow automation frameworks help?

Workflows Community Summits (January and April, 2021)

arxiv.org/abs/2110.02168

A Community Roadmap for Scientific Workflows Research and Development

Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas, Rosa M Badia, Bartosz Balis, Tainã Coleman,
Frederik Coppens, Frank Di Natale, Bjoern Enders, Thomas Fahringer, Rosa Filgueira, Grigori Fursin, Daniel Garijo, Carole Goble,

Dorran Howell, Shantenu Jha, Daniel S. Katz, Daniel Laney, Ulf Leser, Maciej Malawski, Kshitij Mehta, Loïc Pottier,
Jonathan Ozik, J. Luc Peterson, Lavanya Ramakrishnan, Stian Soiland-Reyes, Douglas Thain, Matthew Wolf

Challenges:

• Already more than 100 workflow frameworks and tools out there

• Researchers do not have time to learn complex automation platforms and workflow framework for experiment automation

• If researchers move to industry, they likely have totally different tools and workflow automation frameworks

• Artifact evaluators do not want to learn different workflow frameworks for different papers

https://arxiv.org/abs/2110.02168

Maybe we are trying to solve the wrong problem?

Papers, READMEs
Artifact Appendices

to obtain results

Describes a set
of actions

Standardization

Jupyter notebooks

Containers

Workflows

Platforms

GUI

Maybe we are not looking in the right place?

Papers, READMEs
Artifact Appendices

to obtain results

Describes a set
of actions

Standardization

Jupyter notebooks

Containers

Workflows

Platforms

GUI

Ad-hoc OS commands and OS/python scripts

In the end comes down to some OS commands and OS/python scripts to perform the same actions …

Standardization

Jupyter notebooks

Containers

Workflows

Platforms

GUI

Papers, READMEs
Artifact Appendices

to obtain results

Describes a set
of actions

Input file Input environment variables

Output file New environment variables

download-resnet50.sh
get-resnet-model-hugging-face.py

prepare-resnet-50-fp32.bat

Describes a set
of actions

Get model
ResNet50 fp32 for

image classification
…

Analyzing ~200 research papers with Artifact Appendix …

Add simple YAML or JSON file with human-readable tags “get,ml-model,resnet50,image-classification”

OS commands and OS/python scripts

What is we have reusable, portable and tech. agnostic “blocks” to automate any research?

Standardization

Jupyter notebooks

Containers

Workflows

Platforms

GUI

Papers, READMEs
Artifact Appendices

to obtain results

Describes a set
of actions

Get model
ResNet50 fp32 for

image classification
…

Input file Input environment variables

Output file New environment variables

run.sh

customize.py

run.bat

Add simple YAML or JSON file with human-readable tags “get,ml-model,resnet50,image-classification”

OS commands and OS/python scripts

That can automatically adapt to any platform by setting required env vars and calling some native script?

Standardization

Jupyter notebooks

Containers

Workflows

Platforms

GUI

Papers, READMEs
Artifact Appendices

to obtain results

Describes a set
of actions

Get model
ResNet50 fp32 for

image classification
…

Input file Input environment variables

Output file New environment variables

Add simple interface to run scripts: cm run script --tags=get,ml-model,resnet50 --env.PRECISION=fp32

run.sh

customize.py

run.bat

2022: started prototyping Collective Mind interface (CM) to unify access to native scripts

Can create CM script by simply adding _cm.json or _cm.yaml with just a few keys in a project and marking it for CM search

Example: https://github.com/mlcommons/ck/tree/master/cm-mlops

script/get-ml-model-resnet50/_cm.json
{

"tags": ["get", "raw“, "ml-model", "resnet50", "ml-model-resnet50", "image-classification"],
"uid": "56203e4e998b4bc0",
"alias": "get-ml-model-resnet50“
"variations": {"fp32": { "env": {“CM_ML_MODEL_PRECISION": "fp32“ …
…

.cmr.yaml
alias: mlcommons@ck
uid: a4705959af8e447a

https://github.com/mlcommons/ck/tree/master/cm-mlops

2022: started prototyping Collective Mind interface (CM) to unify access to native scripts

Can create CM script by simply adding _cm.json or _cm.yaml with just a few keys in a project and marking it for CM search

Need simple Python library (cmind) with min requirements (Python 3+, git, wget) and unified/human-readable CLI (cm)

github.com/mlcommons/ck/blob/master/docs

python3 –m pip install cmind
cm pull repo mlcommons@ck # Clone repository to $HOME/CM/repos
cm run script --tags=get,ml-model,resnet50,_fp32,_onnx --json --save_env

or cm run script “get ml-model resnet50 _fp32” --json -v
or cm run script 56203e4e998b4bc0 --json
or cm run script get-ml-model-resnet50 --json

Example: https://github.com/mlcommons/ck/tree/master/cm-mlops

script/get-ml-model-resnet50/_cm.json
{

"tags": ["get", "raw“, "ml-model", "resnet50", "ml-model-resnet50", "image-classification"],
"uid": "56203e4e998b4bc0",
"alias": "get-ml-model-resnet50“
"variations": {"fp32": { "env": {“CM_ML_MODEL_PRECISION": "fp32“ …
…

.cmr.yaml
alias: mlcommons@ck
uid: a4705959af8e447a

https://github.com/mlcommons/ck/blob/master/docs/installation.md
https://github.com/mlcommons/ck/tree/master/cm-mlops

Teamed up with Arjun Suresh to add common scripts from ML and Systems papers

https://github.com/mlcommons/ck/blob/master/docs/list_of_scripts.md

https://github.com/mlcommons/ck/tree/master/cm-mlops/script

First unify scripts to prepare experimental setup

Attempt to detect artifact/package and install if missing
(to automatically adapt experiments to a given platform)

Fix portability issues and non-determinism across diverse OS
(Ubuntu, MacOS, Red Hat, Windows …) and hardware
(x64, Arm64, Nvidia GPUs …)

cm run script “detect os” --json

cm run script “detect cpu” --json

cm run script “download file”
--url=https://zenodo.org/record/4735647/files/resnet50_v1.onnx

cm run script “get python3”

cm run script “install python-venv” --name=my-cool-project

cm run script "get generic-python-lib _onnxruntime"
--version_min=1.10.0

cm run script “get cuda”

https://github.com/mlcommons/ck/blob/master/docs/list_of_scripts.md
https://github.com/mlcommons/ck/tree/master/cm-mlops/script

Added simple database functions to find and manage reusable scripts in R&D projects

python3 –m pip install cmind
cm pull repo mlcommons@ck

List/find scripts by UID, alias and tags:
cm find script
cm ls script
cm find script 5b4e0237da074764
cm find script *-ml-model-*
cm find script --tags=resnet50

Load meta description of a given script
cm load script get-ml-model-resnet50 --json

Add and run dummy script
cm add script my-new-cool-script --tags=my,new,cool-script
cm run script --tags=my,new,cool-script --env.KEY=VALUE --json

Delete script
cm rm script --tags=my,new,cool-script
cm delete script --tags=my,new,cool-script

…

Preprocess files and env variables via customize.py and chain multiple CM scripts together

CM script workflow

Preprocess in customize.py

Load CM script meta data

describing workflow

Prepare tmp-run.sh /bat

Run native script

Collect new ENV and files

postprocess in customize.py

CM script output (dict):

{“new_env”, …}

CM Command Line Inteface _cm.json or _cm.yaml

{

“deps”: [

{

"tags": “detect,os"

},

{

“tags”:“download,file”,

“env”:{“KEY”:”VALUE”}

}

…

Run deps (other CM scripts)

to update ENV, STATE and files

Added functions to cache script output

python3 –m pip install cmind
cm pull repo mlcommons@ck

cm run script “get ml-model resnet50 _fp32 _onnx “ --json

Use the same database functions to manage CM “cache”
cm list cache
cm find cache --tags=ml-model,resnet50,_fp32
cm rm cache --tags=ml-model

Clean all cache entries (careful):
cm rm cache -f
cm run script “get ml-model resnet50 _fp32 _onnx “ --json
cm run script “get ml-model resnet50 _fp32 _onnx “ --json

script/get-ml-model-resnet50/_cm.json
{

“cache”:True
…

cache/60d4845558c643aa/_cm.json
{

“tags”:[“ml-model”,”resnet50”,”_fp32” …
…

cache/60d4845558c643aa/resnet50_v1.onnx

cache/60d4845558c643aa/cm-cached-state.json
{

"new_env": {
"CM_ML_MODEL_FILE_WITH_PATH": “…\\resnet50_v1.onnx”

…

Can convert all R&D projects into a database of reusable artifacts and automations with a common API

Unified and human-readable CM Command Line Interface
to access R&D projects:

cm {action} {automation} (artifact name|uid|--tags) @input.json

{action} – is taken from module.py unless a database function
to manage related artifacts

Unified and human-readable CM Python interface
to access R&D projects:

import cmind

r = cmind.access({‘action’:’run’,
‘automation’:’script’,
‘artifact’:’get-ml-model-resnet50’,
‘out’:’con’})

if r[‘return’]>0: cmind.error(r)

automation/{artifact}/_cm.json and/or _cm.yaml
{

“alias”:”artifact”
“uid”:”aea483bd635b49f5”
…

module.py
def action(input):

return {‘return’:0, …}
or

return {‘return’:1, ‘error’:’some error’}

{artifact}/{artifact name}/_cm.json and/or _cm.yaml
{

“automation_uid”:”artifact”,
“automation_alias”:” aea483bd635b49f5”,

“alias”:”artifact name”,
“uid”:”23f332d0a3ef428f”,

“tags”:[…

https://github.com/mlcommons/ck/tree/master/cm-mlops/automation

https://github.com/mlcommons/ck/tree/master/cm-mlops/automation

Implemented modular and portable image classification pipeline that can run on any platform

Fully automatic, no need to fix paths, adapts to your platform, can run on CPU or GPU, can trace information flow

https://github.com/mlcommons/ck/blob/master/docs/tutorials/modular-image-classification.md

_cm.json or _cm.yaml

alias: app-image-classification-onnx-py
uid: 3d5e908e472b417e

automation_alias: script
automation_uid: 5b4e0237da074764

tags:
- app
- image-classification
- onnx
- python

deps:
- tags: detect,os
- tags: get,sys-utils-cm
- names:

- python
- python3
tags: get,python3

- tags: get,cuda
names:
- cuda
enable_if_env:

USE_CUDA:
- yes

…

- tags: get,dataset,imagenet,image-classification,original
- tags: get,dataset-aux,imagenet-aux,image-classification
- tags: get,ml-model,resnet50,_onnx,image-classification

- tags: get,generic-python-lib,_onnxruntime
skip_if_env:

USE_CUDA:
- yes

- tags: get,generic-python-lib,_onnxruntime_gpu
enable_if_env:

USE_CUDA:
- yes

variations:
cuda:

env:
USE_CUDA: yes

Can generate Artifact Appendix or README

python3 –m pip install cmind
cm pull repo mlcommons@ck

cm run script "python app image-classification onnx“

cm run script "detect os" --out=json
cm run script "get python" --version_min=3.9.1
cm run script "install python-venv" --name=my-virtual-env
cm run script "get ml-model resnet50 _onnx _fp32"
cm run script "get original imagenet dataset _2012-500"
cm run script "get generic-python-lib _onnxruntime"

--version=1.12.0

https://github.com/mlcommons/ck/blob/master/docs/tutorials/modular-image-classification.md

Implemented modular and portable image classification pipeline that can run on any platform

Fully automatic, no need to fix paths, adapts to your platform, can run on CPU or GPU, can trace information flow

https://github.com/mlcommons/ck/blob/master/docs/tutorials/modular-image-classification.md

_cm.json or _cm.yaml

alias: app-image-classification-onnx-py
uid: 3d5e908e472b417e

automation_alias: script
automation_uid: 5b4e0237da074764

tags:
- app
- image-classification
- onnx
- python

deps:
- tags: detect,os
- tags: get,sys-utils-cm
- names:

- python
- python3
tags: get,python3

- tags: get,cuda
names:
- cuda
enable_if_env:

USE_CUDA:
- yes

…

- tags: get,dataset,imagenet,image-classification,original
- tags: get,dataset-aux,imagenet-aux,image-classification
- tags: get,ml-model,resnet50,_onnx,image-classification

- tags: get,generic-python-lib,_onnxruntime
skip_if_env:

USE_CUDA:
- yes

- tags: get,generic-python-lib,_onnxruntime_gpu
enable_if_env:

USE_CUDA:
- yes

variations:
cuda:

env:
USE_CUDA: yes

Can generate containers / use in Jupyter notebooks

python3 –m pip install cmind
cm pull repo mlcommons@ck

cm run script "python app image-classification onnx“

cm run script "detect os" --out=json
cm run script "get python" --version_min=3.9.1
cm run script "install python-venv" --name=my-virtual-env
cm run script "get ml-model resnet50 _onnx _fp32"
cm run script "get original imagenet dataset _2012-500"
cm run script "get generic-python-lib _onnxruntime"

--version=1.12.0

https://github.com/mlcommons/ck/blob/master/docs/tutorials/modular-image-classification.md

Can use CM to run multiple experiments, record them and reply them (on-going)

https://github.com/mlcommons/ck/blob/master/cm-mlops/automation/experiment/README-extra.md

cm run experiment --tags=my,experiment,hello-world -- echo "Hello World!“

cm find experiment --tags=my,experiment,hello-world

cm pack repo mlcommons@ck

cm reply experiment --tags=my,experiment,hello-world

cm run script “gui _graph”

Explore multiple variables :

explore.yaml:

explore:

VAR1: [1,2,3]

VAR2: ["a","b"]

VAR3: "[2**i for i in range(0,6)]“

cm run experiment --tags=my,experiment,hello-world @explore.yaml -- echo “—batch-size={{VAR1}} {{VAR2}} {{VAR3}}“

https://github.com/mlcommons/ck/blob/master/cm-mlops/automation/experiment/README-extra.md

CM format supports FAIR principles and can be extended in many dimensions …

Findability, Accessibility, Interoperability,
and Reuse of digital assets

The FAIR principles emphasize machine-
actionability (i.e., the capacity of
computational systems to find, access,
interoperate, and reuse data with none or
minimal human intervention)

CM considers both code and data
as digital assets

But what about empirical measurements (performance, power …)?

MLCommons is an open engineering consortium with 50+ SW/HW companies
and universities developing a common methodology and tools

for apple-to-apple benchmarking, comparison and optimization of ML Systems:
mlcommons.org/en/news/mlcommons-launch

cTuning joined as a founding member

https://mlcommons.org/en/get-involved

https://mlcommons.org/en/news/mlcommons-launch
https://mlcommons.org/en/get-involved

LoadGen from MLPerf inference benchmark ensures realistic usage scenarios and reproducible measurements

https://arxiv.org/abs/1911.02549 https://github.com/mlcommons/inference/tree/master/loadgen

The Closed division is intended to compare
hardware platforms or software frameworks
“apples-to-apples” and requires using the same
model as the reference implementation.

The Open division is intended to foster innovation
and allows using a different model or retraining.

LoadGen

Trade off accuracy vs
latency/throughput vs

power consumption vs costs
depending on production

requirements and constraints

https://arxiv.org/abs/1911.02549
https://github.com/mlcommons/inference/tree/master/loadgen

MLPerf benchmarks (vision, language, speech, recommendation …)

Déjà vu: challenging to run, reproduce, compare and reuse MLPerf inference benchmarks

Nvidia Container

NVIDIA ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run NVIDIA implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Generate huge XLS file with all results: performance, accuracy, power consumption
Examples: mlcommons.org/en/inference-datacenter-30 mlcommons.org/en/inference-edge-30

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Qualcomm Container

Qualcomm ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Qualcomm implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Intel Container

Intel ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Intel implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

…

…

…

…

Every hardware/software vendor uses its own benchmark implementation, harness, setup, container and README

MLPerf benchmarks (vision, language, speech, recommendation …)

Déjà vu: challenging to run, reproduce, compare and reuse MLPerf inference benchmarks

Nvidia Container

NVIDIA ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run NVIDIA implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Generate huge XLS file with all results: performance, accuracy, power consumption
Examples: mlcommons.org/en/inference-datacenter-30 mlcommons.org/en/inference-edge-30

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Qualcomm Container

Qualcomm ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Qualcomm implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Intel Container

Intel ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Intel implementation
of the MLPerf benchmark

Run LoadGen

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

…

…

…

…

Every hardware/software vendor uses its own benchmark implementation, harness, setup, container and README

Established the MLCommons Task Force
on Automation and Reproducibility.

The goal is to make it easier to run and
customize MLPerf benchmarks across
continuously changing software and

hardware using the CM language:

cknowledge.org/mlcommons-taskforce

https://cknowledge.org/mlcommons-taskforce

MLPerf benchmarks (vision, language, speech, recommendation …)

Reused, extended and added CM scripts to cover all MLPerf inference steps

Nvidia Container

NVIDIA ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run NVIDIA implementation
of the MLPerf benchmark

Process raw MLPerf output

Prepare MLPerf submission

Generate huge XLS file with all results: performance, accuracy, power consumption
Examples: mlcommons.org/en/inference-datacenter-30 mlcommons.org/en/inference-edge-30

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Qualcomm Container

Qualcomm ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Qualcomm implementation
of the MLPerf benchmark

Process raw MLPerf output

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

Intel Container

Intel ReadMe

Fix all deps

Install extra deps

Download model

Connect or download dataset

Preprocess dataset

Run Intel implementation
of the MLPerf benchmark

Process raw MLPerf output

Prepare MLPerf submission

Prepare run-time system

Prepare/compile model

Compare and reproduce results

Optimize the whole stack

…

…

…

Convert MLPerf into a database of portable and reusable script wrappers (CM script) with a unified CLI and common Python API

Unified CM API, CLI and README for any model, data set, software and hardware

cK
n

o
w

le
d

ge
.o

rg
/p

o
rt

ab
le

-c
m

-s
cr

ip
ts

…

CM script to detect or install all deps on the fly

CM script to download any model

CM script to download or detect any dataset

CM script to preprocess dataset

CM script to prepare run-time for selected target

CM script to compile any model for selected target

Run universal or vendor-specific implementation of the MLPerf benchmark

CM script to process raw MLPerf output

CM script to prepare MLPerf submission

Output to the CM format; add derived metrics (power efficiency, usage cost …)
Visualize on-prem (private) or from github.com/mlcommons/cm_inference_results

github.com/mlcommons/ck/tree/master/cm-mlops/script

https://github.com/mlcommons/ck/tree/master/cm-mlops/script

Assembled universal MLPerf workflow from CM scripts and generated READMEs and modular CM-MLPerf containers

Unified CM API, CLI and README for any model, data set, software and hardware

Automatically generated modular CM-MLPerf container

Portable CM script to detect or install all deps on the fly

cK
n

o
w

le
d

ge
.o

rg
/p

o
rt

ab
le

-c
m

-s
cr

ip
ts

Portable CM script to download any model

Portable CM script to download or detect any dataset

Portable CM script to preprocess dataset

Portable CM script to prepare run-time for selected target

Portable CM script to compile any model for selected target

Run universal or vendor-specific implementation of the MLPerf benchmark

Portable CM script to process raw MLPerf output

Portable CM script to prepare MLPerf submission

Output to the CM format; add derived metrics (power efficiency, usage cost …)
Visualize on-prem (private) or from github.com/mlcommons/ck_mlperf_results

https://github.com/mlcommons/ck/tree/master/docs/mlperf/inference

python3 -m pip install cmind

cm pull repo mlcommons@ck

cmr "get sys-utils-cm" --quiet

cmr "get python" --version_min=3.8

cmr "get mlperf inference src“

cmr "get mlperf loadgen" --adr.compiler.tags=gcc

cmr "get dataset object-detection open-images original _validation _500“

cmr "get preprocessed dataset object-detection open-images _validation _500 _NCHW“

cmr "get generic-python-lib _onnxruntime" --version_min=1.10.0

cmr "get ml-model object-detection retinanet _onnx“

cmr "app mlperf inference generic _python _retinanet _onnxruntime _cpu" \

--scenario=Offline --mode=accuracy --test_query_count=10 --rerun

https://github.com/mlcommons/ck/tree/master/docs/mlperf/inference

Started new project: CM automation and reproducibility assistant based on ChatGPT

Retraining ChatGPT
on CM commands

Used CM for MLPerf replicability study at Student Cluster Competition at SC’22

https://github.com/mlcommons/ck/blob/master/docs/tutorials/sc22-scc-mlperf.md

Connected CM MLPerf workflow with W&B live dashboard:
https://wandb.ai/cmind/cm-mlperf-sc22-scc-retinanet-offline/table

10 teams out of 11 managed to run RetinaNet benchmark
with different ONNX runtimes and CPUs/GPUs within 1 hour

using CM language:

cmr “run mlperf inference generate-run-cmds _submission _short _dashboard” \
--adr.python.version_min=3.8 \
--adr.compiler.tags=gcc \
--adr.openimages-preprocessed.tags=_500 \
--submitter="Community" \
--hw_name=default \
--lang=python \
--model=retinanet \
--backend=onnxruntime \
--device=cpu \
--scenario=Offline \
--test_query_count=10 \
--clean

Since it is straightforward to reproduce/replicate MLPerf benchmark
using CM language, students can focus on optimizations!

https://github.com/mlcommons/ck/blob/master/docs/tutorials/sc22-scc-mlperf.md
https://wandb.ai/cmind/cm-mlperf-sc22-scc-retinanet-offline/table

Created “Collective Knowledge” platform to aggregate all results from MLPerf benchmarks

MLCommons CK Playground

Unified CM API, CLI and README for any model, data set, software and hardware

Universal GUI, API and CLI (on-prem or x.cKnowledge.org)

Automatically generated modular CM-MLPerf container

Portable CM script to detect or install all deps on the fly

cK
n

o
w

le
d

ge
.o

rg
/p

o
rt

ab
le

-c
m

-s
cr

ip
ts

Portable CM script to download any model

Portable CM script to download or detect any dataset

Portable CM script to preprocess dataset

Portable CM script to prepare run-time for selected target

Portable CM script to compile any model for selected target

Run universal or vendor-specific implementation of the MLPerf benchmark

Portable CM script to process raw MLPerf output

Portable CM script to prepare MLPerf submission

Output to the CM format; add derived metrics (power efficiency, usage cost …)
Visualize on-prem (private) or from github.com/mlcommons/ck_mlperf_results

Use unified CK GUI or CM commands to compare and reproduce results

Use unified CK GUI or CM commands to optimize any ML/SW/HW stack

access.cKnowledge.org

Latency, ms

• Perform apple-to-apple comparison of diverse ML/SW/HW stacks
• Find Pareto-optimal SW/HW stacks for ML apps based on user

requirements and constraints
• Make it easier for the community to reproduce and replicate results

automated by the CM language
• Connect academia and industry to optimize performance or test

new models and optimization techniques from research papers

https://access.cknowledge.org/

Used CM language to let the community participate in the MLPerf inference benchmark submission

Thanks to Michael Goin, Pablo Gonzalez Mesa, Himanshu Dutta, Aditya Kumar Shaw, Sachin Mudaliyar,
Thomas Zhu and other great colleagues, we validated the CM workflow automation language
and CK platform to unify, automate and reproduce MLPerf inference submissions across

• Diverse CPUs, GPUs and DSPs with PyTorch, ONNX, QAIC, TF/TFLite, TVM and TensorRT

• Hardware from Nvidia (including 4090 workstation and Jetson AGX Orin edge device),
Qualcomm, AMD, Intel and Apple

• Deep Sparse optimization from Neural Magic and models from the Hugging Face Zoo

• Cloud submissions on AWS and GCP

• 1st end-to-end student submission on Apple Metal

Reports:
cKnowledge.org/mlperf-inf-v3.0-forbes
cKnowledge.org/mlperf-inf-v3.0-report

https://cknowledge.org/mlperf-inf-v3.0-forbes
https://cknowledge.org/mlperf-inf-v3.0-report

OS commands and OS/python scripts

Conculsions: E = mc² - we need to get back to basics and revisit how we share knowledge and experience

Papers, READMEs
Artifact Appendices

to obtain results
Input file Input environment variables

Output file New environment variables

run.sh

customize.py

run.bat

Scientific and research papers describe some ideas, how they were validated,
and (hopefully) how you can validate them and build upon them using plain English:

1000 papers will have 1000 dialects to describe the same “action” to design experiments:
use Open Images dataset, get Open Images, install open-images, download raw open images from Zenodo

In the end, these actions are converted into OS commands and scripts in 1000 different ways.

Simple YAML or JSON file with human-readable tags “get,use,download,openimages,open-images …”

OS commands and OS/python scripts

Conculsions: E = mc² - we need to get back to basics and revisit how we share knowledge and experience

Papers, READMEs
Artifact Appendices

to obtain results
Input file Input environment variables

Output file New environment variables

run.sh

customize.py

run.bat

Collective Mind
automation and
reproducibility

language

Scientific and research papers describe some ideas, how they were validated,
and (hopefully) how you can validate them and build upon them using plain English:

1000 papers will have 1000 dialects to describe the same “action” to design experiments:
use Open Images dataset, get Open Images, install open-images, download raw open images from Zenodo

We provided a simple language to convert all those tags into 1 reusable and tech. agnostic “automation action”
that can work anywhere in a deterministic way using low-level OS commands and scripts:

cm run script “get open-images dataset”

or with tech. variations and env variables:
cmr “get open-images dataset _full _NCHW” --env.TYPE=int8

Our language gradually converts all artifacts into a database of interconnected components based on FAIR principles.

When reproducibility/replicability/portability issues occur, the community works together to fix reusable
automation actions that automatically improves all other experiments from the community

– the foundation of collaborative research and open-science.

Conclusions: we bootstrapped this project to help the community

• My cynical view from 25 years working with academia and industry: making research reproducible, replicable and reusable is
considered as a huge pain and generally avoided unless it comes with 0 cost.

• My goal behind Collective Mind language (CM) and Collective Knowledge Playground (CK) is to help the community automate
their tedious and time consuming tasks, make their research more deterministic and reproducible, and reuse artifacts and
automations with 0 effort: https://github.com/mlcommons/ck , https://access.cKnowledge.org

• There should be no need to prepare code, artifacts, containers, Jupter notebooks and Artifact Appendices and READMEs
only for artifact evaluation and external validation – it should come automatically and with 0 cost.

• My cTuning foundation and cKnowledge Ltd are funding these open-source developments to benefit everyone –
we implemented the first set of portable, reusable and technology agnostic scripts and artifacts from research papers and
projects and connected them with MLPerf LoadGen tool for computational and performance reproducibility:

https://github.com/mlcommons/ck/tree/master/cm-mlops/script

• CM helps our colleagues focus on research and innovation instead of reinventing the wheel and implementing
numerous ad-hoc workflows and measurement tools that often die when research project is finished.

• Furthermore, CM language made it easier to transfer research to production by automatically adapting research projects
to diverse and continuously changing software, hardware, models and data from the real world!

• I converted all my R&D into CM and finally solved some of the problems that haunt me since 1996. I hope it can help you too!

https://github.com/mlcommons/ck
https://access.cknowledge.org/
https://github.com/mlcommons/ck/tree/master/cm-mlops/script

The next steps: continue reducing the friction for reproducible research and tech. transfer

1) Continue working with MLCommons, academia and industry to use and extend CM language for their R&D projects

2) Organize reproducibility and replicability challenges for MLPerf benchmarks and research papers:
https://github.com/mlcommons/ck/tree/master/cm-mlops/challenge

• Automate using CM language, add missing CM scripts.
• Collaboratively analyze results and explain research techniques.
• Add more tasks, models and data sets

from Hugging Face and paperswithcode.com
• Submit new MLPerf results automated by the CM language.
• Improve benchmarking methodology and fix issues.
• Publish reproducibility reports with the CM language

(maybe special track at ACM REP?).

3) Use CM language to generate Pareto-optimal AI/ML applications and systems
based on MLPerf results and user requirements and constraints (trading off accuracy, performance, power, costs).

4) Continue reproducing research papers and automating them
using the CM language (IPOL journal, Artifact Evaluation at MICRO’23).

5) Continue improving our automation and reproducibility assistant to help researchers and engineers
reuse CM scripts and convert their projects into CM format with 0 cost: https://access.cKnowledge.org/assistant

https://github.com/mlcommons/ck/tree/master/cm-mlops/challenge
https://access.cknowledge.org/assistant

Conclusions and the current stateWould you like to help with this community project or provide feedback?

Collective Mind language helps me follow my passion:
helping the community focus on innovation, reproduce research projects, understand them

and bring them to the real world in the most efficient and automated way!

This project would not have happened without the help and feedback from the community!

Huge thanks to all the contributors: github.com/mlcommons/ck/blob/master/CONTRIBUTING.md

Thanks to Arjun Suresh for joining this crazy effort!

Thanks to Chloé Tessier for an illustration of a worried scientist!

Thanks to Alissa and Victor Fursin for keeping me sane and make sure that CM language is simple enough even for kids!

Join our project via Discord server: discord.gg/JjWNWXKxwT

Follow and support our project on GitHub: github.com/mlcommons/ck

Feel free to teuse/extend our portable scripts and automations to accelerate your research and experimentation:

github.com/mlcommons/ck/tree/master/cm-mlops/script

github.com/mlcommons/ck/tree/master/cm-mlops/automation

https://github.com/mlcommons/ck/blob/master/CONTRIBUTING.md
https://discord.gg/JjWNWXKxwT
https://github.com/mlcommons/ck
https://github.com/mlcommons/ck/tree/master/cm-mlops/script
https://github.com/mlcommons/ck/tree/master/cm-mlops/automation

