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1 Introduction 

Resource sharing models directly address the allocation of a remaining global CO2 budget (cf. Sargl, 

et al., 2022). This paper shines the spotlight on the mathematical formulae of resource sharing models. 

It contributes to greater transparency and comparability through a uniform mathematical representa-

tion, by showing generalisations as well as relations, similarities and differences between these mod-

els. It also contains mathematical proofs for specified properties of the models. 

For the models in Chapter 2 a global pathway that meets a remaining global budget is a prerequisite. 

Chapter 2.1 considers convergence models that allocate global emissions to countries, with increasing 

weight given to population. At the end of a convergence period the global emissions are allocated to 

countries according to population only. The Emission Probability Model in Chapter 2.2 determines 

country specific emission density functions and caps the emissions of individuals in order to limit the 

sum of national emissions to global emissions. Chapter 2.3 shows properties of resulting national 

budgets. 

The approaches in Chapter 3 are based on the Extended Smooth Pathway Model (ESPM), in which 

national budgets are derived from a global budget in a first step and plausible emission paths that 

adhere to this national budget are determined in a second step. Different mathematical solutions are 

offered for the second step. 

We offer Excel tools and web apps to calculate national emission pathways for all countries in the 

world that are compatible with the Paris Agreement, using the Regensburg Formula (see Chapter 

2.1.2) or the Extended Smooth Pathway Model (see Chapter 3). The Excel tools can be downloaded 

from our homepage http://www.save-the-climate.info. An overview of the web apps and Excel tools 

is given here: https://www.climate-calculator.info. 

 

http://www.save-the-climate.info/
https://www.climate-calculator.info/
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2 Models based on the allocation of a global emissions pathway1 

2.1 Convergence models 

All convergence models presented here start with a global pathway that meets a remaining global 

budget until the last year of consideration T usually corresponding to a certain degree of global warm-

ing.2 Then the models break down the annual global emissions on country level, transforming the 

actual emissions in a base year (BY) into emissions based on a per capita allocation in a convergence 

year (CY) at the end of a limited convergence period. This per capita allocation is also used after the 

convergence year. 

2.1.1 Models breaking down the global pathway in a simple way 

Contraction & Convergence Model 

The Global Commons Institute already propounded the following Contraction & Convergence Model 

(C&C Model) in the early 1990s. This model defines the emissions of the country i in the year t (𝐸𝑡
�̂�) 

recursively (cf. Meyer, No date): 

𝐸𝑡
�̂� : =

{
 
 

 
 
((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡, for 𝐵𝑌 + 1 ≤ 𝑡 < 𝐶𝑌

                                                        

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡,  for 𝐶𝑌 ≤ 𝑡 ≤ 𝑇, 𝑖.  𝑒.  𝐶�̂�   = 1 for 𝐶𝑌 ≤ 𝑡 ≤ 𝑇

 (1) 

where 

𝐸𝑡 global emissions in the year t, 

𝑃𝑡 global population in the year t and 

𝑃𝑡
𝑖 population of the country i in the year t. 

𝐶�̂� denotes the weight of the population when allocating global emissions to countries.  

The Global Commons Institute considered two specifications of 𝐶�̂�: 

• exponential (C&C-exp): Ct̂ = exp (−a (1 −
t−BY

CY−BY
)) with the parameter a > 0 to be 

 
1  See also our paper comparing the results of these models: (Sargl, et al., 2022). 

2 The approaches in Chapter 3 for deriving national emission pathways that adhere to a specified budget can also be 

used to derive global pathways. In our Regensburg Model [cf. (Sargl, et al., 2017) and (Sargl, et al., 2023c)], which 

uses the Regensburg Formula to calculate national pathways (see Chapter 2.1.2), we use the RM Scenario Types [cf. 

(Wolfsteiner & Wittmann, 2023a) and Chapter 3.4] to determine global pathways. 
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determined. “The higher the value [a], the more the convergence happens towards the end of 

the convergence period, and vice-versa. Choosing a = 4 gives an even balance.” (Meyer, 

1998, p. 21) 

• linear (C&C-lin): 𝐶�̂� = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
. 

 

LIMITS Model 

LIMITS, a research project funded by the EU, uses the following formula for the emissions of the 

country i in the year t (𝐸𝑡
�̃�) (cf. Tavoni, et al., 2013): 

𝐸𝑡
�̃� : =  

{
 
 

 
 ((1 − 𝐶�̃�) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡   for 𝐵𝑌 +  1 ≤ 𝑡 < 𝐶𝑌

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡 for 𝐶𝑌 ≤ 𝑡 ≤ 𝑇,    𝑖.  𝑒.  𝐶�̂�   = 1 for 𝐶𝑌 ≤ 𝑡 ≤ 𝑇

 (2) 

𝐶�̃� denotes the weight of the population when allocating global emissions to countries. LIMITS con-

sidered only the linear specification of 𝐶�̃� (𝐶�̃� = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
).  

The LIMITS Model (LIMITS) uses formula (2) to determine emissions pathways for different regions 

of the world. 

 

Generalised C&C Model and Generalised LIMITS Model 

C&C and LIMITS consider only certain specifications of 𝐶𝑡. However, any non-decreasing weighting 

function 𝐶𝑡 that takes the value 1 in the convergence year (CY) can be used. Numerous such weighting 

functions are conceivable. Thus, we obtain the Generalised Contraction & Convergence Model (G-

C&C) and the Generalised LIMITS Model (G-LIMITS).  
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Exemplary weighting functions 

National emissions pathways with weighting functions that take the value 0 (or approximately 0) in 

the base year (BY) normally do not have a step after the base year. Therefore, we only list the most 

intuitive weighting functions with this property: 

• linear (lin): 𝐶𝑡 =  
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
  (C&C-lin and LIMITS) 

• exponential (exp_a): 𝐶𝑡 = 𝑒𝑥𝑝 (−𝑎 (1 −
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)) with the parameter a > 0 to be determined 

(C&C-exp) 

• convex quadratic (conv quadr): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• concave quadratic (conc quadr): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• general quadratic: 𝐶𝑡 = 𝑎(𝑡 − 𝐵𝑌)
2 + 𝑏(𝑡 − 𝐵𝑌) + 𝑐, where a, b and c are parameters to be 

determined in such a way that 𝐶𝐵𝑌 =  0, 𝐶𝐶𝑌 = 1 and with a third constraint, e. g. a given 

value for the year after the base year. The linear, the convex quadratic and the concave quad-

ratic specifications of 𝐶𝑡 are special cases of the general quadratic specification.  

• cubic: 𝐶𝑡 = −2(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
3

+ 3(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• convex polynomial (conv pol_n): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

• concave polynomial (conc pol_n): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

The weighting functions above depend directly on the year (t). Another class of weighting functions 

is obtained by introducing the emissions in the year t (𝐸𝑡). Thus, these weighting functions depend 

on the global emissions and only indirectly on the year. We only show the linear specification as an 

example: linear in 𝐸𝑡 (lin_E_t): 𝐶𝑡 = 
𝐸𝐵𝑌−𝐸𝑡

𝐸𝐵𝑌−𝐸𝐶𝑌
 . 
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Figure 1 depicts the trajectories of some weighting functions. 

 

Figure 1: Trajectories of the different specifications of 𝐶𝑡 

Figure 1 shows that, if n is great enough, the allocation key “population” 

- in the concave polynomial specification comes fully into effect already in the first year after 

the base year (equity, immediate climate justice).  

- in the convex polynomial specification comes into effect only in the convergence year (iner-

tia). 

 

Common but Differentiated Convergence Model 

The Common but Differentiated Convergence Model (CDC Model) is described in (cf. Höhne, et al., 

2006). This source does not contain any formulae, so the formulae presented here are our interpreta-

tion of the description of the CDC Model. 

First a threshold 𝑇𝐻𝑡 in the year t is defined, which decreases if the global emissions decrease: 

𝑇𝐻𝑡 ≔
𝐸𝑡

𝑃𝑡
∗ 𝑃𝑇, 

where 𝑃𝑇 is a given percentage, e. g. 0.95. If the average emissions of the country i in the year t in a 

business as usual scenario (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ) are below or equal to the threshold, i. e. 

𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ≤ 𝑇𝐻𝑡, the country 

is allocated emissions according to the business as usual scenario and we define 

𝐸𝑡
𝑖 ≔ 𝐸𝑡

𝑖_𝑏𝑎𝑢. 
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Otherwise, if the average emissions of the country i in the year t in the business as usual scenario are 

above the threshold (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 > 𝑇𝐻𝑡), the country is allocated emissions according to the C&C formula 

and we define 

𝐸𝑡
𝑖 ≔ ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
𝑖

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 + 𝐶�̂� ∗

𝑃𝑡
𝑖

𝑃𝑡
𝑜𝑇𝐻) ∗ 𝐸𝑡

𝑜𝑇𝐻, 

where  

𝐶�̂�  weighting of per capita emissions in the year t, 

𝐸𝑡
𝑜𝑇𝐻  remaining emissions in the year t for the countries over the threshold in the year t, i. e. 

𝐸𝑡
𝑜𝑇𝐻 = 𝐸𝑡 − ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  ≤ 𝑇𝐻𝑡

 , 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡  emissions in the year t-1 of the countries over the threshold in the year t, i. e. 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 = ∑ 𝐸𝑡−1

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 and 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t, i. e. 

𝑃𝑡
𝑜𝑇𝐻 = ∑ 𝑃𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

. 

Remark: Obviously the equation  

𝐸𝑡
𝑜𝑇𝐻 = ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 

holds, but this equation cannot be used to define 𝐸𝑡
𝑜𝑇𝐻, because 𝐸𝑡

𝑖 is defined with the help of 𝐸𝑡
𝑜𝑇𝐻. 
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2.1.2 The Regensburg Formula (RF) 

We will present three equivalent notations of the Regensburg Formula3 

• as a weighting function with an annual degree of achieving the global convergence amount 

• as a straight line with a conversion factor for the reduction of emissions 

• as a recursion with an annual rate of change 

and show how they are derived from each other.  

The RF as a weighting function 

The notation of the RF as a weighting function (cf. Sargl, et al., 2017) uses the annual degree of 

achieving the global convergence amount 𝐸𝐶𝑌 in year t 

𝑪𝒕̅̅ ̅:=  
𝑬𝑩𝒀 − 𝑬𝒕
𝑬𝑩𝒀 − 𝑬𝑪𝒀

 

as weighting factor for the national convergence amount 𝐸𝐶𝑌
𝑖  (in case of the national convergence 

amount being directly proportional to the population, it is also a per-capita weighting factor) for the 

calculation of emissions of the country i in year t: 

𝑬𝒕
𝒊̅̅ ̅: =  (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

Directly from this definition of the RF we obtain the following results: 

 
3  The Regensburg Formula is part of the Regensburg Model [cf. (Sargl, et al., 2017) and (Sargl, et al., 2023c)], in which 

global pathways are derived using the RM Scenario Types [cf. (Wolfsteiner & Wittmann, 2023a) and Chapter 3.4]. 
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Remark 1 (equal proportions in all countries and the world) 

In each year t, the proportion of emissions still to be reduced and the proportion of emissions already 

reduced in relation to the emissions to be reduced altogether are equal in all countries and globally: 

𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (=  1 − 𝐶�̅�) and 

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝐵𝑌
𝑖 − 𝐸𝑡

𝑖̅̅̅

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (= 𝐶�̅�). 

In each year t, therefore, the degree of achieving the global convergence amount and the degree of 

achieving the national convergence amount are identical.  

Remark 2 (national convergence amounts in all countries in CY) 

In CY emissions calculated with the RF and the national convergence amount are the same in each 

country. 

Remark 3 (Uniqueness of 𝑪𝒕̅̅ ̅) 

There is only one weighting function 𝑪𝒕̅̅ ̅ so that the equation 

𝑬𝒕
𝒊 = (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊  

holds for each country. This weighting function is 𝑪𝒕̅̅ ̅:=  
𝑬𝑩𝒀−𝑬𝒕

𝑬𝑩𝒀−𝑬𝑪𝒀
. This can be shown by summing up 

the equation across all countries, yielding an equation that can be solved for 𝑪𝒕̅̅ ̅. 

The RF as a straight line 

 

Theorem 1 (notation of the RF as a straight line) 

The emissions of each country i as a function of the global emissions are on a straight line: 

𝑬𝒕
𝒊̅̅ ̅ = (𝑬𝒕 − 𝑬𝑪𝒀) ∗ 𝒂

𝒊 + 𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌, 

with the conversion factor for the reduction: 𝒂𝒊: =
𝑬𝑩𝒀
𝒊 − 𝑬𝑪𝒀

𝒊

𝑬𝑩𝒀 − 𝑬𝑪𝒀
. 
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Proof:  

𝐸𝑡
𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗  (1 − 𝐶�̅�)  +  𝐶�̅� ∗  𝐸𝐶𝑌

𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗ (1 −

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (
𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗ (

𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (1 −
𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
+ 𝐸𝐶𝑌

𝑖 = 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖  

  □ 

Remark 4 (stepwise approximation) 

By presenting the RF as a straight line, it becomes clear that a stepwise approximation of the global 

emission pathway to the global convergence amount is transmitted to all national emission pathways. 

 

Remark 5 (construction of national graphs)  

This theorem also shows that, when applying the RF, the national graph (t, 𝐸𝑡
𝑖̅̅̅)  for country i with a 

reduction amount (𝐸𝐵𝑌
𝑖 > 𝐸𝐶𝑌

𝑖 ) can be derived from the global graph  

(t, 𝐸𝑡) by changing the scaling on the ordinate and by vertically shifting the abscissa. For countries 

with a national convergence amount permitting increasing annual emissions (𝐸𝐵𝑌
𝑖 < 𝐸𝐶𝑌

𝑖 ), the global 

graph additionally needs to be reflected across the abscissa to obtain the national graph. 

 

Remark 6 (factor for converting reductions = proportional factor) 

Because of ∑ 𝑎𝑖𝑖 =  1 the factor for converting the reduction is also called “proportional factor”. 
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Corollary 1 (constant factor for converting reductions) 

For each country i there is a constant proportional factor αi that allows converting annual global re-

ductions to annual reductions of the country i:  

𝐸𝑡
𝑖̅̅̅ − 𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ = (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎
𝑖. 

Factor 𝑎𝑖 for converting reductions can be determined by the ratio between emissions that remain to 

be reduced by country i in year t and emissions which remain to be reduced globally: 

𝑎𝑖 =
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝑡 − 𝐸𝐶𝑌
  (𝐵𝑌 ≤ 𝑡 ≤ 𝐶𝑌 − 1). 

Remark 7 (monotonicity) 

This corollary also shows that monotonicity of the global emission pathway is transferred to the na-

tional emission pathways. 

 

Corollary 2 (complete distribution of global emissions) 

The emissions determined according to the RF of all countries together sum up to the amount of 

global emissions: 

∑ 𝐸𝑡 
𝑖̅̅̅̅ =  𝐸𝑡  𝑖 for every year t 

Proof by the notation of the RF as a straight line:   

∑𝐸𝑡 
𝑖̅̅̅̅ = 

𝑖
 

=∑ ((𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖 )
𝑖

= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  ∑ 𝑎𝑖
𝑖

+∑ 𝐸𝐶𝑌
𝑖

𝑖
= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  1 + 𝐸𝐶𝑌 = 𝐸𝑡 

  □ 
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The RF as a recursion 

 

Theorem 2 (notation of the RF as a recursion) 

We have:4 

𝑬𝒕
𝒊̅̅ ̅ = 𝑬𝒕−𝟏

𝒊̅̅ ̅̅ ̅̅ − 𝑪𝑹𝒕−𝟏 ∗ (𝑬𝒕−𝟏
𝒊̅̅ ̅̅ ̅̅ − 𝑬𝑪𝒀

𝒊 ), 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  

with the annual rate of change 𝑪𝑹𝒕−𝟏: =  
𝑬𝒕−𝟏−𝑬𝒕

𝑬𝒕−𝟏−𝑬𝑪𝒀
. 

Proof: 

 𝐶𝑅𝑡−1 is well defined, because 𝐸𝑡−1 ≠ 𝐸𝐶𝑌 for 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  . 

By using corollary 1 for the factor for converting reductions, we can say: 

𝐸𝑡
𝑖̅̅̅ = =  𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ + (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎
𝑖 = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ −

𝐸𝑡−1 − 𝐸𝑡
𝐸𝑡−1 − 𝐸𝐶𝑌

∗ (𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌

𝑖 ) = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑅𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌
𝑖 ) 

  □ 

Remark 8 (identical annual rates of change) 

The notation as a recursion offers another interpretation of the RF: The annual emissions of the coun-

try i in the year t are determined by transferring the rates of change which are derived from the global 

emission pathway to national emission pathways. Therefore, in each year t, the national and global 

annual rates of change are identical.  

 

Remark 9 (national convergence amounts in all countries in the convergence year) 

From the notation of the RF as a recursion, you can see that the convergence amounts are achieved 

in all countries in the year CY, if you take into consideration that the rate of change 𝐶𝑅𝐶𝑌−1 takes 

value 1. 

  

 
4  Alternative notation with TA ≔ 𝐸𝐶𝑌 , 𝑇𝐴

𝑖 ≔ 𝐸𝐶𝑌
𝑖  and 𝐶�̃�𝑡−1 ≔ − 𝐶𝑅𝑡−𝑡 =

𝐸𝑡−𝐸𝑡−1

𝐸𝑡−1−𝑇𝐴
:  𝐸𝑡

𝑖̅̅̅ = 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ + 𝐶�̃�𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ −

𝑇𝐴𝑖). 
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2.1.3 Convertibility of the convergence models 

Equivalence of the Generalised C&C and LIMITS Model 

If the population is frozen in both models, the convergence amount of a country i is defined by  

𝐸𝐶𝑌
𝑖  =  

𝑃𝑖

𝑃
 ∗  𝐸𝐶𝑌. 

G-C&C is given by 

𝐸𝑡
�̂�: = ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶�̂� that takes the value 0 (or approximately 0) in BY and the value 1 in the 

CY. Here 𝐸𝑡
�̂� is defined recursively. 

The G-Limits is given by 

𝐸𝑡
�̃�: = ((1 − 𝐶�̃�) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶�̃� that takes the value 0 (or approximately 0) in BY and the value 1 in CY. 

 

Theorem 3 (equivalence of G-C&C and G-LIMITS) 

For any weighting function 𝐶�̂� of G-C&C there is a weighting function 𝐶�̃� for G-LIMITS, so that the 

results of G-C&C and G-LIMITS are the same.  

For any weighting function 𝐶�̃� of G-LIMITs there is a weighting function 𝐶�̂� for G-C&C, so that the 

results of G-C&C and G-LIMITS are the same. 

Proof: 

If we know the weighting function 𝐶�̂� of G-C&C, the weighting function 𝐶�̃� of G-LIMITS is given 

by 

𝐶�̃� ≔  1 − ∏ (1 − 𝐶�̂�) for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝑡

𝑙=𝐵𝑌+1

. 

We proof the first part of the theorem by aid of mathematical induction. 

Base case: For t = BY + 1 we obtain 𝐶𝐵𝑌+1̃ = 𝐶𝐵𝑌+1̂ and  
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𝐸𝐵𝑌+1
�̃� : = ((1 − 𝐶𝐵𝑌+1̃) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 

= ((1 − 𝐶𝐵𝑌+1̂) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 = 𝐸𝐵𝑌+1

�̂�  

Inductive step: Assuming that if 𝐸𝑡−1
�̂� = 𝐸𝑡−1

�̃� = ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡−1, we show that 

𝐸𝑡
�̂� = 𝐸𝑡

�̃�. Algebraically 

𝐸𝑡
�̂� = ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, 

=

(

  
 
(1 − 𝐶�̂�) ∗

((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡−1

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃

)

  
 
∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ ((1 − (1 − ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

)) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ (( ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ( ∏ (1 − 𝐶�̂�)

𝑡

𝑙=𝐵𝑌+1

∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (1 − 𝐶�̂�) ∗  (1 − ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝑃𝑖

𝑃
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ ((1 − 𝐶�̂�) − (1 − 𝐶�̃�)) ∗

𝑃𝑖

𝑃
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 = 𝐸𝑡

�̃� 
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Second part of the theorem: If we know the weighting function 𝐶�̃� of G-LIMITS, we solve the defi-

nition of 𝐶�̃� for 𝐶�̂� and obtain recursively the weighting function 𝐶�̂� of G-C&C: 

𝐶�̂� = 1 −
1 − 𝐶�̃�

∏ (1 − 𝐶�̂�) 
𝑡−1
𝑙=𝐵𝑌+1

 for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝐶�̂� is well defined because CY is by definition the year when the convergence amount is reached. 

  □ 

RF as a special case of the Generalised C&C and LIMITS Model 

 

Theorem 4 (The RF as a special case of G-LIMITS) 

With the weighting function 

𝐶�̃� =

𝐸𝑡
𝑖̅̅̅

𝐸𝑡
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

 

the results of G-LIMITS and the RF are the same. 

Proof: 

The weighting function 𝐶�̃� is obtained by transforming G-LIMITS for country i using 
𝑃𝑖

𝑃
=

𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
 and 

assuming that 𝐸𝑡
�̃� = 𝐸𝑡

𝑖̅̅̅. Thus, we must proof that we obtain the same weighting function 𝐶�̃� for any 

other country j: 

𝐸𝑡
𝑖

𝐸𝑡
−
𝐸𝐵𝑌
𝑖̅̅ ̅̅ ̅

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

=

𝐸𝑡
𝑗

𝐸𝑡
−
𝐸𝐵𝑌
𝑗̅̅ ̅̅ ̅

𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑗

𝐸𝐵𝑌

 

𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡
𝐸𝑡 ∗ 𝐸𝐵𝑌

∗
𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝐶𝑌
 =

𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝑡

𝐸𝑡 ∗ 𝐸𝐵𝑌
∗

𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌

  

0 = (𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡) ∗ (𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌) 

−(𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗  𝐸𝑡) ∗ (𝐸𝐶𝑌

𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌
𝑖 ∗ 𝐸𝐶𝑌). 
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Since 𝐸𝑡
𝑖̅̅̅ and 𝐸𝑡

𝑗̅̅ ̅ can be seen as a function of 𝐸𝑡 whose images are on a straight line (theorem 1), the 

right side of this equation can be seen as a function of 𝐸𝑡 whose image is on a straight line. Therefore, 

it is sufficient to proof that two points of the image are 0. These two points are obviously 𝐸𝐵𝑌 and 

𝐸𝐶𝑌. 

  □ 

Remark 10 (The RF as a special case of G-C&C) 

Since the results of G-LIMITS can be obtained with G-C&C using an appropriate weighting function 

(theorem 3), the RF is also a special case of G-C&C. 
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2.2 Emission Probability Model (EPM) 

Chakravarty et al. (cf. Chakravarty, et al., 2009) described three steps to obtaining and cutting an 

emission probability density function (PDF) starting with the points of a Lorenz curve. We hence 

summarize how to obtain a Lorenz Curve from a PDF in Chapter 2.2.1, show the results for a gamma 

PDF in Chapter 2.2.2 and describe the Emission Probability Model (EPM) in Chapter 2.2.3. 

2.2.1 General case: The Lorenz Curve obtained from a PDF 

Let f be an income PDF. 

Then 

• the cumulative population share x is given by the cumulative distribution function (CDF) F, 

i. e. the probability of an income equal to z or less is 𝑥 = 𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

• the cumulative income share y is given by 𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧
−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞
−∞

 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
: average income of the persons with an income equal to z or less 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞
: average income of the population 

Thus a parametric representation of the Lorenz curve �̅� is given by 

�̅�(𝑧) = (

𝑥 =  𝐹(𝑧)

𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞

) (3) 

If the inverse function 𝐹−1 of the CDF F exists, the Lorenz curve L is directly given by 

y = L(x) =  
∫ t f(t) dt
𝐹−1(x)

−∞

∫ t f(t) dt
∞

−∞

. (4) 

Substituting 𝑡 =  𝐹−1(�̌�) yields 
𝑑𝑡

𝑑�̌�
= (𝐹−1)′(�̌�) =

1

𝐹′(𝐹−1(�̌�))
=

1

𝑓(𝐹−1(�̌�))
 and the Lorenz curve can be 

written as 

y = L(x) =  
∫ F−1
x

0
(ť)dť

∫ F−1
1

0
(ť)dť

. (5) 
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Theorem 5 (Scaling) 

The Lorenz curve is independent of the scaling of the z-axis. 

Proof: With a scaling factor s ≠ 0 the scaled PDF 𝑓 ̃for a PDF f is given by  

𝑓(�̃�) = 𝑠 𝑓(𝑠�̃�). 

For the CDF �̃� we obtain 

�̃�(�̃�) = ∫ 𝑓(�̃�) 𝑑�̃�
𝑧

−∞

= 𝑠∫ 𝑓(𝑠�̃�)
𝑧

−∞

𝑑�̃� = ∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑠�̃�
𝑠𝑧

−∞

). 

Thus �̃�−1, the inverse function of the CDF �̃�, is given by  

�̃�−1 =
1

𝑠
 𝐹−1. 

With the help of the representation (5). of the Lorenz curve we see that, the Lorenz curve from the 

PDF f and the PDF 𝑓 are the same. 
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2.2.2 Special case: The Lorenz Curve obtained from a gamma probability distribu-

tion 

In general, the evaluation of the integrals in equation (1) or (2) can cause trouble. However, if Z is a 

gamma distributed random variable all this work can be done by a spreadsheet programme, such as 

EXCEL. 

Let Z be a gamma distributed random variable. Then the PDF g is given by 

𝑔(𝑧; 𝑎, 𝑏)  =  {

0                            for z < 0
1

𝑏𝑎Γ(𝑎)
𝑧𝑎−1𝑒−

𝑧
𝑏 for 𝑧 ≥ 0 

with parameters a, b > 0 and Γ(𝑎) = ∫ 𝑧𝑎−1𝑒−𝑧
∞

0
𝑑𝑧. 

The CDF is denoted by 

𝐺(𝑧; 𝑎, 𝑏) =  ∫ 𝑔(𝑡;  𝑎, 𝑏) 𝑑𝑡
𝑧

0

= ∫
1

𝑏𝑎Γ(𝑎)
𝑡𝑎−1𝑒−

𝑡
𝑏

𝑧

0

𝑑𝑡 

Since Γ(𝑎 + 1)  =  𝑎 Γ(𝑎),  the equation 𝑡 𝑔(𝑡; 𝑎, 𝑏) =  𝑎𝑏 𝑔(𝑡; 𝑎 + 1, 𝑏) holds. Thus 

• the expected value (or mean) of Z is given by 

𝐸[𝑍]  =  ∫ 𝑡 
∞

0

𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡 =  𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏)𝑑𝑡 =
∞

0

𝑎𝑏 

and  

• using the representation (4). the Lorenz curve is given by 

𝐿(𝑥) =  
∫ 𝑡 𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡
𝐺−1(𝑥;𝑎,𝑏)

0

∫ 𝑡 𝑔(𝑡, 𝑎, 𝑏) 𝑑𝑡
∞

0

 =  
𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏) 𝑑𝑡

𝐺−1(𝑥;𝑎,𝑏)

0

𝑎𝑏
= 𝐺(𝐺−1(𝑥; 𝑎, 𝑏); 𝑎 + 1, 𝑏). 

Scaling 

With a scaling factor s ≠ 0 we easily find  

�̃�(�̃�; 𝑎, 𝑏) = 𝑠 𝑔(𝑠�̃�; 𝑎, 𝑏) = 𝑔(�̃�; 𝑎,
𝑏

𝑠
) 

This equation shows that the scaling of a gamma distribution with parameters a, b leads to another 

gamma distribution with parameters a, 
𝑏

𝑠
. Since the Lorenz curve does not depend on scaling, the 

Lorenz curve must be independent of the parameter b. 
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2.2.3 Description of the EPM 

In a base year let there be (𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve �̌�𝑖 of the country i, i. e. 𝑦𝑗
𝑖 = �̌�𝑖 (𝑥𝑗

𝑖). 

In the first step, an income PDF 𝑓𝑖(𝑧; 𝑝𝑖) for each country i is determined. For this purpose, the 

parameters 𝑝𝑖 are estimated by adapting the Lorenz curves 𝐿𝑖(𝑧; 𝑝𝑖) with a least square fit: 

min𝑝𝑖  {∑ (𝐿𝑖(𝑥𝑗
𝑖; 𝑝𝑖) − 𝑦𝑗

𝑖)
2

𝑗 }. 

In the second step, for each country i an emission PDF 𝑓𝑖 is obtained by scaling the income PDF 𝑓𝑖 . 

𝑓𝑖(�̃�; 𝑝𝑖) =  𝑠𝑖 ∗ 𝑓𝑖(𝑠𝑖 ∗ �̃�; 𝑝𝑖) 

with the scaling factor 𝑠𝑖 ≔
average emissions in country 𝑖

average income in country 𝑖
 of the country 𝑖. 

In the third step, in each year t a cap 𝐶𝐴𝑡 is determined in such a way that the emissions in all countries 

yield the underlying global emissions in the year t (𝐸𝑡): 

∑𝐸𝑡
𝑖 =

𝑖
∑ 𝑃𝑡

𝑖 (∫ 𝑧 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧 +
𝐶𝐴𝑡

−∞

𝐶𝐴𝑡∫ 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧
∞

𝐶𝐴𝑡

)
𝑖

= 𝐸𝑡. 

Usually, it is assumed that each person earns a non-negative income. That is why the scaling in the 

second step is possible. However, when global emissions are negative a different transformation, 

which converts an income PDF, which is zero for negative incomes, into an emission PDF that ad-

dresses negative emissions, must be found. Such transformations are conceivable, but they are not 

indisputable. 
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2.3 Properties of resulting national budgets 

We refer to the emissions of the country i until the year t as the national budget of the country i until 

the year t 

𝐵𝑡
𝑖: =∑ 𝐸𝑙

𝑖
𝑡

𝑙=𝐵𝑌+1
. 

and to the global emissions until the year t as the global budget until the year t: 

𝐵𝑡 ≔∑ 𝐸𝑡 (=∑ ∑ 𝐸𝑙
𝑖

𝑖

𝑡

𝑙=𝐵𝑌+1
=∑ ∑ 𝐸𝑙

𝑖 =∑ 𝐵𝑡
𝑖

𝑖

𝑡

𝑙=𝐵𝑌+1𝑖
)

𝑡

𝑙=𝐵𝑌+1
 

In Chapter 2.3.1 we show properties of national budgets with regard to the Regensburg Formula. 

After a definition of the comparative value implicit weighting of the population we show its properties 

in Chapter 2.3.2. 

2.3.1 National budgets using the RF 

If the RF is used the national budget until the convergence year can be easily calculated. 

 

Theorem 6 (national budget until the convergence year using the RF) 

Using the RF the national budget of the country i until the convergence year is given by: 

𝐵𝐶𝑌
𝑖 = 𝐸𝐶𝑌

𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎
𝑖, 

with the factor 𝑎𝑖 =
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
 for converting reductions. 

Proof: 

According to the notation of the RF as a straight line, the following applies to the emissions of the 

country i in year t: 

𝐸𝑡
𝑖̅̅̅ = (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖 + 𝐸𝐶𝑌
𝑖 . 

By summing up these emissions across all years, we obtain the national budget of the country i in the 

convergence period: 

𝐵𝐶𝑌
𝑖 =∑ 𝐸𝑡

𝑖̅̅̅
𝐶𝑌

𝑡=𝐵𝑌+1
= 

=∑ 𝐸𝐶𝑌
𝑖 +∑ (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖
𝐶𝑌

𝑡=𝐵𝑌+1

𝐶𝑌

𝑡=𝐵𝑌+1
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= 𝐸𝐶𝑌
𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎

𝑖 

  □ 

Remark 11 (national budget depending only on the global budget)  

This theorem also shows that the national budget of the country i until the convergence year only 

depends on – besides the national emissions of the country i and the global emissions in BY and in 

CY – the global budget until the convergence year, but not on the global emissions 𝐸𝐵𝑌+1, 𝐸𝐵𝑌+2, …, 

𝐸𝐶𝑌−2, 𝐸𝐶𝑌−1. Under certain conditions, this results in an implicit national budget that is independent 

of the global pathway chosen. 

  



Resource Sharing Models - A Mathematical Description  page 24 of 53 

2.3.2 Implicit weighting of the population 

Each convergence model allocates a country i until the year t a national budget 𝐵𝑡
𝑖 that can – if the 

share of the emissions of country i in global emissions is different from the share of the frozen popu-

lation of country i in the frozen global population (
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
≠

𝑃𝑖

𝑃
) – be considered as a weighting of the 

two extreme allocations “emissions in the past” and “frozen population”: 

𝐵𝑡
𝑖 = ((1 − 𝐼𝐶𝑡

𝑖) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐼𝐶𝑡

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡 (6) 

where 

𝐵𝑡
𝑖 (= ∑ 𝐸𝑙

𝑖𝑡
𝑙=𝐵𝑌+1 ) emissions of the country i until the year t (national budget of the 

country i until the year t), 

𝐵𝑡 (= ∑ 𝐸𝑙
𝑡
𝑙=𝐵𝑌+1 ) global emissions until the year t (global budget until the year t), 

𝐼𝐶𝑡
𝑖  weighting of the population of the country i in the year t (this parameter is defined 

implicitly), 

𝐸𝐵𝑌 global emissions in the base year, 

𝐸𝐵𝑌
𝑖  emissions of the country i in the base year, 

P (frozen) global population and 

𝑃𝑖 (frozen) population of the country i. 

 

Remark 12 (First explicit specification of the weighting of population) 

Solving equation (6) for 𝐼𝐶𝑡
𝑖 leads to 

𝐼𝐶𝑡
𝑖 = 

𝐵𝑡
𝑖 − 𝐵𝑡 ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
 

𝐵𝑡 ∗ (
𝑃𝑖

𝑃 −
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
)

 (7) 
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Remark 13 (Independence of the implicit weighting of population of the global budget) 

The implicit weighting of population only depends on the convergence model, but not on the global 

budget as long as changes of the global budget are passed on to countries in proportion to the previous 

national budgets. 

 

Theorem 7 (Identical weighting of the population in all countries)  

If the population is frozen, then for any convergence model, the implicit weighting of the population 

is the same for each country: 𝐼𝐶𝑡
𝑖  =  𝐼𝐶𝑡

𝑗
 for any countries i and j. Convergence models thus show an 

implicit weighting of the population.5 

Proof: 

We proof this theorem for the G-LIMITS showing that the implicit weighting of the population does 

not depend on the country i by aid of mathematical induction. The rest follows from the equivalence 

of G-C&C and G-LIMITS (theorem 3) and the fact that the RF is a special case of G-LIMITS (theo-

rem 4). 

Base case: For t = BY + 1 the national budget of the country i until the year BY + 1 is 𝐸𝐵𝑌+1
𝑖  and the 

global budget is 𝐸𝐵𝑌+1. By comparing equation (2) with equation (6) we obtain 𝐼𝐶𝐵𝑌+1
𝑖  =  𝐶𝐵𝑌+1̃ and 

notice that 𝐼𝐶𝐵𝑌+1
𝑖  does not depend on i. 

Inductive step: Assuming that if 𝐼𝐶𝑡−1
𝑖  =  𝐼𝐶𝑡−1 for each country i we show that 𝐼𝐶𝑡

𝑖  =  𝐼𝐶𝑡. 

For the national budget of each country i until the year t we obtain  

𝐵𝑡
𝑖 = 𝐸𝑡

𝑖 + 𝐵𝑡−1
𝑖 = 𝐸𝑡

𝑖 + ((1 − 𝐼𝐶𝑡−1
𝑖 ) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐼𝐶𝑡−1

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 + ((1 − 𝐼𝐶𝑡−1) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐼𝐶𝑡−1 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

=(𝐸𝑡 + 𝐵𝑡−1 − 𝐶�̃� ∗ 𝐸𝑡 − 𝐼𝐶𝑡−1 ∗ 𝐵𝑡−1) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (𝐶�̃� ∗ 𝐸𝑡 + 𝐼𝐶𝑡−1 ∗ 𝐵𝑡−1)*

𝑃𝑖

𝑃
. 

We define 𝐼𝐶𝑡: =
𝐶�̃�∗𝐸𝑡+𝐼𝐶𝑡−1∗𝐵𝑡−1

𝐵𝑡
 and obtain 

 
5  In our Excel tool for the Regensburg Model, this implicit weighting can be calculated for different framework data 

(Wolfsteiner & Wittmann, 2023b). 
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𝐵𝑡
𝑖 = (𝐵𝑡 − 𝐼𝐶𝑡 ∗ 𝐵𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (𝐼𝐶𝑡 ∗ 𝐵𝑡)*

𝑃𝑖

𝑃
 = ((1 − 𝐼𝐶𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐼𝐶𝑡 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡. 

  □ 

Remark 14 (Generalisation of theorem 7) 

The proof of theorem 6 only uses the assumption that the emissions of the country i in the year t are 

given by 

𝐸𝑡
𝑖 = ((1 − 𝐶𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡 ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 (8) 

Therefore, if the population is frozen, then for any convergence model, the implicit weighting of the 

population resulting from a national budget at any year t is the same for each country: 𝐼𝐶𝑡
𝑖  =  𝐼𝐶𝑡. 

This result even holds for non-convergence models as long as they allocate emissions according to 

equation (8).6 

 

Theorem 8 (Second explicit specification of the weighting of population) 

Given a model that allocates emissions according to equation (8). Then the implicit weighting of the 

population in the year t is given by 

𝐼𝐶𝑡 = 
∑ 𝐶𝑙 ∗ 𝐸𝑙
𝑡
𝑙=𝐵𝑌+1

𝐵𝑡
 

Proof: 

Substituting the national budget of the country i until the year t (𝐵𝑡
𝑖 ) in equation (7) yields: 

𝐼𝐶𝑡
𝑖 = 

𝐵𝑡
𝑖 − 𝐵𝑡 ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
 

𝐵𝑡 ∗ (
𝑃𝑖

𝑃 −
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
)

= 

 
6 This implicit weighting of the population therefore applies in principle to the entire period of our Regensburg Model, 

even if the Regensburg Formula is not applied throughout. For details, please refer to the Excel tool: (Wolfsteiner & 

Wittmann, 2023b). 
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=
∑ 𝐸𝑙

𝑖𝑡
𝑙=𝐵𝑌+1 − 𝐵𝑡 ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
 

𝐵𝑡 ∗ (
𝑃𝑖

𝑃 −
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
)

= 

=

∑ ((1 − 𝐶𝑙) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑙 ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑙

𝑡
𝑙=𝐵𝑌+1 − 𝐵𝑡 ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
 

𝐵𝑡 ∗ (
𝑃𝑖

𝑃 −
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
)

= 

=

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
∗ 𝐵𝑡 + ∑ 𝐶𝑙 ∗ 𝐸𝑙 (

𝑃𝑖

𝑃 − 
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
) ∗ 𝐸𝑙

𝑡
𝑙=𝐵𝑌+1 − 𝐵𝑡 ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
 

𝐵𝑡 ∗ (
𝑃𝑖

𝑃 −
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
)

= 

= 
∑ 𝐶𝑙 ∗ 𝐸𝑙
𝑡
𝑙=𝐵𝑌+1

𝐵𝑡
 

  □ 

Remark 15 (Identical weighting of the population in all countries) 

Theorem 8 also shows, that if the population is frozen, then for any convergence model, the implicit 

weighting of the population does not depend on a country. 

 

Theorem 9 (More ambitious in the beginning means higher implicit weighting) 

Let two global pathways be given, both of which adhere to the same global budget until year the t 

and intersect only once. Then, for any model for which equation (8) holds with monotonically in-

creasing C_t, the more ambitious pathway after the base year has a higher implicit weighting of the 

population. 
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Proof: 

First, we set 𝐷𝑙 ≔ �̃�𝑙 − 𝐸𝑙 for l = BY+1, BY+2, …, t. Then we consider the global pathway 𝐸𝐵𝑌+1, 

𝐸𝐵𝑌+2, …, 𝐸𝑡 with the implicit weight IC and a more ambitious global path �̃�𝐵𝑌+1, �̃�𝐵𝑌+2, …, �̃�𝑡 with 

the implicit weight 𝐼�̃�. According to the assumptions, the following applies 

�̃�𝐵𝑌+1 − 𝐸𝐵𝑌+1 = 𝐷𝐵𝑌+1 <  0 and  

∑ �̃�𝑙 =
𝑡
𝑙=𝐵𝑌+1 ∑ 𝐸𝑙

𝑡
𝑙=𝐵𝑌+1 = 𝐵𝑡. Hence ∑ 𝐷𝑙

𝑡
𝑙=𝐵𝑌+1 = 0 

We must show that applies 𝐼�̃� − 𝐼𝐶 > 0. 

Using theorem 8 the last inequation can be written as 

∑ (𝐶𝑙 ∗ �̃�𝑙 − 𝐶𝑙 ∗ 𝐸𝑙)
𝑡
𝑙=𝐵𝑌+1 = ∑  𝐶𝑙 ∗ (�̃�𝑙 − 𝐸𝑙) =

𝑡
𝑙=𝐵𝑌+1 ∑  𝐶𝑙 ∗ 𝐷𝑙

𝑡
𝑙=𝐵𝑌+1 >  0. 

We consider the numbers 𝐷𝐵𝑌+1, 𝐷𝐵𝑌+2, …, 𝐷𝑡. Since the emission pathways intersect only once and 

since the number 𝐷𝐵𝑌+1 is negative, the first numbers 𝐷𝐵𝑌+1, ..., 𝐷𝑁 are negative and the last numbers 

𝐷𝑁+1, ..., 𝐷𝑡 are positive.  

We now split or combine the positive numbers so that we obtain the positive numbers −𝐷𝐵𝑌+1, ..., 

−𝐷𝑁 for the negative numbers 𝐷𝐵𝑌+1, ..., 𝐷𝑁. When splitting a number 𝐷𝑙 (= 𝐷𝑙1 + 𝐷𝑙2) into the 

numbers 𝐷𝑙1 and 𝐷𝑙2 we assign to the numbers 𝐷𝑙1 and 𝐷𝑙2 the weighting factor 𝐶𝑙, when combining 

the numbers 𝐷𝑙1 and 𝐷𝑙2 we assign to the sum 𝐷𝑙 = 𝐷𝑙1 + 𝐷𝑙2 the smaller weighting factor 𝐶𝑙 =

min {𝐶𝑙1; 𝐶𝑙2}. Now for every negative number there is a positive number with the opposite sign, but 

with a larger weighting factor. Thus, the sum ∑  𝐶𝑡 ∗ 𝐷𝑙
𝑡
𝑙=𝐵𝑌+1  is positive. 

  □ 
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3 Emission pathways that adhere to a predefined budget (ESPM) 

In this chapter we consider models consisting of two steps. In the first step, national budgets are 

derived from a global CO2 budget. In the second step, national emission pathways are determined 

that comply with this budget (cf. i.a. Sargl, et al., 2023b).  

In chapter 3.1 we present Raupach’s weighting formula for allocating a global remaining budget to 

countries. The national budgets can be transformed into a pathway in a simple (chapter 3.2), a smooth 

(chapter 3.3) or a smart way (chapter 3.4). Hence these models are also called Extended Smooth7 

Pathway Model (ESPM). 

The approaches used for transforming a national budget can also be applied on the global budget. 

3.1 Distribution of a global budget: Weighting model from Raupach 

A variety of distribution keys are conceivable for deriving national budgets from a global budget.8 

Raupach et al. propose a simple weighting formula for distributing a global remaining budget to 

countries (cf. Raupach, et al., 2014): 

𝑅𝐵𝑖 = (𝐶 ∗
𝑃𝐵𝑌
𝑖

𝑃𝐵𝑌
+ (1 − 𝐶) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
) ∗ 𝑅𝐵, 

where 

𝐸𝐵𝑌  resp. 𝐸𝐵𝑌
𝑖  global emissions resp. emissions of the country i in the base year 

𝑃𝐵𝑌  resp. 𝑃𝐵𝑌
𝑖  global population resp. population of the country i in the base year 

𝑅𝐵 resp. 𝑅𝐵𝑖 global remaining budget resp. remaining budget of the country i 

𝐶 weighting of the population 

  

 
7  In this model designation, "smooth" is used as a generic term for "simple", "mathematical smooth" and "smart". 

8  See corresponding excursus in: (Sargl, et al., 2023b). 
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3.2 Linear Pathway Models 

3.2.1 Linear Pathway Model (LPM) 

The Linear Pathway Models (LPM) derives a national or global emission pathway from a given na-

tional or global remaining budget in an obvious way. After a base year, the emission power �̇�𝑖, i. e. 

the derivative of emissions with respect to time (the emissions per unit of time) of a country i is 

supposed to decrease on a straight line until the point of time 𝑇𝑖 when the emission power is zero. 

After that point, the emission power shall continue to be 0. This leads to the following approach for 

the emission power: 

�̇�𝑖(𝑧): =  {𝑎
𝑖  𝑧 + 𝑏𝑖 for 𝐵𝑌 ≤ 𝑧 ≤ 𝑇𝑖

0 for 𝑇𝑖  ≤ 𝑧
,    (9) 

with parameters 𝑎𝑖 and 𝑏𝑖 of the straight line to be determined. 

Theorem 10 (calculation of the emissions with the help of the emission power function) 

The emissions of the country i in the period from the point of time 𝑡1 to the point of time 𝑡2 ≤ 𝑇
𝑖 is 

given by 

∫ �̇�𝑖(𝑧) 𝑑𝑧 = (𝑡2 − 𝑡1) ∗
𝑡2

𝑡1

�̇�𝑖 (
𝑡1 + 𝑡2
2

) = (𝑡2 − 𝑡1) ∗
�̇�𝑖(𝑡1) + �̇�

𝑖(𝑡2)

2
 

Proof: 

For the emissions of the country i in the period from 𝑡1 to 𝑡2 ≤ 𝑇
𝑖 we obtain 

∫ �̇�𝑖(𝑧) 𝑑𝑧 = ∫ 𝑎𝑖  𝑧 + 𝑏𝑖   𝑑𝑧 =
𝑡2

𝑡1

 
𝑡2

𝑡1

 

=[0.5 ∗ 𝑎𝑖 ∗ 𝑧2 + 𝑏𝑖 ∗ 𝑧]
𝑧=𝑡1

𝑧=𝑡2
= 

= 0.5 ∗ 𝑎𝑖 ∗ (𝑡2
2 − 𝑡1

2) + 𝑏𝑖 ∗ (𝑡2 − 𝑡1) = 

= (𝑡2 − 𝑡1) ∗ [0.5 ∗ 𝑎
𝑖 ∗ (𝑡2 + 𝑡1) + 𝑏

𝑖] = 

= (𝑡2 − 𝑡1) ∗ [0.5 ∗ 𝑎
𝑖 ∗ 𝑡1 + 0.5 ∗ 𝑏

𝑖 + 0.5 ∗ 𝑎𝑖 ∗ 𝑡2 + 0.5 ∗ 𝑏
𝑖] = 

(𝑡2 − 𝑡1) ∗ �̇�
𝑖 (
𝑡1 + 𝑡2
2

) = (𝑡2 − 𝑡1) ∗
�̇�𝑖(𝑡1) + �̇�

𝑖(𝑡2)

2
. 

□ 



Resource Sharing Models - A Mathematical Description  page 31 of 53 

Corollary 3 (national emissions) 

The emission of the country i in the year t can be calculated with the help of the emission power 

function by 

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡
= {

�̇�𝑖(𝑡 + 0.5) for 𝑡 ≤ ⌊𝑇𝑖⌋ − 1

0.5 ∗  �̇�𝑖(⌊𝑇𝑖⌋) ∗ (𝑇𝑖 − ⌊𝑇𝑖⌋) for 𝑡 = ⌊𝑇𝑖⌋

0 for ⌊𝑇𝑖⌋ + 1 ≤ 𝑡

 , 

where ⌊ ⌋ is the floor function for delimiting the definition areas of 𝐸𝑡
𝑖. The floor function takes as an 

input a real number 𝑇𝑖 and gives as an output ⌊𝑇𝑖⌋ the greatest integer less than or equal to 𝑇𝑖. 

Proof: 

For 𝑡 ≤ ⌊𝑇𝑖⌋ − 1 we obtain  

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡
= �̇�𝑖(𝑡 + 0.5). 

For 𝑡 = ⌊𝑇𝑖⌋ we get 

𝐸𝑇
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

⌊𝑇𝑖⌋+1

⌊𝑇𝑖⌋

= ∫ �̇�𝑖(𝑧) 𝑑𝑧
𝑇𝑖

⌊𝑇𝑖⌋

= 

= 0.5 ∗ (𝑇𝑖 − ⌊𝑇𝑖⌋) ∗  �̇�𝑖(⌊𝑇𝑖⌋). 

For ⌊𝑇𝑖⌋ + 1 ≤ 𝑡 we have  

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡
= ∫ 0 𝑑𝑧 = 0

𝑡+1

𝑡
. 

  □ 

 

Theorem 11 (explicit specification of the emission power function) 

The emission power function for a country i is given by 

�̇�𝑖(𝑧):=  

{
𝐸𝐵𝑌
𝑖

𝑇𝑖 − 𝐵𝑌 − 0.5
∗ (𝑇𝑖 − 𝑧) for 𝐵𝑌 ≤ 𝑧 ≤ 𝑇𝑖

0 for 𝑇𝑖  ≤ 𝑧

 

with 

𝑇𝑖 = 𝐵𝑌 + 1 +
𝑅𝐵𝑖 +√𝑅𝐵𝑖 ∗ (𝑅𝐵𝑖 + 𝐸𝐵𝑌

𝑖 )

𝐸𝐵𝑌
𝑖

. 
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Proof: 

�̇�𝑖(𝑇𝑖) is obviously zero and with the help of theorem 10 we obtain 

∫ �̇�𝑖(𝑧) 𝑑𝑧
𝐵𝑌+1

𝐵𝑌
= �̇�𝑖(𝐵𝑌 + 0.5) = 𝐸𝐵𝑌

𝑖 . 

It remains to be shown that 

∫ �̇�
𝑖(𝑧) 𝑑𝑧

𝑇𝑖

𝐵𝑌+1

= 𝑅𝐵𝑖. (10) 

We use theorem 10 again and obtain 

(𝑇𝑖 − 𝐵𝑌 − 1) ∗ �̇�𝑖(𝐵𝑌 + 1) = 2 ∗ 𝑅𝐵𝑖. 

Using the definition of the emission power function �̇�𝑖, we get 

(𝑇𝑖 − 𝐵𝑌 − 1) ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝑇𝑖 − 𝐵𝑌 − 1) = 2 ∗ 𝑅𝐵𝑖 ∗ (𝑇𝑖 − 𝐵𝑌 − 0.5). 

We rearrange this quadratic equation for 𝑇𝑖: 

𝐸𝐵𝑌
𝑖 ∗ (𝑇𝑖 − 𝐵𝑌 − 1)

2
− 2 ∗ 𝑅𝐵𝑖 ∗ (𝑇𝑖 − 𝐵𝑌 − 0.5) = 0 

𝐸𝐵𝑌
𝑖 ∗ (𝑇𝑖)

2
+ 𝑇𝑖 ∗ [−2 ∗ 𝐸𝐵𝑌

𝑖 ∗ (𝐵𝑌 + 1) − 2 ∗ 𝑅𝐵𝑖] + 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1)2 + 𝑅𝐵𝑖 ∗ (2 ∗ 𝐵𝑌 + 1) = 0. 

We calculate the discriminant and find out that is positive: 

[−2 ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1) − 2 ∗ 𝑅𝐵𝑖]

2
− 4 ∗ 𝐸𝐵𝑌

𝑖 ∗ [𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1)2 + 𝑅𝐵𝑖 ∗ (2 ∗ 𝐵𝑌 + 1)] = 

= 4 ∗ (𝐸𝐵𝑌
𝑖 )

2
∗ (𝐵𝑌 + 1)2 + 8 ∗ 𝐸𝐵𝑌

𝑖 ∗ (𝐵𝑌 + 1) ∗ 𝑅𝐵𝑖 + 4 ∗ (𝑅𝐵𝑖)
2
 

− 4 ∗ (𝐸𝐵𝑌
𝑖 )

2
∗ (𝐵𝑌 + 1)2 − 4 ∗ 𝐸𝐵𝑌

𝑖 ∗ (2 ∗ 𝐵𝑌 + 1) ∗ 𝑅𝐵𝑖 = 

= 4 ∗ 𝐸𝐵𝑌
𝑖 ∗ [2 ∗ 𝐵𝑌 + 2 − 2 ∗ 𝐵𝑌 − 1] ∗ 𝑅𝐵𝑖 + 4 ∗ (𝑅𝐵𝑖)

2
= 

= 4 ∗ 𝑅𝐵𝑖 ∗ [𝐸𝐵𝑌
𝑖 + 𝑅𝐵𝑖] > 0. 

Using the quadratic formula, we obtain the expression 

𝑇1/2
𝑖 =

2 ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1) + 2 ∗ 𝑅𝐵𝑖 ±√4 ∗ 𝑅𝐵𝑖 ∗ [𝐸𝐵𝑌

𝑖 + 𝑅𝐵𝑖]

2 ∗ 𝐸𝐵𝑌
𝑖 = 

= 𝐵𝑌 + 1 +
𝑅𝐵𝑖 ±√𝑅𝐵𝑖 ∗ (𝐸𝐵𝑌

𝑖 + 𝑅𝐵𝑖)

𝐸𝐵𝑌
𝑖 . 

Since we are interested in a solution later than the end of the base year, only “+” of “±” remains as a 

solution.   □ 
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Remark 16 (year when the emission power function is zero, year of emission neutrality) 

The year when the emission power function is zero is given by  

⌊𝑇𝑖⌋, 

the year of emission neutrality, i. e. the year, when emissions are zero (or negative), is given by 

⌈𝑇𝑖⌉, 

where ⌈ ⌉ is the ceiling function. The ceiling function takes as an input a real number 𝑇𝑖 and gives as 

an output ⌈𝑇𝑖⌉ the least integer greater than or equal to 𝑇𝑖. 
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3.2.2 Simplified Linear Pathway Model (SLPM)9 

We avoid solving a quadratic equation for 𝑇𝑖 (cf. Theorem 11) and discuss two easier approaches. 

The first approach is obtained by using an approximation of 𝑇𝑖 in the LPM, the second by correcting 

the remaining budget in the LPM. Both approaches lead to the Simplified Linear Pathway Model 

(SLPM). 

 

Using an approximation of 𝑻𝒊 

This approach uses �̃�𝑖, an approximation of 𝑇𝑖. This approximation can be found by considering the 

area under the emission power function of the LPM.  

 

Theorem 12 (explicit specification of �̃�𝒊) 

An approximation of 𝑇𝑖 is given by 

�̃�𝑖 = 𝐵𝑌 + 1.5 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖  ≈ 𝑇𝑖 . 

Proof: 

We integrate the emission from BY+0.5 to 𝑇𝑖 and obtain with the help of theorem 10 

∫ �̇�𝑖(𝑧) 𝑑𝑧
𝑇𝑖

𝐵𝑌+0.5

= 0.5 ∗ (𝑇𝑖 − 𝐵𝑌 − 0.5) ∗ 𝐸𝐵𝑌
𝑖 = 

= ∫ �̇�𝑖(𝑧) 𝑑𝑧
𝐵𝑌+1

𝐵𝑌+0.5

+∫ �̇�𝑖(𝑧) 𝑑𝑧
𝑇𝑖

𝐵𝑌+1

≈ 

≈ 0.5 ∗ 𝐸𝐵𝑌
𝑖 + 𝑅𝐵𝑖 

Thus, we have 

𝑇𝑖 − 𝐵𝑌 − 0.5 ≈
𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 = 1 +

2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖  

or 

 
9  We use this model in the following web app: http://m-national-budgets.climate-calculator.info. 

http://m-national-budgets.climate-calculator.info/
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𝑇𝑖 ≈ 𝐵𝑌 + 1.5 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 = �̃�𝑖. 

  □ 

 

Remark 17 (Error of the approximation) 

The SLPM uses for these emissions of the country i in the period of time from BY+0.5 to BY+1 the 

area of the rectangular defined by the points (BY+0.5, 0), (BY+0.5, �̇�𝑖(𝐵𝑌 + 0.5)), 

(BY+1, �̇�𝑖(𝐵𝑌 + 𝟎. 𝟓)) and (BY+1, 0), where �̇�𝑖 is the emission power function of the SLPM. But 

the actual emission in this period would be represented by area of the right trapezium defined by the 

points (BY+0.5, 0), (BY+0.5, �̇�𝑖(𝐵𝑌 + 0.5)), (BY+1, �̇�𝑖(𝐵𝑌 + 𝟏)) and (BY+1, 0). Thus, the error is 

represented by the area of the triangle defined by the points (BY+0.5, �̇�𝑖(𝐵𝑌 + 0.5)), 

(BY+1, �̇�𝑖(𝐵𝑌 + 0.5)) and (BY+1, �̇�𝑖(𝐵𝑌 + 1)). 

 

Remark 18 (Another approach for �̃�𝒊) 

Since √1 + 𝑥 ≈ 1 + 0.5 ∗ 𝑥 for 𝑥 ≪ 1, we can simplify the expression for 𝑇𝑖 given in theorem 11 

and obtain the same result as in theorem 12: 

𝑇𝑖 = 𝐵𝑌 + 1 +
𝑅𝐵𝑖 +√𝑅𝐵𝑖 ∗ (𝑅𝐵𝑖 + 𝐸𝐵𝑌

𝑖 )

𝐸𝐵𝑌
𝑖

= 

= 𝐵𝑌 + 1 +

𝑅𝐵𝑖 + 𝑅𝐵𝑖 ∗ √1 +
𝐸𝐵𝑌
𝑖

𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖

≈ 

≈ 𝐵𝑌 + 1 +
𝑅𝐵𝑖 + 𝑅𝐵𝑖 ∗ (1 + 0,5 ∗

𝐸𝐵𝑌
𝑖

𝑅𝐵𝑖
)

𝐸𝐵𝑌
𝑖

= 

= 𝐵𝑌 + 1.5 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖

= �̃�𝑖. 
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Correcting the remaining budget 

The following approach, developed through trial and error, also provides useful results. 

We assume 

• that firstly a straight line through the points (BY, 𝐸𝐵𝑌
𝑖 ) and (𝑇𝑖, 0) evaluated at (at the discrete 

point) t describes the emissions of a country i in the year t as long as the emissions are not 

negative during the whole year t: 

𝐸𝑡
𝑖 = −

𝐸𝐵𝑌
𝑖

𝑇𝑖−𝐵𝑌
∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌

𝑖 , if 𝑡 ≤ ⌊𝑇𝑖⌋ − 1 and 

• that secondly the remaining budget of the country i is given by 

𝑅𝐵𝑖 = 0.5 ∗ (𝑇𝑖 − 𝐵𝑌) ∗ 𝐸𝐵𝑌
𝑖 . 

We rearrange the last equation and obtain the point of emission neutrality as 

𝑇𝑖 = 𝐵𝑌 +
2∗𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 . 

Substituting 𝑇𝑖 − 𝐵𝑌 =
2∗𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖  in the upper equation for the emissions of a country i in the year t yields 

𝐸𝑡
𝑖 = −

(𝐸𝐵𝑌
𝑖 )

2

2∗𝑅𝐵𝑖
∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌

𝑖 , if 𝑡 ≤ ⌊𝑇𝑖⌋ − 1. 

The first assumption should describe the average emissions of a year of emissions decreasing on a 

straight line. Two adjustments are needed to properly convert this assumption into a formula. Firstly, 

we evaluate the straight line (=the emission power function) for the year t at the middle of the year, 

i. e. at time t+0.5, in order to obtain a representative value for the emissions of this year. Evaluating 

our straight line for the base year at BY+0.5, however, does not yield 𝐸𝐵𝑌
𝑖 . Therefore, secondly, we 

shift our straight line by 0.5 to the right, whereby the point of time of emission neutrality is also 

shifted to the right by 0.5. If both the straight line and the points evaluated with this straight line are 

shifted by 0.5 to the right, the results do not change. 

The second assumption should describe the remaining budget from time BY+1 onwards. However, 

our second assumption considers the period from time BY to time 𝑇𝑖. We notice that the area under 

the shifted straight line through the point (BY+0.5, 𝐸𝐵𝑌
𝑖 ) from time BY+0.5 to time BY+1 is approxi-

mately 0.5 ∗ 𝐸𝐵𝑌
𝑖 . Thus, a corrected remaining budget is  

𝑅𝐵𝑐𝑜𝑟
𝑖 ≈ 𝑅𝐵𝑖 + 0.5 ∗ 𝐸𝐵𝑌

𝑖 . 

Using this corrected budget, we obtain for the emissions of a country i in the year t by 
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𝐸𝑡
𝑖 = −

(𝐸𝐵𝑌
𝑖 )

2

2∗𝑅𝐵𝑐𝑜𝑟
𝑖 ∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌

𝑖 , if 𝑡 ≤ ⌊𝑇𝑖⌋ − 1 

and the point of time of emission neutrality �̃�𝑖 is given by 

�̃�𝑖 = 𝐵𝑌 + 0.5 +
2∗𝑅𝐵𝑐𝑜𝑟

𝑖

𝐸𝐵𝑌
𝑖 . 

 

Remark 19 (Another emission power function) 

Another elegant way to avoid solving a quadratic equation for 𝑇𝑖 is to assume that the emission power 

function is constant in the base year and then decreases as a straight line through the points (BY+1, 

𝐸𝐵𝑌
𝑖 ) and (𝑇𝑖, 0). Thus, the remaining budget will be given by 

𝑅𝐵𝑖 = 0.5 ∗ (𝑇𝑖 − 𝐵𝑌 − 1) ∗ 𝐸𝐵𝑌
𝑖 . 

This equation can be easily solved for 𝑇𝑖. However, the emission reduction after the base year is only 

half as big as the following ones 

2 ∗ (𝐸𝐵𝑌
𝑖 − 𝐸𝐵𝑌+1

𝑖 ) =  𝐸𝑡
𝑖 − 𝐸𝑡+1

𝑖  for t=BY+1, …, ⌊𝑇𝑖⌋ − 2. 

 

Theorem 13 (equivalent approaches) 

Using the approximation �̃�𝑖 and correcting the remaining budget and gives the same results in the 

years 𝑡 ≤ ⌊𝑇𝑖⌋ − 1. 

Proof: 

We have to show that  

𝐸𝑡
𝑖 = −

(𝐸𝐵𝑌
𝑖 )

2

2 ∗ 𝑅𝐵𝑐𝑜𝑟
𝑖
∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌

𝑖 =
𝐸𝐵𝑌
𝑖

�̃�𝑖 − 𝐵𝑌 − 0.5
∗ (�̃�𝑖 − 𝑡 − 0.5) 

with the corrected national remaining budget 𝑅𝐵𝑐𝑜𝑟
𝑖 = 𝑅𝐵𝑖 + 0.5 ∗ 𝐸𝐵𝑌

𝑖  and  

�̃�𝑖 = 𝐵𝑌 + 0.5 +
2∗𝑅𝐵𝑐𝑜𝑟

𝑖

𝐸𝐵𝑌
𝑖 = 𝐵𝑌 + 1.5 +

2∗𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 . 

First, we notice that 

𝐵𝑌 + 0.5 +
2 ∗ 𝑅𝐵𝑐𝑜𝑟

𝑖

𝐸𝐵𝑌
𝑖 = 
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= 𝐵𝑌 + 0.5 +
2 ∗ (𝑅𝐵𝑖 + 0.5 ∗ 𝐸𝐵𝑌

𝑖 )

𝐸𝐵𝑌
𝑖 = 

= 𝐵𝑌 + 0.5 +
2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌

𝑖

𝐸𝐵𝑌
𝑖 = 

= 𝐵𝑌 + 0.5 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 +

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
𝑖
= 

= 𝐵𝑌 + 1.5 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 = �̃�𝑖 . 

Then we combine Corollary 3 with Theorem 11 and obtain for 𝑡 ≤ ⌊�̃�𝑖⌋ − 1 

𝐸𝑡
𝑖 =

𝐸𝐵𝑌
𝑖

�̃�𝑖 − 𝐵𝑌 − 0.5
∗ (�̃�𝑖 − 𝑡 − 0.5) 

with �̃�𝑖 = 𝐵𝑌 + 1.5 +
2∗𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 . Substituting �̃�𝑖 yields 

𝐸𝑡
𝑖 =

𝐸𝐵𝑌
𝑖

1 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖

∗ (𝐵𝑌 + 1 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 − 𝑡) = 

=
(𝐸𝐵𝑌

𝑖 )²

𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

∗ (𝐵𝑌 + 1 +
2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 − 𝑡) = 

= −
(𝐸𝐵𝑌

𝑖 )
2

𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

∗ (𝑡 − 𝐵𝑌) +
(𝐸𝐵𝑌

𝑖 )
2

𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

∗ (
𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

𝐸𝐵𝑌
𝑖 ) = 

= −
(𝐸𝐵𝑌

𝑖 )
2

𝐸𝐵𝑌
𝑖 + 2 ∗ 𝑅𝐵𝑖

∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌
𝑖 . 

Finally, we use the fact that 𝑅𝐵𝑐𝑜𝑟
𝑖 = 𝑅𝐵𝑖 + 0.5 ∗ 𝐸𝐵𝑌

𝑖  by definition and obtain 

𝐸𝑡
𝑖 = −

(𝐸𝐵𝑌
𝑖 )

2

2 ∗ 𝑅𝐵𝑐𝑜𝑟
𝑖
∗ (𝑡 − 𝐵𝑌) + 𝐸𝐵𝑌

𝑖 . 

  □ 
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3.2.3 Generalised Linear Pathway Model (GLPM)10 

In order to allow for net negative emissions, we generalise the emission power function in equation 

(9). After a base year, the emission power �̇�𝑖, i. e. the derivative of emissions with respect to time 

(the emissions per unit of time) of a country i is supposed to decrease on a straight line until the point 

of time 𝑈𝑖 when the emission power reaches its minimum 𝐸𝑚𝑖𝑛
𝑖 ≤ 0. After that point, the emission 

power shall continue to be 𝐸𝑚𝑖𝑛
𝑖  until the end of the year 2100. This leads to the following approach 

for the emission power: 

�̇�𝑖(𝑧): =  {
𝐸𝐵𝑌
𝑖 −

𝐸𝐵𝑌
𝑖 −𝐸𝑚𝑖𝑛

𝑖

𝑈𝑖−𝐵𝑌−0.5
∗ (𝑧 − 𝐵𝑌 − 0,5) for 𝐵𝑌 ≤ 𝑧 ≤ 𝑈𝑖

𝐸𝑚𝑖𝑛
𝑖  for 𝑈𝑖  ≤ 𝑧 ≤ 2101

,    (11) 

The idea is to determine 𝑈𝑖 such, that the country i meets a remaining budget 𝑅𝐵𝑖 by the end of the 

year 2100: ∫ �̇�𝑖(𝑧)
2101

𝐵𝑌+1
𝑑𝑧 = 𝑅𝐵𝑖. We note that theorem 10 also holds if �̇�𝑖(𝑧) is negative and obtain: 

∫ �̇�𝑖(𝑧)
2101

𝐵𝑌+1

𝑑𝑧 = ∫ �̇�𝑖(𝑧)
𝑈𝑖

𝐵𝑌+1

𝑑𝑧 + ∫ �̇�𝑖(𝑧)
2101

𝑈𝑖
𝑑𝑧 = 

= (𝑈𝑖 − 𝐵𝑌 − 1) ∗ �̇�𝑖 (
𝑈𝑖 + 𝐵𝑌 + 1

2
) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (2101 − 𝑈𝑖) = 

= (𝑈𝑖 − 𝐵𝑌 − 1) ∗ {𝐸𝐵𝑌
𝑖 −

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖

𝑈𝑖 − 𝐵𝑌 − 0,5
∗
𝑈𝑖 − 𝐵𝑌

2
} + 𝐸𝑚𝑖𝑛

𝑖 ∗ (2101 − 𝑈𝑖) = 𝑅𝐵𝑖 

We rearrange the last equation and obtain a quadratic equation for 𝑈𝑖: 

2 ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝑈𝑖 − 𝐵𝑌 − 1) ∗ (𝑈𝑖 − 𝐵𝑌 − 0,5) − (𝐸𝐵𝑌

𝑖 − 𝐸𝑚𝑖𝑛
𝑖 ) ∗ (𝑈𝑖 − 𝐵𝑌) ∗ (𝑈𝑖 − 𝐵𝑌 − 1) + 

+2 ∗ 𝐸𝑚𝑖𝑛
𝑖 ∗ (2101 − 𝑈𝑖) ∗ (𝑈𝑖 − 𝐵𝑌 − 0.5) − 2 ∗ 𝑅𝐵𝑖 ∗ (𝑈𝑖 − 𝐵𝑌 − 0,5) = 0 

 

2 ∗ 𝐸𝐵𝑌
𝑖 ∗ ((𝑈𝑖)² + 𝑈𝑖 ∗ (−2 ∗ 𝐵𝑌 − 1.5) + (𝐵𝑌 + 1) ∗ (𝐵𝑌 + 0,5)) + 

− (𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ) ∗ ((𝑈𝑖)² + 𝑈𝑖 ∗ (−2 ∗ 𝐵𝑌 − 1) + 𝐵𝑌 ∗ (𝐵𝑌 + 1)) + 

+2 ∗ 𝐸𝑚𝑖𝑛
𝑖 ∗ (−(𝑈𝑖)² + 𝑈𝑖 ∗ (𝐵𝑌 + 2101,5) − 2101 ∗ (𝐵𝑌 + 0,5)) − 

−2 ∗ 𝑅𝐵𝑖 ∗ (𝑈𝑖 − 𝐵𝑌 − 0,5) = 0 

 

 
10 We use this model in the following web app: http://national-budgets.climate-calculator.info. 

http://national-budgets.climate-calculator.info/
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(𝑈𝑖)² ∗ [2 ∗ 𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖 − 𝐸𝐵𝑌
𝑖 − 2 ∗ 𝐸𝑚𝑖𝑛

𝑖 ] + 

𝑈𝑖 ∗ [
2 ∗ 𝐸𝐵𝑌

𝑖 ∗ (−2 ∗ 𝐵𝑌 − 1.5) + (𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ) ∗ (2 ∗ 𝐵𝑌 + 1)

+2 ∗ 𝐸𝑚𝑖𝑛
𝑖 ∗ (𝐵𝑌 + 2101.5) − 2 ∗ 𝑅𝐵𝑖

] + 

+2 ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1) ∗ (𝐵𝑌 + 0,5) − (𝐸𝐵𝑌

𝑖 − 𝐸𝑚𝑖𝑛
𝑖 ) ∗ 𝐵𝑌 ∗ (𝐵𝑌 + 1) − 

−2 ∗ 𝐸𝑚𝑖𝑛
𝑖 ∗ 2101 ∗ (𝐵𝑌 + 0,5) + 2 ∗ 𝑅𝐵𝑖 ∗ (𝐵𝑌 + 0,5) = 0 

 

(𝑈𝑖)² ∗ [𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ] + 

+𝑈𝑖 ∗ [−2 ∗ 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1) + 4202 ∗ 𝐸𝑚𝑖𝑛

𝑖 − 2 ∗ 𝑅𝐵𝑖] + 

+𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1) ∗ (𝐵𝑌 + 1) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 ∗ (𝐵𝑌 + 1) − 2101 ∗ (2 ∗ 𝐵𝑌 + 1)) + 

+𝑅𝐵𝑖 ∗ (2 ∗ 𝐵𝑌 + 1) = 0 

This equation may have no real solutions or only solutions with 𝑈𝑖 < 𝐵𝑌 or 𝑈𝑖 > 2101. In these 

cases we do not get any useful solutions. 

 

Theorem 14 (approximation of 𝑼𝒊) 

𝑈𝑖 ≈
2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌

𝑖 ∗ (𝐵𝑌 + 1,5) + 𝐸𝑚𝑖𝑛
𝑖 ∗ (𝐵𝑌 − 4201,5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
. 

Proof: 

We integrate the emission from BY+0.5 to the end of the year 2100 and obtain with the help of theo-

rem 10 

∫ �̇�𝑖(𝑧) 𝑑𝑧
2101

𝐵𝑌+0.5

= 

= ∫ �̇�𝑖(𝑧) 𝑑𝑧
𝑈𝑖

𝐵𝑌+0.5

+∫ �̇�𝑖(𝑧) 𝑑𝑧
2101

𝑈𝑖
= (𝑈𝑖 − 𝐵𝑌 − 0.5) ∗

𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖

2
+ 𝐸𝑚𝑖𝑛

𝑖 ∗ (2101 − 𝑈𝑖) 

= ∫ �̇�𝑖(𝑧) 𝑑𝑧
𝐵𝑌+1

𝐵𝑌+0.5

+∫ �̇�𝑖(𝑧) 𝑑𝑧
2101

𝐵𝑌+1

≈ 0.5 ∗ 𝐸𝐵𝑌
𝑖 + 𝑅𝐵𝑖. 

Thus, we have 

𝑈𝑖 ∗ [
𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖

2
] − (𝐵𝑌 + 0.5) ∗

𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖

2
+ 2101 ∗  𝐸𝑚𝑖𝑛

𝑖 ≈ 0.5 ∗ 𝐸𝐵𝑌
𝑖 + 𝑅𝐵𝑖 
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or 

𝑈𝑖 ≈
2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌

𝑖 ∗ (𝐵𝑌 + 1.5) + 𝐸𝑚𝑖𝑛
𝑖 ∗ (𝐵𝑌 − 4201.5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
. 

  □ 

Theorem 15 (boundary condition for 𝑼𝒊) 

A useful approximation of 𝑈𝑖 is obtained if the inequality condition 

2 ∗ 𝑅𝐵𝑖 < (2099.5 − 𝐵𝑌) ∗ (𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖 ) + 𝐸𝑚𝑖𝑛
𝑖  

is fulfilled. 

Proof: 

First, we note that 𝑈𝑖 > 𝐵𝑌: 

2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1.5) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 − 4201.5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
> 𝐵𝑌 

2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1.5) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 − 4201.5) > 𝐵𝑌 ∗ (𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ) 

2 ∗ 𝑅𝐵𝑖 + 1.5 ∗ 𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖 ∗ (2 ∗ 𝐵𝑌 − 4201.5) > 0. 

Then we show that 𝑈𝑖 < 2101: 

2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1.5) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 − 4201.5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
< 2101 

2 ∗ 𝑅𝐵𝑖 + 𝐸𝐵𝑌
𝑖 ∗ (𝐵𝑌 + 1.5) + 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 − 4201.5) < 2101 ∗ (𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ) 

2 ∗ 𝑅𝐵𝑖 < (2099.5 − 𝐵𝑌) ∗ 𝐸𝐵𝑌
𝑖 + (2101.5 − 𝐵𝑌) ∗ 𝐸𝑚𝑖𝑛

𝑖  

2 ∗ 𝑅𝐵𝑖 < (2099.5 − 𝐵𝑌) ∗ 𝐸𝐵𝑌
𝑖 + (2099.5 − 𝐵𝑌) ∗ 𝐸𝑚𝑖𝑛

𝑖 + 𝐸𝑚𝑖𝑛
𝑖  

2 ∗ 𝑅𝐵𝑖 < (2099.5 − 𝐵𝑌) ∗ (𝐸𝐵𝑌
𝑖 + 𝐸𝑚𝑖𝑛

𝑖 ) + 𝐸𝑚𝑖𝑛
𝑖  

  □ 

Theorem 16 (calculation of 𝑻𝒊) 

The point of emission neutrality is given by 

𝑇𝑖 =
𝐸𝐵𝑌
𝑖 ∗ 𝑈𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 + 0.5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
. 
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Proof: 

We insert 𝑇𝑖 in equation (11) and obtain the equation 

�̇�𝑖(𝑇𝑖) = 𝐸𝐵𝑌
𝑖 −

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖

𝑈𝑖 − 𝐵𝑌 − 0.5
∗ (𝑇𝑖 − 𝐵𝑌 − 0.5) 

which we solve for 𝑇𝑖: 

𝐸𝐵𝑌
𝑖 ∗ (𝑈𝑖 − 𝐵𝑌 − 0.5) = (𝐸𝐵𝑌

𝑖 − 𝐸𝑚𝑖𝑛
𝑖 ) ∗ (𝑇𝑖 − 𝐵𝑌 − 0.5) 

(𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ) ∗ 𝑇𝑖 = 𝐸𝐵𝑌
𝑖 ∗ (𝑈𝑖 − 𝐵𝑌 − 0.5) + (𝐸𝐵𝑌

𝑖 − 𝐸𝑚𝑖𝑛
𝑖 ) ∗ (𝐵𝑌 + 0.5) 

𝑇𝑖 =
𝐸𝐵𝑌
𝑖 ∗ 𝑈𝑖 − 𝐸𝑚𝑖𝑛

𝑖 ∗ (𝐵𝑌 + 0.5)

𝐸𝐵𝑌
𝑖 − 𝐸𝑚𝑖𝑛

𝑖
. 

  □ 

Remark 20 (year of emission neutrality) 

The year when the emission power function is zero is given by  

⌊𝑇𝑖⌋, 

the year of emission neutrality, i. e. the year, when the emissions are zero or negative, is given by 

⌊𝑇𝑖⌋, if ∫ �̇�𝑖(𝑧)
⌊𝑇𝑖⌋+1

⌊𝑇𝑖⌋
𝑑𝑧 < 0 and ⌈𝑇𝑖⌉, if ∫ �̇�𝑖(𝑧)

⌊𝑇𝑖⌋+1

⌊𝑇𝑖⌋
𝑑𝑧 > 0. 
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3.3 Smooth Pathway Models 

3.3.1 Smooth Pathway Model (SPM) 

Raupach et al. propose a formula for deriving a national pathway from a national budget where the 

slope at the end of the base year can be specified (Raupach, et al., 2014). This allows a smooth tran-

sition from the previous emissions trajectory up to the end of the base year to the emissions trajectory 

after the base year.  

The so-called Smooth Pathway Formula for the emission power �̇�𝑖, i. e. the derivative of emissions 

with respect to time (the emissions per unit of time), of the country i at a point of time 𝑧 ≥ 𝐵𝐽 + 1 is: 

�̇�
𝑖
(𝑧)  =  �̇�𝐵𝑌+1

𝑖 (1 +  (𝑟𝑖 + 𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚
𝑖(𝑧−𝐵𝑌−1), (12) 

where 

�̇�𝐵𝑌+1
𝑖   emission power of the country i at the end of the base year, 

𝑟𝑖  change rate of the emission power of the country i at the end of the base year 

(
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) and 

𝑚𝑖  the mitigation rate (or the decay parameter) of the country i. 

The mitigation rate 𝑚𝑖 is determined such that the allocated remaining budget of the country i (𝑅𝐵𝑖) 

is met: 

∫ �̇�𝑖(𝑧) 𝑑𝑧 =  𝑅𝐵𝑖.
∞

𝐵𝑌+1

 

Thus, we obtain 

∫ �̇�𝑖(𝑧) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= ∫ �̇�𝐵𝑌+1
𝑖 (1 + (𝑟𝑖 +𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= �̇�𝐵𝑌+1
𝑖 ∫ 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 + �̇�𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖)∫ (𝑧 − 𝐵𝑌 − 1)𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧
∞

𝐵𝑌+1

 = 
∞

𝐵𝑌+1

 

= �̇�𝐵𝑌+1
𝑖 [

−1

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞

 

+�̇�𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖) [

−(𝑧 − 𝐵𝑌 − 1)

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) −
1

(𝑚𝑖)2
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞
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= �̇�𝐵𝑌+1
𝑖 [

1

𝑚𝑖
] + �̇�𝐵𝑌+1

𝑖 (𝑟𝑖 +𝑚𝑖) [
1

(𝑚𝑖)2
] = 𝑅𝐵𝑖. 

With the time 𝑇𝑖 = 
𝑅𝐵𝑖

�̇�𝐵𝑌+1
𝑖  defined by the remaining budget of the country i and the emission power 

of the country i at the end of the base year we obtain 

𝑇𝑖(𝑚𝑖)
2
− 2𝑚𝑖 − 𝑟𝑖 = 0. 

Thus, if 𝑟𝑖 > − 1/𝑇𝑖, the mitigation rate 𝑚𝑖 is given by 

𝑚𝑖  =  
1 + √1 + 𝑟𝑖𝑇𝑖

𝑇𝑖
, 

There is otherwise no solution for the mitigation rate 𝑚𝑖. In this rare case a simple exponential decay 

function is used:  

�̇�𝑖(𝑧)  =  �̇�𝐵𝑌+1
𝑖 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1). 

Since we are more interested in the emissions of the country i in the year t (𝐸𝑡
𝑖) than in the emission 

power at a point of time z, we integrate equation (4) and obtain: 

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

−�̇�𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌) + 2𝑚𝑖+𝑟𝑖] 

+�̇�𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌−1)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌 − 1) + 2𝑚𝑖 + 𝑟𝑖]. 

Supplementary information containing mathematical details on the properties of the formula in equa-

tion (12) can be retrieved from the “Supplementary Text“ at https://static-con-

tent.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFncli-

mate2384_MOESM461_ESM.pdf. 

  

https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
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3.3.2 Generalised Smooth Pathway Model (GSPM) 

In order to allow for net negative emissions, we generalise equation (12) using the following function 

for the emission power, i. e. the derivative of emissions with respect to time or the emissions per unit 

of time, of the country i at a point of time 𝑧 ≥ 𝐵𝐽 + 1: 

�̇�
𝑖
(𝑧)  =  𝑝

∞
+ (𝑝

0
+ 𝑝

1
(𝑧 − 𝐵𝑌 − 1))  𝑒−𝑝2(𝑧−𝐵𝑌−1), (13) 

where 

the parameter 𝑝∞ is the emission power at infinity and the parameters 𝑝0, 𝑝1 and 𝑝2 are determined 

in a way that the following constraints hold 

(1) �̇�𝑖(𝐵𝑌 + 1) = �̇�𝐵𝑌+1
𝑖 , 

(2)  
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖 

(3)  ∫ �̇�𝑖(𝑧) 𝑑𝑧 = 
2101

𝐵𝑌+1
𝑅𝐵𝑖 

with 

�̇�𝐵𝑌+1
𝑖   emission power of the country i at the end of the base year, 

𝑟𝑖  change rate of the emission power of the country i at the end of the base year, 

𝑅𝐵𝑖 remaining budget of the country i in the period starting at the end of the base year and ending 

in at the end of the year 2100. 

The first constraint leads to 𝑝0 = �̇�𝐵𝑌+1
𝑖 − 𝑝∞.  

The second constraint leads to 𝑝1 = �̇�𝐵𝑌+1
𝑖 𝑟 + (�̇�𝐵𝑌+1

𝑖 − 𝑝∞)𝑝2. 

The emissions of the country i in the year t (𝐸𝑡
𝑖) are obtained by integrating equation (13): 

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

[𝑝∞(𝑧 − 𝐵𝑌 − 1) −
𝑝0

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1(𝑧−𝐵𝑌−1)

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1

𝑝2
2 𝑒

−𝑝2(𝑧−𝐵𝑌−1)]
𝑧=𝑡

𝑧=𝑡+1

. 

Thus the parameters  𝑝1 and 𝑝2 are defined implicitly by one linear and one non-linear equation. In 

general, this system of equations can only be solved iteratively. 
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3.4 Smart Pathways Models based on Annual Change Rates (SPMCR)11 

In the SPMCR approaches national emissions pathways meeting a national budget are derived indi-

rectly via an assumption about the property of the annual emissions change rates of the country (𝑅𝑅𝑡
𝑖). 

In contrast to the models presented above there is no need to find out and discuss the properties of 

the trajectory of the emissions obtained from the model, because the trajectory of emissions is deter-

mined beforehand. 

This leads to the following approaches for the emissions of the country i in the year t: 

𝐸𝑡
𝑖 = 𝐸𝑡−1

𝑖 ∗ (1 + 𝑅𝑅𝑡
𝑖) (14) 

A large variety of functions for 𝑅𝑅𝑡
𝑖 are imaginable. In practice, these functions should map a mean-

ingful course that can be justified, for example, economically, technologically or politically. 

The functions for 𝑅𝑅𝑡
𝑖 can also be defined in more than one section. This can be useful when taking 

into account net negative emissions. For example, a constant reduction amount can be used when the 

emissions fall below a threshold until the emissions reach a predefined minimum value. 

If you want to indicate a concrete continuous function in one section such, that the resulting emissions 

meet a given budget, you can start with a family of curves with a free parameter and then determine 

this parameter iteratively.  

We use the scenario types RM 1 – 5 based on annual change rates [cf. (Sargl, et al., 2023b), (Sargl, 

et al., 2023a), (Sargl, et al., 2021) and (Wiegand, et al., 2021)]. For a comprehensive mathematical 

description of the RM Scenario Types, we refer to the following paper: (Wolfsteiner & Wittmann, 

2023a). 

 
11 Here is an overview of the tools we offer for this approach: https://climate-calculator.info. 

https://doi.org/10.5281/zenodo.4540475
https://climate-calculator.info/
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scenario type 
course of the annual 

change rates 

basic function type of the 

annual reduction rates 

course of the annual 

reduction amounts 

course of the 

emission pathways 

RM-1-const 
linear, 

no curvature  y = const concave convex 

RM-2-exp 
concave, 

curved to the right  𝑦 = 𝑒𝑥 

u-shaped 
s-shaped 

(first concave then 

convex) 

RM-3-lin 
linear, 

no curvature  𝑦 = 𝑎𝑥 + 𝑏 

RM-4-quadr 
concave, 

curved to the right  𝑦 = 𝑎𝑥2 + 𝑏 

RM-5-rad 
convex, 

curved to the left 
 𝑦 = 𝑎√𝑥 + 𝑏 

RM-6-abs 
concave,  

curved to the right 
 - constant linear 

Table 1: Overview of scenario types RM 1 – 6 

RM-1, RM-2, …, RM-5 represent a concretisation of the approach in formula (14) and RM-6 is 

equivalent to the GLPM. 
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4 List of abbreviations 

⌊ ⌋ floor function. The floor function takes as an input a real number T and gives as an output 

⌊𝑇⌋ the greatest integer less than or equal to T 

⌈ ⌉ ceiling function. The ceiling function takes as an input a real number T and gives as an 

output ⌈T⌉ the least integer greater than or equal to T 

𝑎𝑖 parameter of the straight line 𝑎𝑖 𝑧 + 𝑏𝑖 

𝑏𝑖 parameter of the straight line 𝑎𝑖 𝑧 + 𝑏𝑖 

𝐵 global emissions in the convergence period (global budget in the convergence period) 

𝐵𝑖 emissions of the country i in the convergence period (national budget of the country i in 

the convergence period) 

𝐵𝑡 (= ∑ 𝐸𝑙
𝑡
𝑙=𝐵𝑌+1 ) global emissions until the year t (global budget until the year t), 

𝐵𝑡
𝑖 (= ∑ 𝐸𝑙

𝑖𝑡
𝑙=𝐵𝑌+1 ) emissions of the country i until the year t (national budget of the country 

i until the year t) 

𝐵𝑌 base year (space of time) 

C weighting of the population 

𝐶𝑡 weighting of the population in the year t 

𝐶�̂� weighting of the population in the year t in C&C 

𝐶�̃� weighting of the population in the year t in LIMITS 

𝐶�̅� weighting of the population in the year t in the RF 

�̌�𝑡
𝑖 weighting of the population of the country i in the year t used to obtain the national budget 

of the country i 

C&C Contraction and Convergence Model 

𝐶𝐴𝑡 cap in the year t 

CDC Common but Differentiated Convergence Model 

CY convergence year 

𝐸𝐵𝑌 global emissions in the base year 

𝐸𝐵𝑌
𝑖  emissions of the country i in the base year 
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𝐸𝐶𝑌 global emissions in the convergence year 

𝐸𝐶𝑌
𝑖  emissions of the country i in the convergence year 

𝐸𝑡 global emissions in the year t 

𝐸𝑡
𝑖 emissions of the country i in the year t 

𝐸𝑡
�̂� emissions of the country i in the year t in C&C 

𝐸𝑡
�̃� emissions of the country i in the year t in LIMITS 

𝐸𝑡
𝑖̅̅̅ emissions of the country i in the year t in the RF 

𝐸𝑡
𝑖_𝑏𝑎𝑢 emissions of the country i in the year t in a business-as-usual scenario 

𝐸𝑡
𝑜𝑇𝐻 remaining global emissions in the year t for the countries over the threshold in the year t 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 emissions in the year t – 1 of the countries over the threshold in the year t 

�̇�𝑖(𝑧) emission power emission power (the derivative of emissions with respect to time, emis-

sions per unit of time) of the country i at a point of time z 

�̇�𝐵𝑌+1
𝑖  emission power of the country i at the end of the base year 

EPM Emission Probability Model 

ESPM Extended Smooth Pathway Model 

𝑓𝑖 income PDF of the country i 

𝑓𝑖 emission PDF of the country i, scaled PDF 

𝐹 cumulative distribution function, i. e. the probability of an income equal to z or less is 

𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

𝐹−1 inverse function of the cumulative distribution function F 

𝑓𝑖(𝑧; 𝑝𝑖)  assumed income PDF of the country i with parameters 𝑝𝑖 to be estimated 

𝑓𝑖(𝑧; 𝑝𝑖)  estimated emission PDF of the country i with parameters 𝑝𝑖 

G-C&C Generalised C&C 

G-Limits Generalised LIMITS 

GSPF General Smooth Pathway Formula 

𝑖 country 
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𝐼𝐶𝑡
𝑖 implicit weighting of the population of the country i in the year t  

𝑗 country 

𝑚𝑖 mitigation rate (or the decay parameter) of the country i 

𝐿 explicit representation of the Lorenz curve 

�̅� parametric representation of the Lorenz curve 

Ľi Lorenz curve of the country i 

LIMITS LIMITS Model 

P (frozen) global population 

𝑃𝑖 (frozen) population of the country i 

𝑃𝐵𝑌 global population in the base year 

𝑃𝐵𝑌
𝑖  population of the country i in the base year 

𝑃𝐶𝑌 global population in the convergence year 

𝑃𝐶𝑌
𝑖  population of the country i in the convergence year 

𝑃𝑡 global population in the year t 

𝑃𝑡
𝑖 population of the country i in the year t 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t 

PDF probability density function 

𝑃𝑇 percentage 

𝑟𝑖 change rate of the emission power of the country i at the end of the base year 

(
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) 

𝑅𝐵 global remaining budget 

𝑅𝐵𝑖 remaining budget of the country i (remaining national budget of the country i) 

𝑅𝐵𝑐𝑜𝑟
𝑖  corrected remaining budget of the country i or corrected national remaining budget of the 

country i (𝑅𝐵𝑐𝑜𝑟
𝑖 = 𝑅𝐵𝑖 + 0.5 ∗ 𝐸𝐵𝑌

𝑖 ) 

RF Regensburg Formula 

𝑅𝑅𝑡
𝑖 emission reduction rate of the country i (

𝐸𝑡
𝑖

𝐸𝑡−1
𝑖 − 1) 
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𝑠 scaling factor 

𝑠𝑖 scaling factor  of the country 𝑖 (
average emissions in country 𝑖

average income in country 𝑖
) 

SPF Smooth Pathway Formulae 

SPFR Smooth Pathway Formula from Raupach et al. 

t, T year 

𝑇𝑖 point of time defined by the remaining budget of the country i and the emission power of 

the country i at the end of the base year (𝑇𝑖 = 
𝑅𝐵𝑖

�̇�𝐵𝑌+1
𝑖 ) (SPM, GSPM), 

point of time when the emission power is zero, point of time of emission neutrality 

(�̇�𝑖(𝑇𝑖) = 0) (LPM) 

�̃�𝑖 an approximation of 𝑇𝑖 (SLPM) 

𝑇𝐻𝑡 threshold in the year t 

𝑈𝑖 point of time when the emission power reaches its minimum (�̇�𝑖(𝑈𝑖) = 𝐸𝑚𝑖𝑛
𝑖 ) 

(𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve �̌�𝑖 of the country i, i. e. 𝑦𝑗
𝑖 = �̌�𝑖  (𝑥𝑗

𝑖) 

z point of time (LPM, GLPM, SPM, GSPM),  

income (EPM) 
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