

ARTISANE food - Workshop Building a quantitative risk assessment

L. Guillier & F. Tenenhaus 21st November 2022

Quantitative risk assessment

- 1. Define the question to be answered
 - 1.1 Which hazard (*E. coli* stx+, *E. coli* O157, EHEC,...)
 1.2 Which food? (*fresh minced steak*, 20% mg steak, ...)
 1.3 Which population (*children <5 years*, <15 years, ...)
 1.4 What is the exposure scenario (*product consumed raw* or rare,...)
 - 1.5 What purpose(s)? Decision-making based on the response (Determine the impact of the control measure₁, calculate the residual risk, ...)

Quantitative risk assessment

- 2. Define the structure of the QMRA model
 - 2.1 What is the starting point of the model?
 - 2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?
 - 2.3 What data is available? What data do I need to acquire?
 - 2.4 Processing of data before use in the QMRA

- 2. Define the structure of the QMRA model
 - 2.1 What is the starting point of the model?
 - Must be upstream of the control measure
 - Often starts from the point where the most knowledge is available
 - 2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?2.3 What data is available? What data do I need to acquire?2.4 Processing of data before use in the QMRA

2. Define the structure of the QMRA model

- 2.1 What is the starting point of the model?
- 2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?

Starting from the production diagram

- Selecting the steps that have an assumed impact on the hazard
- What basic phenomena (growth, destruction, mixing, partitioning, shrinkage, cross-contamination) come into consideration?
- 2.3 What data is available? What data do I need to acquire?2.4 Processing of data before use in the QMRA

The different stages (2)

2. Define the structure of the QMRA model

2.1 What is the starting point of the model?

2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?

This work is used to define the modelling assumptions.

- Storage of raw materials has no effect on contamination.
- There is no cross-contamination (everything comes from the raw materials)

• •••

2. Define the structure of the QMRA model

- 2.1 What is the starting point of the model?
- 2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?
- 2.3 What data is available? What data do I need to acquire?
- 2.4 Processing of data before use in the QMRA

2. Define the structure of the QMRA model2.3 What data is available? What data do I need to acquire?

2. Define the structure of the QMRA model

- 2.1 What is the starting point of the model?
- 2.2 Which stages of the manufacturing process, transport and storage, and consumer preparation should be included?
- 2.3 What data is available? What data do I need to acquire?
- 2.4 Processing of data before use in the QMRA Workshop_AQR1.r (Variability characterisation work)

The tool used :

fitdistrplus: <u>http://cran.at.r-project.org/web/packages/fitdistrplus/index.html</u>

Pouillot, R., and M.-L. Delignette-Muller. 2010. Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages. International Journal of Food Microbiology 142:330-340.

Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R package for fitting distributions. Journal of statistical software, 64(4), 1-34.

RStudio										
File Edit	Code View Plots	Session Build	Debug P	rofile Too	ls Help					
• • •	🕣 • 🔒 🔒 🗧	Go to file/fur	iction	🔠 🕶 Add	dins 💌					
represe	ent_each_metadata.r ×							Environment	History	Conne
45 46 47 48 49 50 51 52 53 54 55	Source on ggplot(temp_dat geom_rect(aes geom_rect(aes geom_rect(aes geom_rect(aes geom_text(aes geom_text(aes scale_x_contin theme_minimal texms.	Save (xaframe) + (xmin = -15.5 xmax = -5, y (aes(x, y, gro (xmin = 0, ym xmax = n/25, (-15, nr*4, 1 (n/25, nr*2, nuous(breaks = () +	, ymin = max = nr up = nr) in = nr* ymax = abel = v label = seq(0,	<pre>nr*4 - *4 + 1.4 , fill = 2 - 0.7, nr*2 + ((ariable) n), colo x1, x2),</pre>	1.4, 1.4, - "blue", - "blue",	<pre>*Run ** *Run ** *Color = N 1 = "blue", * "blue", ** ** ** ** ** ** ** ** ** ** ** ** **</pre>	→ Source → Sou	axis.text. panel.grid panel.grid panel.grid panel.grid plot.margi)	To Console y = eler .minor.x .major.x .major.y .minor.y n = marg	ment_b x = el x = el y = el y = el gin(20
57	axis.title.	x = element_b	lank().			Install from:		⑦ Confi	guring Repos	sitories
58	•					Repository	(CRAN)			•
74:1 Console	(Top Level) \$	¢				Packages (se fitdistrplus	parate multiple with	space or comma):	
C:/Users/ + geo + geo + geo = 8.5, + geo check_ + scal	Lguillier/Desktop/Proj m_polygon(aes(x m_rect(aes(xmin xmax m_text(aes(-15 check_overlap m_text(aes(n/2) overlap = TRUE; e_x_continuous me minimal() +	<pre>ts/CARE/rStrainSele (, y, group = n = 0, ymin = c = n/25, ymax , nr*4, label = TRUE) + 5, nr*2, label) + (breaks = seq()</pre>	tt/ ⇔ nr), fil nr*2 - 0 : = nr*2 = Variab = n), c	l = "blu .7, + 0.7), le), col color = ' 2), labe	ue", colo fill = " lor = "wh 'white", els = seq	Install to Libr C:/Program	rary: Files/R/R-3.6.1/libra pendencies	ry [Default]	Can	▼ cel

1.	How to define a distribution?
2.	How to identify candidate
	distributions?
3.	How to fit a distribution?
4.	How to characterize uncertainty

Skewness and kurtosis plot for a continuous variable

square of skewness

It's up to you!

1. importing data
data<-read.csv("portions.csv",header=TRUE,sep=';')</pre>

2. Which distribution laws? descdist(data\$Portion) # Cullen & Frey graph

3. Adjustment f_gamma<-fitdist(data\$Portion, "gamma") # Gamma distribution adjustment f_lnorm<-fitdist(data\$Portion, "lnorm") # Fit lognormal distribution</p>

plot(f_gamma) plot(f_lnorm) summary(f_gamma) summary(f_lnorm)

hist(rgamma(1000,f_gamma\$estimate[1],f_gamma\$estimate[2]))

1.	How to define a distribution?
2.	How to identify candidate
	distributions?
3.	How to fit a distribution?
4	How to characterize uncertainty

By graphic observation: Distribution 1 Distribution 2

Q-Q plot

Empirical and theoretical CDFs

P-P plot

Empirical and theoretical CDFs

Quantitative risk assessment

Make a representation of the model

Make a representation of the model

Make a representation of the model (cf. DAG_AQR.pdf)

Describe the mathematical relationships of the nodes and between the nodes (see Variables and equations QMRA.pdf)

Model variables and equations	Abreviation	Definition	Unit
Initial contamination ingredient 1			
Average	M _{N01}	Estimated from self-checks (autocontroles_ing1.csv) and R script (formation_AQR1.r)	log ₁₀ (cfu/g)
Standard deviation	S _{N01}	Estimated from self-checks (autocontroles_ing1.csv) and R script (formation_AQR1.r)	log ₁₀ (cfu/g)
Concentration in ingredient 1	N ₀₁	Normal (M _{N01} , S _{N01})	log ₁₀ (cfu/g)
Concentration in the mix	NO	log10((10 ^{N01} p1+10 ^{N02} p2))	log ₁₀ (cfu/g)
Growth in the mix			
Average temperature of the cold room	M _{T1}	4	°C
SD of storage temperature of raw materials	S _{T1}	1	°C
Storage temperature of raw materials	T ₁	Normal (M_{T1} , S_{T1})	°C
Storage time	t ₁	10	hours
Ratkowski model constant	а	0.033	-

QMRA.xlsx

Measuring the impact on risk of different scenarios:

- Reduction of the initial average N01 contamination by $0.5 \log_{10}$
- Increase in heat treatment time (t2) from U(5-6) to U(6-7)
- Treatment temperature (T2): increase from 70 to 73°C
- Cooling temperature (T3) from 6°C to 4°C

What control measure do you retain?

Thank you!

Variables and equations of the AQR model	Abbreviation	Definition	Unit
Initial contamination ingredient 1			
Average	M _{N01}	Estimated from self-checks (autocontroles_ing1.csv) and R script (workshop_variability.r)	log ₁₀ (cfu/g)
Standard deviation	S _{N01}	(autocontroles_ing1.csv) and R script (workshop_variability.r)	log ₁₀ (cfu/g)
Concentration in ingredient 1	N ₀₁	Normal (M _{N01} , S _{N01})	log ₁₀ (cfu/g)
Initial contamination ingredient 2			
Average	M _{N02}	-1,3	log ₁₀ (cfu/g)
Standard deviation	S _{N02}	0,3	log ₁₀ (cfu/g)
Concentration in ingredient 2	N ₀₂	Normal ($M_{_{NO2}}$, $S_{_{NO2}}$)	log ₁₀ (cfu/g)
Preparation of the mix			
Share of ingredient 1	p1	Unif(0.7 - 0.8)	
Share of ingredient 2	p2	1-p1	
Concentration in the mix	NO	log10((10 ^{N01} · p1+10 ^{N02} · p2))	log ₁₀ (cfu/g)
Storage of the mix			
Average temperature	M_{T1}	4	°C
SD temperatures	S_{T1}	1	°C
Storage temperature of the mix	T_1	Normal (M _{T1} ,S _{T1})	°C
Storage life of the mix	t_1	10	hours
Growth model parameter	а	0.033	-
Average Tmin	M_{Tmin}	-2	°C
SD of Tmin	S_{Tmin}	0.25	°C
Minimum growth temperature	T_{min}	$Normal\left(M_{Tmin},S_{Tmin}\right)$	°C
Cooking			
Average cooking temperature	M_{T2}	65	°C
SD of the cooking temperature	S _{T2}	2	°C
Cooking temperature	T_2	Normal (M_{T2} , S_{T2})	°C
Cooking time	t_2	Uniform(5,6)	minutes

Reference temperature	T_{ref}	70	°C
Mean reduction time at Tref	M_{Dref}	1	minutes
SDreduction time at Tref	S_{Dref}	0,01	
Decimal reduction time at Tref	$\mathrm{D}_{\mathrm{ref}}$	Normal (M_{Dref} , S_{Dref})	minutes
Value of z	Z	8	°C
Cooling			
Storage temperature of the cooked food	T_3	Normal (6,1.5)	°C
Shelf life	t ₃	140	hours
Consumption			
Parameter scale of the Gamma law	param1	Estimated from the survey (portions.csv) and R script (workshop_variability.r) Estimated from survey	
Parameter rate of the Gamma law	Param2	(portions.csv) and R script (workshop variability.r)	
Quantity consumed in the tray	portion	Gamma (param1, param2)	g
Dose response			
Dose-response parameter	r	1.10-10	
Equations			
Growth rate during storage of the mix			
	μ_1	$(a \cdot (1_1 - 1_{\min}))^2$	h^{-1}
Contamination before cooking	μ_1 N ₁	$(a \cdot (1_1 - 1_{\min}))^2$ N ₀ +log10(exp(µ ₁ · t ₁))	h ⁻¹ \log_{10} cfu/g
Contamination before cooking Contamination after cooking	μ_1 N_1 N_2	$(a \cdot (1_1 - 1_{min}))^2$ N ₀ +log10(exp(µ ₁ · t ₁)) N ₁ -(t2.10 ^{(T2-Tref)/z})/Dref	h ⁻¹ log ₁₀ cfu/g log ₁₀ cfu/g
Contamination before cooking Contamination after cooking Growth rate during storage of cooked food	μ1 Ν1 Ν2 μ3	$(a \cdot (1_1 - 1_{min}))^2$ $N_0 + log 10(exp(\mu_1 \cdot t_1))$ $N_1 - (t2.10^{(T2-Tref)/z})/Dref$ $(a \cdot (T_3 - Tmin))^2$	h^{-1} log ₁₀ cfu/g log ₁₀ cfu/g h-1
Contamination before cooking Contamination after cooking Growth rate during storage of cooked food Contamination after storage	μ1 N1 N2 μ3 N3	$(a \cdot (1_1 - 1_{min}))^2$ $N_0 + \log 10(exp(\mu_1 \cdot t_1))$ $N_1 - (t2.10^{(T2-Tref)/z})/Dref$ $(a \cdot (T_3 - Tmin))^2$ min(9, N2+log ₁₀ (exp($\mu_3 \cdot t_3$)))	h^{-1} $\mathrm{log_{10}}\ \mathrm{cfu/g}$ $\mathrm{log_{10}}\ \mathrm{cfu/g}$ h^{-1} $\mathrm{log_{10}}\ \mathrm{cfu/g}$
Contamination before cooking Contamination after cooking Growth rate during storage of cooked food Contamination after storage Dose ingested	μ ₁ N ₂ μ ₃ N3 dose	(a·(1 ₁ - 1 _{min})) ² N ₀ +log10(exp(µ ₁ · t ₁)) N ₁ -(t2.10 ^{(T2-Tref)/z})/Dref (a· (T ₃ -Tmin)) ² min(9, N2+log ₁₀ (exp(µ ₃ · t ₃))) 10 ^{N3} • portion	h^{-1} $\mathrm{log_{10}}\ \mathrm{cfu/g}$ $\mathrm{log_{10}}\ \mathrm{cfu/g}$ h^{-1} $\mathrm{log_{10}}\ \mathrm{cfu/g}$ cfu
Contamination before cooking Contamination after cooking Growth rate during storage of cooked food Contamination after storage Dose ingested Risk for 1 batch	μ ₁ N ₂ μ ₃ N3 dose risk	$(a \cdot (1_1 - 1_{min}))^2$ $N_0 + \log 10(\exp(\mu_1 \cdot t_1))$ $N_1 - (t2.10^{(T2-Tref)/z})/Dref$ $(a \cdot (T_3 - Tmin))^2$ $min(9, N2 + \log_{10} (\exp(\mu_3 \cdot t_3)))$ $10^{N3} \cdot \text{portion}$ $((1-\exp(-r \cdot \text{ dose})))$	h^{-1} log ₁₀ cfu/g log ₁₀ cfu/g h^{-1} log ₁₀ cfu/g cfu Probability

Connexion

		•
-Autenticación	m	
Usuario		
Clave		
	ldioma	Español ~
¿Ha olvidado su contraseña?	Enviar	
		Registrate aquí
Limitación de responsabilidad		

Create a model

Initial prevalence and concentration

- Contamination prevalence = 6,29 %
- Initial conc at factory (log CFU/g)
 - Max = 5,7
 - Mean = -0,28
 - SD = 0,9
 - Min = -1,4

Modelling exposure and concentration

Modelling exposure and concentration

Environmental parameters at each step

- Durations step (hours):
 - Retail: max = 729 / min = 24 / Mean = 462
 -> TRIANGULAR
 - Transport: max = 4 / min = 0,5 -> UNIFORM
 - Consumption: max = 720 / min = 24 / Mean = 153
- Temperature step (°C)
 - Retail : max = 23 / min = 0 / Mean = 3,54 / SD = 1,72
 - Transport: max = 9,5 / min = 4 / Mean = 7
 - Consumption : max = 17 / min = 0 / Mean = 7 / SD = 2,7
 NORMAL

Modèle dose réponse

Launching simulations / model outputs

Entrées vs sorties

Case study : *Listeria monocytogenes* in sausages

Perez-Rodriguez et al. (2017) cooked meat and sausage

Initial contamination

Input variable	Description	Distribution/ model/value	Unit
N ₀	Initial	Normal (1.05, 0.44)	Log10 CFU/g
Р	Prevalence	7.5	%
W	Sausage weight	100	Grams

First storage

At the end of the first storage; in average the mean concentration increase of 0,43 log ufc/g

Second storage

Input variable	Description	Distribution/ model/value	Unit
t _{st}	Storage at the factory duration	Uniform (0, 36)	h
T _{st}	Storage temperature at the factory	5	°C

Retail

Input variable	Description	Distribution/ model/value	Unit
t _R	Storage time at retailing	Uniform (2, 6)	h
T _R	Temperature at retailing	Normal distribution (3.7, 1.78)	°C

Transport

Input variable	Description	Distribution/ model/value	Unit
t _{TR}	Transport to home time	Uniform (0.25, 2)	h
T _{TR}	Transport to home temperature	Triangular distribution (10; 4; 25)	°C

Conservation

Input variable	Description	Distribution/ model/value	Unit
t _н	Household storage time	Normal (103,2, 62,4)	h
Т _н	Household temperature	Normal (6.62, 2.56)	°C

Consumption

Input variable	Description	Distribution/ model/value	Unit
Sz	Serving size	Normal distribution (50, 5)	Grams

Dose Response model

Equation:

1-exp(-r × pow (10, dose) × serving)

Questions

- What is the distribution of the risque of listeriosis by portion (median, minimum, maximum) with 1000 iterations ? For sensitive population ? For population > 65 years old?
- If the temperature varies between 0°C et 3°C during transport between retailing and consumer home, what is the impact on the risk of listeriosis?