

"From µ to m" us temporal interactions yield ms reaction-time changes for Cl users

⊠ ignacio.calderondepalma@radboudumc.nl

1881: Reaction times capture temporal interactions in electrical hearing

Ignacio Calderon De Palma¹, Andy J. Beynon¹, A. John van Opstal², Joerg Pesch³, Emmanuel A. M. Mylanus¹, Marc M. van Wanrooij² Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands Department of Biophysics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands Cochlear Benelux, Mechelen, Belgium

Questions

1) **Reaction times** as an **objective measure** of temporal interactions?

2) What are the effects of stimulus amplitude, polarity and pulse separation on the time it takes for a CI user to make a **decision**?

3) What are **plausible mechanisms** for reaction time changes for pulses with short separation?

Statistical model

Methods

Analysis of variance applied to reciprocal reaction times (promptness). Increasing promptness = faster response Trials without responses included as interval censored data ([0-0.25] s⁻¹ or [4-∞] s).

Neurobiological model

Methods Decision Leaky integration H₁: Max h_{P.S}(t) sigmoid LATER unit x_{A,I,P,S}(t)→ decision thresho որ amplitude r^{-1} ~Normal($r_{A,I,P,S}/\lambda,\sigma_{S}$) H₃: ||Min,Max|| H1: Anodic sensitive 12: Cathodic sensitive H3: Dual contribution

A model for reaction time (rt), based on leaky integration of the input stimulus and a decision stage testing different hypotheses (H1, H2, H3). Subscripts indicate dependence on amplitude (A), inter-pulse interval (I), poalrity (P), and participant (S).

LATER stands for Linear Approach to Threshold at Ergodic Rate³.

Discussion

1) Reaction times are a valid method, being comparable to previous data^{1,2}. 2) Decreasing the inter-pulse interval leads to faster responses. In line with temporal integration at the auditory nerve.

3) Pulses with consecutive anodic phases interact more strongly than their cathodic **counterpart**, leading to shorter reaction times.

4) The best fit neurobiological model suggests the **need to account for both phases in** the process of latency generation.

53.1 dB

52.6 dB

52.0 dB

51.5 dB

50.9 dB

Results

Results

deviation estimate. R² for H3 (mean [range]): 0.78 [0.64 - 0.89]

information criteria (AIC) for the three models. Differences are relative to H3.

inter-pulse interval (μ s)

MOSAICS is a European Industrial Doctorate project funded by the European Union's Horizon 2020 framework programme for research and innovation under the Marie Sklodowska-Curie grant agreement

1. Karg, S. A., Lackner, C. & Hemmert, W. Temporal interaction in electrical hearing elucidates auditory nerve dynamics in humans. Hear. Res. 299, 10-18 (2013) 2. Guérit, F., Marozeau, J., Epp, B. & Carlyon, R. P. Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users. J. Assoc. Res. Otolaryngol. 21, 497-510 (2020). 3. Noorani, I. & Carpenter, R. H. S. The LATER model of reaction time and decision. Neurosci. Biobehav. Rev. 64, 229-251 (2016).