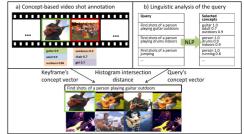


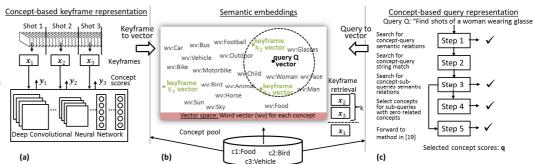
Query and Keyframe Representations for Ad-hoc Video Search


Foteini Markatopoulou^{1,2}, Damianos Galanopoulos¹, Vasileios Mezaris¹, Ioannis Patras² ¹Information Technologies Institute (ITI), CERTH, Thessaloniki, Greece ²Queen Mary University of London, London, UK

Problem and motivation

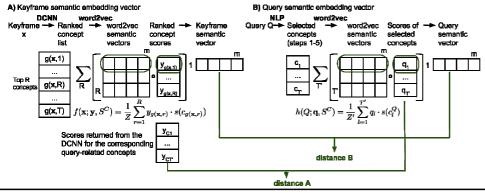
- Ad-hoc video search: retrieving, from a large video collection, video fragments (keyframes) that are related to a given query
- Typical solution: treat the query as a set of simple terms
- Motivation:
- Detecting the most useful parts of the query, e.g., subsequences that contain the main content that the user asks for retrieval
- Combining two different measures for the distance between the video shots and the target query, calculated on concept-based and semantic embedding representations

Background



- Each concept is enriched with additional information captured by Google or Wikipedia [20]
- An inverted index structure is used in order to associate the query with the concepts [4]
- A semi-automatic system [21], where the user is asked to choose keywords given a test query

Proposed Method


Method outline

- •(a) Concept-based keyframe representation: apply a DCNN in every keyframe
- •(c) Concept-based query representation: translate the query in a set of related concepts using NLP
- •(b) Semantic embeddings for concept-based query and keyframe representations: project both into a given semantic embedding space

Proposed solution

•Two different distances are combined in terms of arithmetic mean

Que	Query: Find shots of three people or more walking or bicycling						
on a bridge during daytime							
	Sub-queries	$C^Q (\theta = 0.8)$	q				
Step 1	Find shots ofdaytime	Ø	-				
Step 2	three people or more walking or bicycling on a bridge during daytime	three or more people	1.0				
Step 3	people walking	walking	1.0				
		bicycle-built-for-two	1.0				
	bicycling	bicycles	0.85				
		bicycling	0.84				
	bridge	suspension bridge	1.0				
	bridge	bridges	0.84				
	Sub-query daytime also found but						
	without corresponding concepts with ESA distance > θ						
Step 4	daytime	daytime outdoor	0.74				
		•					

Experimental results

- Datasets: TRECVID AVS 2016, TRECVID Video Search
- Test set: 600 and 100 hours, respectively
- Evaluated queries: 30 and 48, respectively
- A) FAR HATTER SERECTURE: MXINTAP (%) on the AVS16 dataset to investigate the parameters of the proposed method; (a) The transformation to the semantic embedding space is ignored; (b) The final distance from the query is calculated solely in the semantic embedding space; (c) The complete process is used, i.e., the final distance is the mean of the distances calculated in (a) and (b)

	A11	Excluding one step					
Steps	All	step 1	step 2	step 3	step 4	step 5	
(a) Concept-based representation	5.94	5.92	5.74	3.96	5.95	4.53	
(b) Semantic embeddings	3.77	3.86	2.98	3.22	3.75	2.80	
(c) Combination	6.35	6.51	5.77	4.37	6.27	4.99	

- Semantic embeddings: pre-trained Google News Corpus word2vec model
- **Keyframe representation:** 1346 concepts
- 1000 Imagenet concepts extracted using 5 pre-trained ImageNet DCNNs; fused in terms of arithmetic mean
- o 346 TRECVID SIN concepts extracted using 2 fine-tuned DCNNs, again fused

B) Comparisons: MXInfAP (%) for different compared AVS methods

Methods	AVS16		VS08		
(a) Literature metho	ods				
Tzelepis et al. [20]	4.16	8.27			
Ueki et al. [21]	5.65	7.24	7.24		
Norouzi et al. [15]	3.14	7.30	7.30		
(b) Top-4 TRECVID f	inalists				
Top-1	Le et al. [4]	5.4	Tang et al.	6.7	
Top-2	Markat. et al. [13]	5.1	Snoek al.	5.4	
Top-3	Liang et al. [6]	4.0	Ngo et al.	4.2	
Top-4	Zhangy et al. [23]	3.8	Mei et al.	4.1	
Proposed	6.35		9.11		