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D I S c |_ A I M E R Artificial Intelligence vs

Machine Learning




DATA SCIENTIST VS SOFTWARE ENGINEER

Data scientist

* Is good at modelling techniques and feature engineering

Is mainly focused on accuracy

Uses notebooks or similar for prototyping

Is not interested in model size, updateability, implementation stability

Software engineer
* Builds products

= Concerned about cost, performance, stability, safety, security, and release time
* Must scale solution and handle large amounts of data

* Maintains, evolves, and extends the product over long periods

by Christian Kaestner
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Al-BASED SYSTEM PROPERTIES AND SE
APPROACHES

Study

Bibliometrics

Al-based systems properties

SE approaches

Challenges

[134]

101 studies
(2005-2018)

safety, correctness

practices for the evaluation and
improvement of the software quality
of ML applications

ML quality assurance

[211] [38 studies 33 unique architecture and design patterns
(2008-2019) for ML systems
[23] |64 studies safety, robustness, reliability | verification and validation techniques for | verification and validation in
(2002-2007, safety-critical automotive systems DNNs
2013-2016)
[27] |37 studies correctness testing practices 18 challenges organized in 6
(2012-2018) dimensions: implementation
issues, data issues, model
issues, written code issues,
execution environment issues,
mathematical design issues
[166] [70 studies fairness, accuracy, safety, functional testing, test case generation and | 11 challenges
(2004-2019) consistency test oracle, integration testing, system
testing
[226] [138 studies correctness, model relevance, |testing workflow, testing components, test-| 4 testing challenges categories:
(2007-2019) robustness, security, data ing properties, application scenarios test input generation, test
privacy, efficiency, fairness, assessment criteria, oracle
interpretability problem, testing cost reduction
[180] [21 studies 29 best practices for ML systems in six cat-
(2017-2019) egories: data, training, coding, deployment,
team, governance
[208] [15 studies Model Evaluation, Deployment
(out of 906)
(2009-2018)
[115] [115 studies safety, security, ethics and all SWEBOK areas SE challenges for ML
(2003-2019) regulation, software structure, applications

testability, maintainability,
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SCOPE OF RESEARCH

Algorithm
18.1%

System
Infrastructure 45.0%
11.2%
Component

25.7%




MAIN CHALLENGES FACED IN THE

DEVELOPMENT OF Al/ML SYSTEMS
=

Al Ethics Requirement Explanation
on Failure  Imperfection Robustness

Training Data

Data
Configur... manage...
Collecting data Logging mechanisms ~ debt tools
Data

complextyl [Brivacy elsabilty dependen... Data quality

Interpretability

Handling data

Efficiency Safety Stability drift

Safety and Data Integ... Slicing  input
Scalability Fairness Stability Staleness availability data data data

Architecture
Evaluation
Changing boundari... antipatte...
Anything
Chaning
Everything

Risk factors for design

u Al Engineering u Al Software Quality & Architecture Design © Data Management ¥ Education
¥ Infrastructure M Integration B Model deployment B Model development M Operation Support
® Project Management B Requirement Engineering ™ Testing

Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbg, Tayana Conte: Software engineering for artificial
intelligence and machine learning software: A systematic literature review. CoRR abs/2011.03751 (2020)



SOME TAKEAWAYS

Empirical studies report Al software in various application domains,
with the main focus being Automotive, Finance, and Healthcare

Testing space for Al software is much larger, more heterogeneous and,
in many cases, it is difficult to formally define in comparison to
traditional software testing

Al development processes need to integrate infrastructures, processes
and tools for managing data as their integral parts



. is everywhere

The talk is not about new ML algorithms and solutions

It is about what we did and what we are doing

It is also a way to think of our work in terms of ML



ML SYSTEMS

They must offer predictions with given accuracy and precision

Usual requirements
Response time is affected by resource allocation
Computations can be executed on dedicated hardware (e.g., GPUs)

Parallelization is not useful if data are not properly partitioned

New requirements

Model quality also depends on the (hyper)-parameters of the learning algorithm
Response time and quality are often correlated
Fewer learning iterations allow for faster results but produce less accurate models

Results depend on used data



TWO PHASES

Training
Long-lasting batch activity (from several minutes to days)
Based on dedicated frameworks (e.g., Spark, TensorFlow, PyTorch)

Maximum time to complete a training process

Inference

Interactive activity that exploits generated models
Each computation lasts milliseconds or seconds
Response time of multiple requests aggregated and constrained

Quality of predictions cannot be easily computed



KNOWN LIMITATIONS (TRAINING)

Available frameworks do not support quality and time constraints on
carried out activities

Hyperparameters are defined at design time

They must be carefully tuned to train the model efficiently and precisely

Data partitioning can accelerate the computation at the cost of more
synchronization among executors

Resource allocation is key to fulfill time-based requirements

Proactive vs reactive solutions

Executors must be able to govern heterogeneous hardware



KNOWN LIMITATIONS (INFERENCE)

ML frameworks lack support for the specification of quality and time
requirements

Dynamic resource allocation is mandatory when the incoming
workload fluctuates

Requests must be scheduled to proper executors according to their hardware
capabilities and the state of the system

The quality of ML models at runtime cannot be directly monitored

Uncertainty can help estimate it and understand when a model must be re-trained



HOW HAVE WE TACKLED
THESE ISSUES?

FSE 2016
TSE 2021
ICSOC 2021

From the original presentations by G. Quattrocchi




TWO ENABLERS

*In collaboration with Prof. Alberto Leva

Containers (Docker)

= Fast actuation
= Precise actuation

= Better resource utilization

Control Theory*

= Fast decisions

Input Status Value l+
Measuring -
—>| System |—>| element —>O

\LError
= A priori guarantees Feedback‘ Command

Effector €&———— | Controller

. +
= Precise decisions Disturbance <>
+




DISTRIBUTED CONTROL OF CONTAINERS

One controller per container

Proportional-Integral (Pl) controllers

Next state computed in constant time

Workload split equally to container replicas

No synchronization is required

VM 1 VM 2
@ Container A SAME WORKLOAD Container D @
SAME SET-POINT
C Container B Container E @
C Container C (1) @

Container C (2)




ARCHITECTURE

Cloud
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DYNASPARK

DynaSpark extends Spark by introducing advanced and automated
resource management

* Vertical CPU scaling (CPU quotas)

* Resource contention among running applications

* Different strategies (e.g., Earliest Deadline First) to prioritize applications

Prototype deployed on MS Azure
* Precision (how close we reach the deadline)

* The closer it gets to a deadline the fewer resources are used
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ROMA

A solution to manage scientific GPU-empowered interactive

applications
Manages a cluster of heterogenous resources

Targets interactive apps that can be accelerated with GPUs

GPUs are the preferred executors

CPUs are used only if GPUs are not enough GoocleNer
oogleNe

Evaluated on TensorFlow SkylineExtractor

Workload

DISPATCHER

LongestQuet GPU

Round Robi CPU

Requests

VM 1
6 cores, 1 GPU

NODE MANAGER
Pl Controllers  CPU

GoogleNet

Skyline Extractor

VM N
10 cores, 2 GPU

NODE MANAGER
Pl Controllers  cpu

GoogleNet

Skyline Extractor




EVALUATION

Prototype deployed on MS Azure

Metrics: number of violations and amount of used resources
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(b) Rule-based approach







HYPERFL

Federated (Machine) learning as a self-adaptive system

An extension to TensorFlow to allow a set of federated nodes to
cooperatively train an ML model under quality constraints
Minimise Training Time
Minimise Resource Consumption
Maximise Model Quality (e.g., Accuracy)
Minimize Used Bandwidth



MACHINE LEARNING

Clients send data to a centralized server (or a cluster of servers)
A model is trained on the server

Clients use the model to carry out inference

Problems
Privacy: clients have to share private data

Network overhead: all raw data must be sent to the server



FEDERATED MACHINE LEARNING (FEDML)

SERVER

HiE.

CLIENTS

The centralised server initialises a
model with some weights

CLIENTS'

The model is sent to the clients

SERVER

CLIENTS

Each client performs an independent
iterative training using only local data



SERVER

- -

CLIENTS

When clients finish the local training
they send the updated weights (and no
data) to the server

SERVER

CLIENTS

The server aggregates the results and
computes a new model that is sent to all
clients

FEDERATED MACHINE LEARNING (FEDML)

This process is repeated multiple times
(rounds)



MONITORING AND ANALYSIS

CPU/Memory consumption

Battery Level

Accuracy, Loss (calculated in a federated fashion)
Client training time

Total training time

Network overhead



PLANNING AND EXECUTION

Client Selection (server-side only)

Decides which clients to involve in each round

E.g., depending on availability, client resources

Data Selection (server/client side)
Decides the size of the training dataset of each client at each round

Decides the model weights that each client must send to server at each round

Workload and Resource Allocation (server/client side)
Number of iterations (e.g., epochs) to be performed by each client at each round

Resources to be used by each client at each round



FORMULATION

TABLE I: Formulation of the generalized FedML problem.

Constants

C Set of all clients

w Model weights to be trained

A7, User data available on each client ¢ at each round »
Xe, Resources of each client ¢

TTspa Training time threshold

ACspa  Accuracy threshold

UBgsra  Used bandwidth threshold

RCspa  Resource consumption threshold

Parameters

R Total number of rounds

KT Fraction of clients involved in training at each round r
E? Number of epochs for each round r for each client ¢
B Batch size for each round 7 and client ¢

NZ, Data used for each training round » and client ¢

Sz Selected clients at each round r

vr Fraction of model weights sent by each client ¢ at round r
U w Selected weights w at each round r and by client ¢
Metrics

TT(R, S, X, BN, C - K,W V)
RC(R,S,X,EN C.K)
AC(R,K, S, EN v,U,n)
UB(R,C-K,W -V)
Fixed Constraints
ClLO<K"<1,K"€R,VreR
C2.0<V'<1,VI€R,VreRVeceC
C3.0< BL < NT,BL €R,Vr € R,VceC
C4. ET > 0,ET € N,Vr € R,Yce C
5.0 St =Kr-CVreR
C6. N7 < AZ,Vr € R\Vce C
C1. YW UL, =VI -W,VreRNVceC
Metric-related Constraints
C8. RC(R,S, X, BN ,C- K) < RCspa
C9. UB(R,C-K,W -V) <UBgpa
C10. TT(R,S, X, BN ,C - K,W - V) < TTspa
Cll. AC(R,K, S, EX V,U,n) > ACsLa
Problems
P1. minimize RC(R,S,X, BN C . K) subject to C11
P2. minimize RC(R, S, X, BN ,C - K) subject to C9,C11
P3. minimize RC(R, S, X, %, C-K)A
minimize UB(R,C - K,W - V) subject to C10
P4. minimize TT(R, S, X, BN, C- K,W - V) A
minimize UB(R,C - K,W - V) subject to C11
P5. mazimize AC(R, K, S, %, V,U,n) subject to C8
P6. ...

Table I summarises our formulation?. Let us start from
minimum or maximum thresholds for our metrics: 775y, 4 for
total training time, ACgy 4 for accuracy, UBgr 4 for used
bandwidth, and RCgr, 4 for resource consumption.

In addition to constants C' and W, we define A7, an R x C
matrix that contains the amount of examples (e.g., images) on
each client at each round, and X, as the C-sized vector that
contains the amount of resources available on each device.
Instead of always considering the same amount of clients
K, we define an R-sized vector K" to consider a different
number of devices at each round. Similarly, E” and B. (RxC
matrices) define the amount of epochs and size of local batches
to allow one to tweak these values at each round and on each
client. N is the amount of data used for training at each round
and for each client (R x C matrix). Note that the original
formulation used all available data on a client for training
(N. = A.) and N, was constant for the whole training. The
R x C matrix S; defines the K clients employed at each
training round (the matrix contains 1 if client c is active at
round r; 0 otherwise).

While the original formulations always send all locally-
computed weights to the server at each round, the transmission
of a significant subset could be more efficient [10]. To this end,
V7, an R x C matrix, defines the fraction of W parameters
sent at each round by each client. UCT, w» a0 R x C x W matrix,
defines (0/1) the model parameters sent by each client at each
round.

The four performance indicators (metrics) are formally
defined as (unknown) functions that depend on the aforemen-
tioned constants and parameters. All the metrics depend on
the number of rounds R and amount of selected clients K - C,
device selection S affects resource consumption, training time
and accuracy, available resources X impact resource consump-
tion and training time, the amount of local updates O impacts
all the metrics except used bandwidth, while the selection of
weights (V' and/or U) impacts training time, accuracy, and
used bandwidth.

The minimization/maximization of these functions must
also satisfy a set of constraints. The constraints are grouped in
two sets: the first one (C'1-C7) defines parameters’ domains
and their relationships with one another. Constraints C'1-C4

- DSt SR DR . R~ § A o B I 2 B PR



PROTOTYPE

GOAL: minimize resource consumption given a constraint on the
accuracy in a given number of rounds

Workload selection (number of iterations or epochs)

Server-side planning

Heuristic: linear and quadratic interpolation



PROTOTYPE

Device
(E)

Communication Manager

| API |

| Job Receiver |

| Result Sender |
Local Fit Local
Model

Orchestrator
E
Update Optimizer Clients Manager
Target Rounds | API |
[ fob Sender ]
Result
Receiver
Target Rounds E
Manager
M
Model Evaluator FedAvg
| Accuracy | | Loss | Model

O,

Model Evaluator

|Accuracy| | Loss |




SETUP

We implemented the prototype in a custom simulation environment
TensorFlow

50 clients

Two real-world applications: MNIST and Fashion-MNIST

115 experiments



RESULTS

APPLICATION: Fashion-MNIST

SETPOINT: Accuracy = 70% in 10 rounds

accuracy %

o
o

o
o

o
N

Accuracy

Linear Interpolation

accuracy %

o
0

o
o)

o
I

o
N

Accuracy

Quadratic Interpolation




CONCLUSIONS

FEDML systems call for self-adaptation

Control loops could be deployed in the centralized server and in the
federated clients

Initial results are promising

Future work
Client selection
Fine-grained client-side control

Creation of a real FEDML framework (in progress)
P2P FEDML (just initiated)



FELES: A FEDML SIMULATOR

/ Orchestrator \ / Worker \

Orchestrator API i Worker API

/ Orchestrator \ /

\

Worker

Federated algorithm Federated algorithm
Aggregation strategy Client selector
Status Global optimizer Model
Model loader : optlmlze

N\ = O /




DEEPNURSE




PROBLEM

Neural network accuracy decreases when dealing with data from
unknown domains (Out-Of-Distributions)

(d) Training - Source dataset (hospital A). (e) Runtime - Target dataset A (hospital B). (f) Runtime - Target dataset B (hospital C).



DEEPNURSE

Four-stage loop that automatically detects unknown domains and
adapts neural networks to them

Uncertainty estimation

Changepoint detector

Style-guided data generation

Weights adaptation



UNKNOWN DOMAIN DETECTION

Uncertainty estimation with Bayesian neural networks
Deep Ensemble

MonteCarlo dropout

Changepoint Detector
Sliding window

Kolmogorov-Smirnov two sample test



STYLE-GUIDED DATA GENERATION

content result

content
" - .

‘-../’.r'«,? . & B ”\ A"J : /
" W e
* 50 it

3 & .r‘.:! “

(b) Hospital style transfer (hospital A—hospital B).



ADAPTATION TO UNKNOWN DOMAINS

Weights adaptation
Reset (Retraining from scratch)
Partial (Retraining from trained model)

Fine-tuning (Retraining only last layers)

Incremental learning

Replay memory to avoid catastrophic forgetting



EXPERIMENTS

Three datasets

Classification

Camelyon17 (Tumor Detection)
Woaterbirds (Bird Classification)

Regression

Udacity® (Autonomous Driving)

*Custom collected dataset with 16 different driving scenarios



RESULTS

Eight different neural network architectures
DenseNet, Resnet (classification)

Dave-2, Epoch, Chauffeur (regression)

Results:
Detected on average 81.0% of Unknown Domains

Recovered 24.1% of the performance after adaptation



LET US FLIP THE PROBLEM




Al FOR SOFTWARE ENGINEERING

Everywhere

Think of a software engineering problem and you can conceive an Al-
based solution

Some examples
Requirements management /elicitation
Software design
Test and analysis
Software architecture
Microservice /service /component composition
Code repearing

Code completion



@ openai.com

Introducing ChatGPT

We've trained a model called ChatGPT which interacts
in a conversational way. The dialogue format makes it

possible for ChatGPT to answer followup questions,
admit its mistakes, challenge incorrect premises, and
reject inappropriate requests.

Try ChatGPT ~ Read about ChatGPT Plus




FEATURE MODEL-GUIDED ONLINE REINFORCEMENT
LEARNING FOR SELF-ADAPTIVE SERVICES

ICSOC 2020 (Best paper award)




SELF-ADAPTIVE SERVICE

Se f-Ada e}atlon Logic

Example: SelfJadaptive online sto

Monitor: Suddén jinchec’eairvorlload Plan

Analyze: User{ogrceNed Iqtpncylica high

Plan: Deactivafe joptionaNgaturg,fagggamendeftion™

Monitor xecute
ExeCUTe: Rep|CI —— lﬂR'JIIIIIL;JEL;L;IIL;‘EPA‘.lli-jlillL_PA!ll'lld

System Logic

Environment




“DESIGN TIME™ UNCERTAINTY

Infeasible to anticipate all future environment situations (e.g., QoS of
dynamically bound services)

Difficult to precisely determine the impact of adaptation actions on
QoS (e.g., exact QoS impact when adding a VM)

Simplifying assumptions (e.g., too much effort to explicitly codify all
details as knowledge)

Self-Adaptation Logic

Analyze Plan

Knowledge
Monitor

Execute

P4

System Logic
Environment




ONLINE REINFORCEMENT LEARNING (RL)

Learn suitable action selection policy via agent’s interactions with
environment

Agent receives reward for executing an action (here: adaptation
action)

Reward expresses how suitable action was (here: QoS satisfaction)
Update policy from reward signal = learn

Goal of RL: optimize cumulative rewards

(" Agent )

\ 4

. L. Reward s ..
Policy
Next state sy

Environment

| Action ‘4._5:@ Sa
\ i J Action g.

4

- 4




ONLINE RL FOR SELF-ADAPTIVE SERVICES

Combining MAPE-K and RL [Palm et al., 2020]

Reinforcement Learning

Rewardr;,

! Policy Update

[ Policy




PROBLEM STATEMENT

Exploitation-exploration dilemma of RL [Sutton & Barto, 201 8]

Exploit existing knowledge vs explore new knowledge

How adaptation actions are explored impacts on learning
performance

Limitations of State of the Art in RL for self-adaptive services
(1) Random exploration (e-greedy)
Slow learning if large set of adaptation actions
(2) Evolution-unaware exploration

New adaptations explored with low probability and thus late



FEATURE MODELS

AR

Mandatory
Optional

Alternative

Activated

Web Web
Application Application
7 e s
Data Content Data Content
Logging Discovery Logging Discovery
| VA l ;Z —~ |
R - -
Min Max Search ecom.men Min Max Search Recon‘{men
dation dation
Recommendation
Medium = Max v Medium = Max v Medium

My

Nbr of Concurrent Users > 1000 —> Adaptation

Feature model expresses system configurations in compact form

Concrete system configuration expressed as feature combination

Adaptation expressed as runtime reconfiguration



EXPERIMENT SETUP

CloudRM — Self-adaptive Cloud Resource Management Service

Feature Model (Defines 344 configurations = adaptation actions)

Real-world workload trace
10,000 tasks, 29 days

Simulated Evolution of Adaptation Space

Initial

Evolution step #1

| |
| |
| Evolutionstep#2 |
| Evolution step#3 |

Task Group

CloudRM Service

Simple* Maxsize* ,Consolidation-
=iy ,Multiple* Placement : Friendly*
Placement Placement
Placement

Selection
Metric

Selection
Policy

Relative
Size u

PM

//@ ==
e el 5 e e e

Selection

PM Selection

Metric
(same as
Maxsize

for

)

VM Selection
Policy

VM Selection
Metric

(same as for
~Maxsize")




(1) LARGE ADAPTATION SPACE

-0.68

_____________________________________________________________________________________________________________________________________

8 e S e e
5 : ; : , :,
T |
N B 7 Sy S s S S S '
O A e
red: e-greedy :
N blue: Inc:rernental
S T e CFeature Degree 1T
i i i i i
50 100 150 200 250
Time Step
Asymptotic performance 0% Energy savings
Time to threshold 48.6% Reduced VM migrations
Jumpstart 1.3%

Total reward 58.8%

0.1%
7.8%



MAIN RESULTS

Exploiting structural knowledge from design time (feature models) to
guide online learning for self-adaptive services

Future enhancements
Experiments with additional systems
Comparison of other exploration strategies and RL algorithms

Considering changes of existing features (on top of additions and removails)

Methodology for defining suitable feature models during design time



CONCLUSIONS

Many different possible combinations

Software engineering vs. Artificial Intelligent

More to come

Almost any paper submitted to SE conferences embeds Al or ML

It would be nice to know what the others think of it

Some ideas for the future
Are we sure it is always the right way?
Performance, quality, precision

Ethical issues
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