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DISCLAIMER Artificial Intelligence vs 
Machine Learning



DATA SCIENTIST VS SOFTWARE ENGINEER

Data scientist
­ Is good at modelling techniques and feature engineering
­ Is mainly focused on accuracy
­ Uses notebooks or similar for prototyping
­ Is not interested in model size, updateability, implementation stability

Software engineer
­ Builds products
­ Concerned about cost, performance, stability, safety, security, and release time
­ Must scale solution and handle large amounts of data
­ Maintains, evolves, and extends the product over long periods

by Christian Kaestner



NUMBER OF PUBLICATIONS

Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna 
Maria Vollmer, Stefan Wagner: Software Engineering for AI-Based Systems: A Survey. ACM Trans. Softw. Eng. 
Methodol. 31(2): 37e:1-37e:59 (2022)



AI-BASED SYSTEM PROPERTIES AND SE 
APPROACHES



SCOPE OF RESEARCH



MAIN CHALLENGES FACED IN THE 
DEVELOPMENT OF AI/ML SYSTEMS 

Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbø, Tayana Conte: Software engineering for artificial 
intelligence and machine learning software: A systematic literature review. CoRR abs/2011.03751 (2020)



SOME TAKEAWAYS

Empirical studies report AI software in various application domains, 
with the main focus being Automotive, Finance, and Healthcare

Testing space for AI software is much larger, more heterogeneous and, 
in many cases, it is difficult to formally define in comparison to 
traditional software testing

AI development processes need to integrate infrastructures, processes 
and tools for managing data as their integral parts



ML
… is everywhere

The talk is not about new ML algorithms and solutions

It is about what we did and what we are doing
­ It is also a way to think of our work in terms of ML



ML SYSTEMS

They must offer predictions with given accuracy and precision

Usual requirements
­ Response time is affected by resource allocation
­ Computations can be executed on dedicated hardware (e.g., GPUs)
­ Parallelization is not useful if data are not properly partitioned

New requirements
­ Model quality also depends on the (hyper)-parameters of the learning algorithm
­ Response time and quality are often correlated

­ Fewer learning iterations allow for faster results but produce less accurate models

­ Results depend on used data



TWO PHASES

Training
­ Long-lasting batch activity (from several minutes to days)
­ Based on dedicated frameworks (e.g., Spark, TensorFlow, PyTorch)
­ Maximum time to complete a training process

Inference
­ Interactive activity that exploits generated models
­ Each computation lasts milliseconds or seconds
­ Response time of multiple requests aggregated and constrained
­ Quality of predictions cannot be easily computed



KNOWN LIMITATIONS (TRAINING)

Available frameworks do not support quality and time constraints on 
carried out activities 

Hyperparameters are defined at design time
­ They must be carefully tuned to train the model efficiently and precisely

Data partitioning can accelerate the computation at the cost of more 
synchronization among executors

Resource allocation is key to fulfill time-based requirements
­ Proactive vs reactive solutions
­ Executors must be able to govern heterogeneous hardware



KNOWN LIMITATIONS (INFERENCE)

ML frameworks lack support for the specification of quality and time 
requirements

Dynamic resource allocation is mandatory when the incoming 
workload fluctuates
­ Requests must be scheduled to proper executors according to their hardware 

capabilities and the state of the system

The quality of ML models at runtime cannot be directly monitored
­ Uncertainty can help estimate it and understand when a model must be re-trained



HOW HAVE WE TACKLED 
THESE ISSUES?

FSE 2016
TSE 2021
ICSOC 2021

From the original presentations by G. Quattrocchi



TWO ENABLERS

Containers (Docker)
­ Fast actuation
­ Precise actuation
­ Better resource utilization

Control Theory*
­ Fast decisions
­ Precise decisions
­ A priori guarantees

*In collaboration with Prof. Alberto Leva



DISTRIBUTED CONTROL OF CONTAINERS

One controller per container

Proportional-Integral (PI) controllers
­ Next state computed in constant time

Workload split equally to container replicas 
­ No synchronization is required
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SAME WORKLOAD
SAME SET-POINT



ARCHITECTURE

VM 1



DYNASPARK

DynaSpark extends Spark by introducing advanced and automated 
resource management
­ Vertical CPU scaling (CPU quotas)
­ Resource contention among running applications
­ Different strategies (e.g., Earliest Deadline First) to prioritize applications

Prototype deployed on MS Azure
­ Precision (how close we reach the deadline)
­ The closer it gets to a deadline the fewer resources are used

Precision > 98%



ROMA

A solution to manage scientific GPU-empowered interactive 
applications
­ Manages a cluster of heterogenous resources 
­ Targets interactive apps that can be accelerated with GPUs 

GPUs are the preferred executors
­ CPUs are used only if GPUs are not enough
­ Evaluated on TensorFlow
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EVALUATION

Prototype deployed on MS Azure

Metrics: number of violations and  amount of used resources

Violations

Resources
32% fewer resources 

on average

20 times fewer
on average



FEDERATED MACHINE LEARNING 
AS A SELF-ADAPTIVE PROBLEM 
SEAMS 2021

From the original presentation by G. Quattrocchi



HYPERFL

Federated (Machine) learning as a self-adaptive system

An extension to TensorFlow to allow a set of federated nodes to 
cooperatively train an ML model under quality constraints
­ Minimise Training Time
­ Minimise Resource Consumption
­ Maximise Model Quality (e.g., Accuracy)
­ Minimize Used Bandwidth



MACHINE LEARNING

Clients send data to a centralized server (or a cluster of servers)
­ A model is trained on the server
­ Clients use the model to carry out inference

Problems
­ Privacy: clients have to share private data
­ Network overhead: all raw data must be sent to the server
PROBLEMS



FEDERATED MACHINE LEARNING (FEDML) 

SERVER

CLIENTS

The centralised server initialises a 
model with some weights

SERVER

CLIENTS

The model is sent to the clients

SERVER

CLIENTS

Each client performs an independent 
iterative training using only local data



FEDERATED MACHINE LEARNING (FEDML) 

SERVER

CLIENTS

When clients finish the local training 
they send the updated weights (and no 
data) to the server

SERVER

CLIENTS

The server aggregates the results and 
computes a new model that is sent to all 
clients

This process is repeated multiple times 
(rounds)



MONITORING AND ANALYSIS

CPU/Memory consumption

Battery Level 

Accuracy, Loss (calculated in a federated fashion)

Client training time

Total training time

Network overhead



PLANNING AND EXECUTION

Client Selection (server-side only)
­ Decides which clients to involve in each round
­ E.g., depending on availability, client resources

Data Selection (server/client side)
­ Decides the size of the training dataset of each client at each round
­ Decides the model weights that each client must send to server at each round

Workload and Resource Allocation (server/client side)
­ Number of iterations (e.g., epochs) to be performed by each client at each round
­ Resources to be used by each client at each round



FORMULATION



PROTOTYPE

GOAL: minimize resource consumption given a constraint on the 
accuracy in a given number of rounds

Workload selection (number of iterations or epochs)
­ Server-side planning
­ Heuristic: linear and quadratic interpolation



PROTOTYPE



SETUP

We implemented the prototype in a custom simulation environment 
­ TensorFlow
­ 50 clients

Two real-world applications: MNIST and Fashion-MNIST
­ 115 experiments



RESULTS

APPLICATION: Fashion-MNIST

SETPOINT: Accuracy = 70% in 10 rounds

Linear Interpolation Quadratic Interpolation



CONCLUSIONS

FEDML systems call for self-adaptation

Control loops could be deployed in the centralized server and in the 
federated clients

Initial results are promising

Future work
­ Client selection
­ Fine-grained client-side control
­ Creation of a real FEDML framework (in progress)
­ P2P FEDML (just initiated)



FELES: A FEDML SIMULATOR 



DEEPNURSE



PROBLEM

Neural network accuracy decreases when dealing with data from 
unknown domains (Out-Of-Distributions) 



DEEPNURSE

Four-stage loop that automatically detects unknown domains and 
adapts neural networks to them
­ Uncertainty estimation
­ Changepoint detector
­ Style-guided data generation
­ Weights adaptation



UNKNOWN DOMAIN DETECTION

Uncertainty estimation with Bayesian neural networks
­ Deep Ensemble
­ MonteCarlo dropout

Changepoint Detector
­ Sliding window
­ Kolmogorov-Smirnov two sample test



STYLE-GUIDED  DATA GENERATION



ADAPTATION TO UNKNOWN DOMAINS

Weights adaptation
­ Reset (Retraining from scratch)
­ Partial (Retraining from trained model)
­ Fine-tuning (Retraining only last layers)

Incremental learning
­ Replay memory to avoid catastrophic forgetting



EXPERIMENTS

Three datasets

Classification
­ Camelyon17 (Tumor Detection)
­ Waterbirds (Bird Classification)

Regression
­ Udacity* (Autonomous  Driving)

*Custom collected dataset with 16 different driving scenarios



RESULTS

Eight different neural network architectures
­ DenseNet, Resnet (classification)
­ Dave-2, Epoch, Chauffeur (regression)

Results:
­ Detected on average 81.0% of Unknown Domains
­ Recovered 24.1% of the performance after adaptation



LET US FLIP THE PROBLEM



AI FOR SOFTWARE ENGINEERING

Everywhere

Think of a software engineering problem and you can conceive an AI-
based solution

Some examples
­ Requirements management/elicitation
­ Software design
­ Test and analysis
­ Software architecture
­ Microservice/service/component composition
­ Code repearing
­ Code completion
­ ….





FEATURE  M O DEL -GUIDED  O NL INE  RE INFO RCEM ENT  
LEARNING  FO R  SELF -ADAPT IVE  SERV ICES

ICSOC 2020 (Best paper award)

From the original presentation by A. Metzger



SELF-ADAPTIVE SERVICE

Example: Self-adaptive online store

Monitor: Sudden increase in workload

Analyze: User-perceived latency too high

Plan: Deactivate optional feature “recommendation”

Execute: Replace “recommendations” with static banner



“DESIGN TIME” UNCERTAINTY 

Infeasible to anticipate all future environment situations  (e.g., QoS of 
dynamically bound services)

Difficult to precisely determine the impact of adaptation actions on 
QoS (e.g., exact QoS impact when adding a VM)

Simplifying assumptions (e.g., too much effort to explicitly codify all 
details as knowledge)

Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute

System Logic

Environment



ONLINE REINFORCEMENT LEARNING (RL) 

Learn suitable action selection policy via agent’s interactions with 
environment

Agent receives reward for executing an action (here: adaptation 
action)

Reward expresses how suitable action was  (here: QoS satisfaction)

Update policy from reward signal = learn

Goal of RL: optimize cumulative rewards

Environment
Action at

State st

Reward rt+1
Policy 

Update

Action 
Selection

Next state st+1

Agent



ONLINE RL FOR SELF-ADAPTIVE SERVICES

Combining MAPE-K and RL [Palm et al., 2020]

Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute
Self-Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute

Reinforcement Learning

at

rt+1

pt+1

Monitor Execute

Action -
Selection

Self - Adaptation Logic

Policy p
(Knowledge)

s t

Policy Update
s t+1

Reward

State Policy

Adaptation
Action

State



PROBLEM STATEMENT

Exploitation-exploration dilemma of RL [Sutton & Barto, 2018]
­ Exploit existing knowledge vs explore new knowledge

How adaptation actions are explored impacts on learning 
performance

Limitations of State of the Art in RL for self-adaptive services
­ (1) Random exploration (e-greedy)

­ Slow learning if large set of adaptation actions

­ (2) Evolution-unaware exploration
­ New adaptations explored with low probability and thus late



FEATURE MODELS

Feature model expresses system configurations in compact form

Concrete system configuration expressed as feature combination 

Adaptation expressed as runtime reconfiguration
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EXPERIMENT SETUP

CloudRM – Self-adaptive Cloud Resource Management Service
­ Feature Model (Defines 344 configurations = adaptation actions)
­ Real-world workload trace

­ 10,000 tasks, 29 days

­ Simulated Evolution of Adaptation Space

„Multiple“ Placement „Maxsize“ 
Placement

CloudRM Service

„Simple“ 
Placement 

„Consolidation-
Friendly“
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(1) LARGE ADAPTATION SPACE

Asymptotic performance 0%
Time to threshold 48.6%
Jumpstart 1.3%
Total reward 58.8%

Energy savings 0.1%
Reduced VM migrations 7.8%



MAIN RESULTS

Exploiting structural knowledge from design time (feature models) to 
guide online learning for self-adaptive services

Future enhancements
­ Experiments with additional systems
­ Comparison of other exploration strategies and RL algorithms
­ Considering changes of existing features (on top of additions and removals)
­ Methodology for defining suitable feature models during design time



CONCLUSIONS

Many different possible combinations
­ Software engineering vs. Artificial Intelligent

More to come
­ Almost any paper submitted to SE conferences embeds AI or ML
­ It would be nice to know what the others think of it

Some ideas for the future
­ Are we sure it is always the right way?
­ Performance, quality, precision
­ Ethical issues 
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WE ARE HIRING !!!


