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Before we start

Objective (MLOps is hard)
Present and comment on some mistakes (technical dept and antipatterns) made during a project to create an AI-
based solution for finance.  
Client: SME in Fintech

UniMiB served as a consultant in SE and AI
Project Duration Jan '20 - Jul '23
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Disclaimer
Anecdotical, 1 Data point
Italian SME with specific context 

 Brownfield - Greenfield
Presentation time is limited

 



Context: AI-based solution

Hofmann et al. (2020) distinguish three AI solution types according to the role, 
scope, and value contribution of AI: 

• AI-enabled solutions use AI to improve or simplify the input and output interfaces to the 
user. They support interaction, often based on natural language processing. One 
example is ChatGPT. 

• AI-based solutions use AI to implement the actual core task in processes and thus create 
new insights. One example is learning-based credit risk assessments. 

• Complete AI solutions use AI to support both input and output as well as the actual task 
processing. 

P. Hofmann, J. Jöhnk, D. Protschky, and N. Urbach, “Developing Purposeful AI Use Cases – A Structured Method and Its Application in Project Management,” 
presented at the WI2020
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Consortium
members

Provide access to customer data, with the 
explicit consent of the user, to authorized
third parties

Authorized
third-party

downloads transactions recorded on 
the various customer bank accounts

harmonizes movements according to 
internal categories

Service

executed within a virtual machine

SME
passes the data received from the 
broker to the service

Context: Credit score assessment service



If we had only known earlier

At the project’s kick off (Jan ‘20)
- We had substantial experience in Data Science projects 

- Even if there was already much emphasis on AI and MLOps but we were not aware of systematic studies on 
antipattern and technical debt in the intersection between AI and SE 

Sculley, David, et al. "Machine learning: The high interest credit card of technical debt." SE4ML: Software 
Engineering for Machine Learning (NIPS 2014 Workshop)
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Wait, what? Did you say MLOps?



Was full-on MLOps Feasible?



Was full-on MLOps Feasible?
Brownfield – Greenfield scenario:
• Developers used to do work in on more classical task
• Freshly graduate young data scientists with no expertise 

in SE 



The origin of a dooming decision…

So, what happened? We didn’t fight the client’s requirements:
1. Go for the monolith. Let’s start small, right?
2. Go for Java. Yes, for everything. Also, for managing ML models
3. Models are put in production by Software Engineers
4. On premises

Deep down the client believed that ML modeling was a one-shot thing

NLP Component

Risk Assessment 
Component

Software Engineer

Data Scientist

Data Scientist



The origin of a dooming decision…

TD is specified as “design or implementation 
constructs that are expedient in the short term, but set 
up a technical context that can make a future change 
more costly or impossible” Dagstuhl seminar 16162. 

Source: h*ps://accesto.com/

It was bad! We accumulated Technical Debt

No separation of concerns in the code 
- intertwined codebase with preprocessing, feature code, model loading - unloading – serving

No production-ready MLOps tools to use
- No easy way to automatize model testing and retraining
- No easy way to check for data/concept drift



The “just a binary” antipattern (2021)

In this antipattern paradigm, the data scientist develops a model offline and hands it 
over to IT for deployment. IT treats the model like any other third-party software library 
by writing against its application programming interfaces (APIs).

This antipattern is appealing:
1. It isolates data science from IT. Most data scientists lack the software engineering 

background for production. IT lacks the background in ML to understand model development. 
If  these teams work in isolated departments, the antipattern allows for a smooth handoff.

2. It simplifies accountability. IT (understandably) doesn’t want to be accountable for the output 
or accuracy of  a model. 

3. It avoids new infrastructure investment. It gives IT the ability to deploy the ML in any modern 
infrastructure. No new tools or cloud platforms are necessary.

Nowhere to be found in
the literature



Why this antipattern is dangerous

- A focus on “the model” usually indicates that an 
engineering team has limited experience with ML. Risk to 
underestimate how much additional infrastructure is needed 
to support MLOps. 

MLOps require:
1. Ongoing access to fresh training data
2. Feature scaling and reuse

3. Input data monitoring
4. Model output monitoring
5. Model orchestration and versioning
6. Pipelines

- The antipattern may work for a beta deploy for relatively 
simple, static problems. The engineering team begins to 
accumulate technical debt.

A few examples:

• The model drifts because it runs on data that evolved after 
training. Not easy to recognize without supporting 
infrastructure (test debt) 

• The data scientists and engineering team lose track of model 
versions and the associated training data (version debt - Data 
Crisis as a Service Antipattern)

• Data scientists add new features to a model, but the feature 
engineering pipeline isn’t put into production (code debt)

• Data scientists build models and experiment in notebooks, 
but the code isn’t migrated into more robust software 
packages (code debt)

Technical debt & slow iteration



The “Act now, Reflect Never” Antipattern*

Once models are placed in production, predictions are sometimes used as-is without any reflection, or even periodic 
manual inspection. 
• Like us for the first year and a half  until the rollout to production

• End users used as testers

It is quite often the case that the statistical properties of  the training dataset and the target variable change over 
time 
• Prior shift

• Covariate shift

• Concept shift

Test debt, ranging from naive omission of basic sanity checks to the lack of more sophisticated tests to assess data quality 
or distributions 

It is important to have (explainable) systems in place that can monitor, track, and debug deployed models. 

*N. Muralidhar, et al. “Using antipatterns to avoid mlops mistakes”. arXiv preprint arXiv:2107.00079 (2021).



Lessons learned 

Cost of wrong early decisions can be extremely high

Support infrastructure for MLOps, dev culture, and separation of concerns are 
costly but necessary

ML is not fire-and-forget but it requires commitment (human-in-the-loop)

The bottom line is that the main issues that hinder the adoption of MLOps are:

• Lack of knowledge - MLOps requires both Dev and ML skills

• Lack of interest in the “other side” – “MLOps is seen as more work for 
developers” 

• Lack of communication, trust, purpose

• Lack of innovation culture 

“Working in MLOps is
not stressing at all”

Dave – 28 years old



Thank you!


