

Graph-Massivizer

<u>Radu Prodan</u>

University of Klagenfurt, Austria

This project has received funding from the European Union's Horizon Research and Innovation Actions under Grant Agreement № 101093202.

Graph-Massivizer

- Extreme and Sustainable Graph Processing for Urgent Societal Challenges in Europe
- HORIZON-CL4-2022-DATA-01-05
 - Extreme data mining, aggregation and analytics technologies and solutions (RIA)
- € 4,998,062.50
- 2023 2025

Goal

- High-performance and sustainable graph processing of extreme data
 - Holistic platform and integrated toolkit
 - Proper response for any need and any organisation by 2030

• Graphs

- Universal mathematical abstractions
- Capture, combine, model, analyse, and process knowledge about the real and digital worlds

Massive Graph

- <u>Massive graph (MG)</u> representation of <u>extreme data</u>, integrating patterns and storing interlinked descriptions of objects, events, situations, concepts, and semantics
 - General graphs, knowledge graphs, property graphs
- Extreme data challenge, extending graph processing technology by orders of magnitude for several <u>"V"</u>characteristics
 - <u>Volume</u> graph challenge by supporting up to billions of vertices and trillions of edges
 - **Velocity** graph challenge of dynamically changing topologies
 - Viridescence graph challenge for sustainable processing at scale

Graph-Massivizer Toolkit

- Graph operational layer
 - Graph-Inceptor: extreme data ingestion, MG creation and storage
 - Graph-Scrutinizer: MG analytic and reasoning
- Graph processing layer
 - **<u>Graph-Optimizer</u>**: workload modelling with performance and energy guarantees
 - **<u>Graph-Greenifier</u>**: sustainable and energy-aware MG processing
 - <u>Graph-Choreographer</u>: scalable serverless MG analytics over a codesigned computing continuum

Graph-Inceptor

- Graph creation
 - ETL procedures to persist extreme data into MG of 10 billion vertices and 100 billion edges
 - Batch and stream data processing, compatible with Apache Spark
 - Streaming ingestion latency below 500 milliseconds for 95% of the data at 1,000s of new edges per second
- Graph storage
 - RDF graphs modelling semantic aspects
 - Property graphs modelled with edge properties
 - RDF-star graphs logically unifying the two views
 - Distributed for computation locality

Graph-Scrutinizer

- Graphs analytics and querying
 - Sampling and analytics throughput of 500 giga edges per second (Apache GraphX)
 - Streaming-graph reasoning speed of 3 million triples per second (PyTorch Geometric)
 - Retain 90% performance for the last 10 million edges compared to batch algorithms
- Graph sampling
 - Optimised analysis and query, retaining critical information
- Graph enrichment with expanding data sets
 - Probabilistic reasoning
 - Graph discovery, low footprint graph generation, real-time, error-bounded queries

Graph-Optimizer

UNIVERSITY OF TWENTE.

- Hardware operation (H-op) models relevant to BGO
 - Runtime performance and energy costs (CPU, GPU, FPGA)
 - Memory latency, bandwidth, BGO throughput, I/O bandwidth

• Graph processing and workload models

- Model BGO as compositions of H-ops (Graph-BLAS, GBTL-CUDA)
- Generate workload models using design space exploration
- Workload execution prediction
 - 80% accurate performance and energy consumption models for BGOs
 - Various heterogeneous multiprocessors, GPUs and FPGAs

Graph-Greenifier

- Sustainability data collection
 - Monitoring infrastructure (hardware and software)
 - Power grid data interface (open market data)
- Work-driven graph processing simulation toolchain
 - Carbon footprint, CO₂ and methane emissions
 - Open DC and SimLess simulators
- Benchmarking, prediction and recommendations for sustainability-performance tradeoffs at scale
 - Sustainability labelling for graph analytics of 100 individual nodes and devices
 - Two-fold improvement in data centre energy efficiency and over 25% lower GHG emissions

Graph-Choreographer

- Workload-infrastructure enactment
 - Multilayer infrastructure facilitation
 - Resource partitioning based on similarity relationships (HPC, cloud, edge)
- Sustainable BGO function operation and scheduling
 - OpenWhisk, Lambda, ...
 - 70% faster graph analytics over commercial AliGraph or other OSS solutions
 - 30% less energy for ETL storage than Amazon Redshift and OSS

Cybersecure deployment

- 40% faster runtime deployment compared to AWS CloudFormation
- State-of-the-art security and privacy mechanisms

Use Cases

- UC-1: Green and sustainable finance
- UC-2: Global foresight for environment protection
- UC-3: Green AI for sustainable automotive industry

• UC-4: Data centre digital twin for sustainable exascale computing

	Volume	Velocity	Value	Veracity	Variety	Viscosity	Viridescence
UC-1	\checkmark		\checkmark	\checkmark			\checkmark
UC-2	\checkmark				\checkmark	\checkmark	\checkmark
UC-3		\checkmark		\checkmark	\checkmark		\checkmark
UC-4	\checkmark	\checkmark			\checkmark		\checkmark

LinkedIn: https://www.linkedin.com/company/graph-massivizer-prov

Twitter: @graphmassivizer

Thank you !

www.graph-massivizer.eu