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Abstract
This work illustrates the use of deep learning methods applied on X-ray computed tomography (XCT) datasets to segment pores
and fibres in reinforced composite components from the aeronautic industry by binary semantic segmentation. We first apply data
pre-processing, and then employ a modified 3D U-Net, representing a convolutional neural network. Tweaking hyper-parameters,
we have reached an optimal model for our datasets. One of the models has reached 99% segmentation accuracy when testing
using a Dice function. In our experiments, pores and fibres in XCT datasets of aerospace components, more specifically of glass
and carbon fibre reinforced composites, were segmented and analysed. In order to compare this modified 3D U-Net architecture
with segmentation methods currently used in the industry, the datasets were also input to conventional Otsu thresholding. Our
results shows that modified 3D U-Net performs better than Otsu thresholding, especially on the segmentation of small pores.
Modified 3D U-Net also showed reasonable prediction accuracy when testing with an optimised model which was trained with a
low number of dataset both for fibre and pore segmentation.
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1 Introduction
Deep learning has been successfully used in many different research fields such as computer vision [3], object recognition [4],
medical image analysis [5], self-driving systems, and material inspection within past decades. One of the most popular deep
learning methods are convolutional neural networks (CNN), which can be applied to the classification of objects and to image
segmentation tasks. Segmenting pores in the specimen is a necessary step in characterising and analysing material properties in
non-destructive testing. However, image segmentation and classification of objects (such as pores or fibres in material science)
is still a challenging task even for material science domain experts. Even though there are numerous different segmentation
available such as k-means, watershed and various thresholding techniques, there is still a lot of ongoing research to improve
segmentation methods [6]. Reliable and efficient segmentation is important, especially for critical process in the material science
industry. In order to come up with a robust and reliable segmentation, we used an convolutional neuronal network.

2 Related Work
Convolutional neural networks (CNN) have proven to be powerful image or volume segmentation methods. One well-know CNN
for this purpose is the U-Net architecture [1], originally used to segment 2D microscopy images, and its extension to 3D [7].
A U-Net based network architecture from Isensee et al. [8] successfully reached the second and third rank in the Brain tumour
segmentation challenge [9]. In recent years, many U-Net variants such as Residual U-Net [14], UNet++ [16], Dense U-Net
[15] and Adversarial U-Net (i.e GAN, CGAN) [17] have been devised to segment or transform images or volumes. Detailed
explanations as well as a comparison of a number of U-Net variants have been explored by Siddique et al. [18].
Impressive results with U-Net in the medical application also paved the way of using U-Net for materials science purposes. In
the materials science, the accurate segmentation of pores plays an important role to analyse data or specimen quality. To improve
segmentation accuracy, 3D U-Net was updated and optimised to an architecture applicable for fibre composites as presented by
Yosifov [11]. To segment defect features on short glass fibres by using transfer learning and Tversky loss function applied on the
challenging specimens has been introduced by Weinberger et al. [10]. It showed that transfer learning can reduce the training
time and the amount of data needed for accurate segmentation.

3 Method
As reference for the training we used manually segmented data based on conventional thresholding. The data was split into
smaller sub-volumes and used in our training pipeline. We evaluated the network on two different types of datasets. We also
explored two different use cases from the aeronautic industry to compare the segmentation of modified 3D U-Net and Otsu
thresholding which are found in the:
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• Segmentation of pores in a carbon fibre reinforced polymer (CFRP) part

• Segmentation of fibres in a glass fibre reinforced polymer (GFRP) part

In the following sections the Modified 3D U-Net Architecture is briefly introduced as well as the data we have been working
with, the training and hyper parameters.

3.1 Modified 3D U-Net Architecture
We implemented a modified 3D U-Net network architecture [10, 11] in Python using Keras with TensorFlow as a back end.
This network includes two paths respectively called contracting path (encoder) and expansive path (decoder), with a U-shaped
architecture containing four encoder and decoder blocks (see Figure 1).

Figure 1: Architecture of the modified 3D U-Net model (Adapted from [10, 11]).

3.2 Data Characteristics
The scanning device GE Nanotom 180 NF was used to generate XCT datasets. The chosen resolution was (3.3 µm)3 voxel
size for reference scans, which were used to train the algorithm, and (10 µm)3 for the final evaluations. Data characteristics are
presented in Table 1. CFRP samples were used for pore segmentation, while GFRP samples were used for fibre segmentation.

3.3 Training and Hyperparameters
We used a similar pipeline and network architecture as in our previous publications [10, 11]. To reduce the memory consumption,
the network was designed to predict sub-volumes with a size of 122x122x122 voxels. To improve the network performance, an

Copyright 2022 - by the Authors. Licensed under a Creative Commons Attribution 4.0 International License.



12th Conference on Industrial Computed Tomography, Fürth, Germany (iCT 2023), www.ict2023.org

Table 1: SAMPLE MODALITY

Sample No Resolution Size Data usage

CFRP Sample 1 3.3 µm 1220×854×976 Training
CFRP Sample 2 3.3 µm 1220×854×976 Testing
CFRP Sample 3 10 µm 366×244×244 Testing
GFRP Sample 1 2.7 µm 1098×976×1098 Training
GFRP Sample 2 2.7 µm 610×610×610 Testing
GFRP Sample 3 3 µm 632×632×632 Testing

overlapping tile approach [1] was used, where the input size with 132x132x132 is bigger than the predict size of 122x122x122
(i.e., 5 voxels overlap). The general pre-processing pipeline contained the following steps also shown in Figure 2.

• Normalising the input data

• Adding mirror-padding (5 voxels)

• Splitting the CT scan and labelled volume into sub-volumes with an overlapping of 5 voxels in every direction (hence a
132x132x132 input and 122x122x122 output volume size)

The major change to our previous publication [10] was the loss function: In this paper we used Dice loss instead of focal Tversky
loss. For our two use cases was the imbalanced between the classes were not too high, therefore Dice loss which is based on
the dice coefficient[19] was used. The pre-processing pipeline was implemented in Python. For training, we used only the
sub-volumes of CFRP Sample 1 and GFRP Sample 1 individually. In the result evaluation, only unseen data was used (for pore
segmentation: CFRP Sample 2 and 3, for fibre segmentation GFRP Sample 2 and 3). The datasets for segmentations have been
split into two parts: 80% of the sub-volumes for training and 20% for testing.

Figure 2: Illustration of our training pipeline

4 Result Evaluation and Discussion
For both use cases the modified 3D U-Net network showed a reasonable performance after around 1200 training steps with a
batch size of 3. In some areas, our network performed even better than Otsu thresholding. The network also performed well on
a dataset with a different resolution (10 µm) it was not trained on. In this workflow, we measure quality by visual inspection. As
mentioned in subsection 3.3, results were generated only on the unseen data. For the training process, firstly CFRP sample 1 was
used, then the training model was applied on CFRP sample 2 and 3. Similarly, GFRP sample 1 was used for training and GFRP
sample 2 and 3 used in testing process.
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Figure 3: 2D XCT slices of CFRP input images. a) and b) show 3.3 µm and 10 µm resolution images, respectively, with Otsu
segmentation (blue) and neural network prediction (yellow), as well as overlaid (dark grey where they agree) on the specimen.
The enlarged images of detail regions 1 and 2 below show three separate views for Otsu segmentation, neural network prediction
and their differences (from left to right).

4.1 Pore Segmentation in CFRP
The detail region 1 in Figure 3a) shows quite similar results for Otsu based thresholding segmentation and the prediction of the of
the network. It seems, that the network is segmenting more than the threshold based algorithm. Especially, detail region 2 in b)
shows the benefits of a deep neuronal network, because here it was able to segment much more pores. This finding is explained
by the fact that the network is not only limited to make decisions based on a fixed threshold. It can also take into account the
shape and gradients. For Otsu thresholding however, the contrast is not high enough to segment also these small pores in lower
resolution images.

4.2 Fibre Segmentation in GFRP
The results for the fibres in figure 4 detail b) ( 2.7 µm) show that here Otsu thresholding has performed similarly or better than the
3D U-Net model. For the detail c) ( 3 µm) where the contrast between fibre and background is higher, the CNN has segmented
more than the threshold based algorithm.

5 Performance
The training with an Nvidia Quadro RTX6000 for the pore and also for the fibre task has taken approximately one hour. The
inference of a volume with a size of 1220× 854× 976 voxels in open_iA [2] with the same GPU takes around 2 minutes,
which also includes the preprocessing steps as indicated (i.e., normalisation and splitting into sub-volumes). In comparison, the
segmentation with Otsu using open_iA takes 5 seconds, for a volume with the same size, only using 1 Core of the CPU.

6 Conclusion
The modified 3D U-Net architecture shows reasonable performance on different resolutions, even with a limited set of reference
data. If we compare the results between Otsu thresholding and our approach by visual inspection, the modified 3D U-Net model
performs better than a threshold based algorithm in several areas, especially for the detection of small pores. The modified 3D
U-Net also performs reasonably well on untrained datasets and different resolutions. We extended open_iA to use a trained 3D
U-Net for segmentation. With the overlapping tile approach, it is possible to apply it on bigger volumes (such as XCT scans with
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Figure 4: 3D view of modified 3D U-Net segmentation (a) and 2D XCT slices of GFRP input images. b) and c) show 2.7 µm and
3 µm resolution images respectively, with Otsu segmentation (blue) and neural network prediction (yellow), as well as overlaid
(dark grey where they agree) on specimen. The enlarged images of detail regions 3 and 4 below show three separate views for
Otsu segmentation, neural network prediction and their differences (from left to right).

1000×1000×1000 voxels in size or larger). Our findings show that the quality of the ground truth data (i.e., binary masks) for
the training plays an essential role in training the neural network regarding efficient predictions.
One of the biggest challenges is always to find the balance between the segmentation quality and the effort to perform the
segmentation. The modified 3D U-Net delivers slightly better results than Otsu thresholding. In our case, there is a high contrast
between pores/fibres and background, so Otsu provides nearly as good results as the modified 3D U-Net. When comparing
the execution times, Otsu is however much faster. In contrast, in our previous publication [10] we have shown that CNNs also
perform well on tasks for which threshold-based algorithms cannot deliver reasonable results.
For future work, we will focus more on datasets that are difficult to impossible to segment using conventional techniques. For
those, we intend to improve our reference segmentation using a labelling software where a human expert manually segments XCT
images in 2D and 3D. In the next generation of our pipeline, it is planed to use image augmentation to improve the generalisation,
in combination with a human in the loop approach to reduce the manual effort. Human in the loop means here that the network
makes a prediction, which is then corrected by a human expert, until the quality of the prediction reaches a predefined threshold.
Another important point is the use of additional measures to quantify the results of the prediction better, in similar directions
as Yosifov et al. [12] or Weissenböck et al. [13]. Especially the shape and volume of the pores are important for aerospace
components.
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