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ABSTRACT

High-end components that conduct complicated tasks automatically are a part of modern industrial
systems. However, in order for these parts to function at the desired level, they need to be maintained
by qualified experts. Solutions based on Augmented Reality (AR) have been established with the goal
of raising production rates and quality while lowering maintenance costs. With the introduction of two
unique interaction interfaces based on wearable targets and human face orientation, we are proposing
hands-free advanced interactive solutions in this study with the goal of reducing the bias towards
certain users. Using traditional devices in real time, a comparison investigation using alternative
interaction interfaces is conducted. The suggested solutions are supported by various AI powered
methods such as novel gravity-map based motion adjustment that is made possible by predictive deep
models that reduce the bias of traditional hand- or finger-based interaction interfaces.

Augmented Reality, HCI, Remote Maintenance, Predictive AI, hands-free interfaces

1 Introduction

Modern production systems are provided with sophisticated machinery. However, the machine tools require maintenance
conducted by highly qualified professionals in order to function. Due to the necessity for greater production rates and,
thus, decreased lead times, machine breakdowns, i.e. Mean Time To Repair (MTTR), as well as the time required
to educate new employees must be minimised as much as feasible. Augmented Reality is a digital technology that
enables the viewing of computer-generated 3D information in the Field of View (FOV) of the user, superimposed
on the physical environment. In the past ten years, numerous research papers have been published concentrating on
the creation of augmented reality-based frameworks for training new people and the provision of remote guidance



for Maintenance, Repair, and Operations (MRO). However, the development of AR-based frameworks is a skill- and
time-intensive process, and present approaches are focused on the provision of standard AR material that is not tailored
to user demands. In contrast, the most recent technological developments have led to the creation of computer vision
techniques. These techniques are based on the design of digital networks, also known as Artificial Neural Networks
(ANN), which are comparable to the human brain. Additionally, these strategies can be taught to mimic human learning
behaviour. Consequently, by applying such methodologies in contemporary industrial settings, applications can learn by
doing and, more crucially, self-improve. In an effort to connect the aforementioned technologies, this study discusses
the conceptualization, design, and first development of a framework based on the use of Convolution Neural Network
(CNN) to generate AR MRO instructions automatically. It is anticipated that the implementation of the suggested
framework will eventually aid engineers in lowering the time required for the development of AR instructions and
the complexity of such applications. Moreover, by exploiting the capabilities of ANNs, the suggested framework can
self-improve over time, hence maintaining a high degree of added value.

2 STATE OF THE ART

CNNs originated in the field of computer vision with the purpose of recognising the MNIST (Modified National
Institute of Standards and Technology) dataset, which consists of sixty thousand grayscale square images of handwritten
numbers. Today, CNN has evolved into popular computer vision technologies, including image recognition, object
detection, etc. In the literature [1], data-driven approaches are often constituted of three steps: fault-related data
collecting, development of Health Indicators (HI), and prediction of time to failure. The performance of these strategies
depends greatly on the health markers. Based on a survey of the relevant literature, the health indicator deep learning
algorithms can be divided into two groups. The first is CNN, whereas the second is based on Recurrent Neural Networks
(RNN). To adapt bearing health indicators, an end-to-end recurrent CNN is suggested. This reduces the weakness
of the CNN-based technique and the RNN-based method and further characterizes the pattern of nonlinear bearing
deterioration as a roughly linear process over time, while bearings operate under a variety of working situations [2].
Based on the aforementioned study, it can be stated that Neural Networks in general, and CNNs in particular, are
extremely adaptable methodologies that may be used to solve a wide range of engineering challenges. In addition, these
research efforts provide new options for enhancing the suggested system architecture in order to expand its capabilities,
resulting in a more robust solution with enhanced functionality.

In recent years, deep learning has catalysed exponential growth in artificial intelligence and has been widely implemented
in a variety of pattern recognition applications [3]. In addition, the forecast of machines’ Remaining Usable Life (RUL)
is becoming increasingly dependent on deep learning. Defect detection, particularly in the field of planetary gearboxes
based on vibration data, continues to be a significant challenge for both industry and academics [4]. In this regard, a
dynamic CNN ensemble is presented for fault diagnosis of planetary gearboxes that fuses defect information from
multi-level wavelet packet coefficients. A similar study has been conducted, describing an enhanced CNN with larger
receptive fields for gearbox problem diagnostics.

Moving on to another application field of CNN, an overview of CNN-based action recognition and a discussion of
action recognition performance on large-scale benchmarks are offered. Initially, the analysis of relevant literature
revealed the many obstacles to action recognition [5–7]. It then examined the approaches to action identification based
on their capacity to meet these issues and deployed publicly accessible datasets including documented challenges.
Another review performed an experimental analysis on three datasets under centralised conditions and determined the
implications of the experimental results and conclusions, while other papers reviewed action recognition, encompassing
a wide range of methods, from handcrafted to deep learning representation.

Recurrent convolutional neural network (RCNN) is introduced as a solution to the constraints of RUL for the prediction
of machinery by RUL. In addition, a novel deep learning approach based on multi-scale feature extraction is proposed
for predicting the remaining usable life (RUL). The proposed method achieves the direct correlation between the raw
data and the ground-RUL without using any prior information. In addition, the suggested method for deep learning
consists of three multi-scale blocks and multiple conventional convolutional layers. Next, repeating convolutional layers
are created in RCNN to represent the temporal dependencies between the various deterioration phases. Deep CNNs
have lately shown outstanding performance in a variety of applications, such as speech recognition and machine vision.
The work employs the capabilities of the Gabor filter to extract more discriminating picture features by capturing more
image information [8–11]. The constructed filter bank accommodates numerous alterations to the basic Gabor filter by
altering the Gabor parameters and adjusting the filter’s shape. This is achieved by altering the updating rule of CNN in
order to examine the contribution of each Gabor parameter to each pixel that is to be classified.

However, only a small number of studies considered CNN-based methods to be part of deep learning representation.
In addition, only a few articles integrate two cutting-edge technologies, such as AR and neural networks, which are
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frequently used. Specifically, a cellular neural network in a unique FPGA-based Augmented Reality system geared
toward assisting visually handicapped persons is analysed. Last but not least, the development of a 3D integral
image-based AR with Deep Learning accomplished using faster RCNN at a low-cost lens is detailed.

Maintenance and its expenses continue to attract the attention of production management over the years since unplanned
system breakdowns reduce system reliability and investment returns. Manufacturers should integrate advanced
monitoring systems so that machine tool problems can be easily spotted before they occur in order to increase
their efficiency through more precise and expedient maintenance. In order to do this, a cloud-based platform for
condition-based preventative maintenance is offered as a Product-Service System (PSS), accompanied by a shop floor
monitoring service and an augmented reality (AR) application [12, 13]. Referring to maintenance, the context-aware
Augmented Reality System proposed to aid operators in regular maintenance operations by delivering context-relevant
information has been researched extensively, and maintenance through AR is provided using a product-service model.
In addition, an augmented reality (AR)-based tool is introduced that will improve Business-to-Business (B2B) and
internal communication through the usage of smart devices, as well as minimise maintenance time and costs.

According to the Industry 4.0 concept, the works [14–17] describe an integrated system composed of a machine tool
monitoring tool and an AR mobile application that interfaces with a shop floor scheduling tool, as visualised in Fig. 1.
In addition, the estimation of the maintenance time for a new maintenance project, which is one of the most important
maintenance offerings, is based purely on the experience and knowledge of the engineer [18–24]. To increase the capture
and reuse of expertise in maintenance activities and to enhance the performance of the supplied maintenance PSS,
this work presents a knowledge-based maintenance time estimation method based on the analysis of Key Performance
Indicators (KPIs).

Figure 1: Visualisation of the proposed architecture

3 METHODOLOGY

3.1 AR Maintenance

Well-kept industrial equipment is one of the most essential production factors in a manufacturing line. In this paper, an
AR solution has been proposed to increase the efficiency of the maintenance procedure and reduce the delay brought
on by malfunctioning equipment. There are four interconnected components that make up the architecture. The
maintenance staff are outfitted with optical see-through head-mounted displays on the field, where the manufacturing
machines are in use (AR glasses). The device’s optical see-through feature enables users to inspect their surroundings
without major visual obstructions or digital artifacts that can be seen on a digital pass-through head-mounted display,
while the digital display’s augmentation feature allows for the provision of extra information during maintenance.
Currently available AR glasses are equipped a spectrum of sensors, including visual and audio modules, allowing for
the recording, processing and eventually transfer of multimedia feed streams via a given network. To achieve this,
data streams provided by the AR device are relayed to two other architectural components of the proposed synthesis.
The aforementioned interfaces are visualised in Fig. 2. A dedicated device on the edge hosts one or more AI models
that can take in and process the data. The outcomes of the AI models, such as the ability to recognize objects and
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Figure 2: Visualisation of the proposed framework’s interfaces

targets, are fed back to the maintenance staff and shown on the AR gadget. The models can be utilised with computer
vision techniques to identify equipment, components, and faults. The expert staff is connected to the architecture via a
network accessible device and forms the second element at the edge. Expert employees on the field who are receiving
the multimedia feed from the AR gadget may assess the problem almost immediately and help the maintenance workers.
When communicating with the expert staff, the AR device can transmit text messages or audio information (such as
object highlights) about objects. The outcomes of the AI-powered processes allowing a larger variety of information to
reduce the maintenance procedures can also be advantageous to expert employees. Due to the nature of edge devices,
the specialist staff may be located on- or off-site, which could allow manufacturers to assist manufacturing facilities in
the event of a technical problem. The Cloud-based Meta Analytics Database is the final element of the architecture.
Based on the data provided by the field maintenance workers, the AI models on the Edge extract meta data. The
professional staff can then access the processed and saved meta data, offering a long-term overview of operating and
maintenance features. The status of the machines, probable abnormalities, and impending maintenance needs can all be
predicted using this data.

3.2 AR Maintenance

Some individuals may experience difficulties utilising gadgets with traditional input methods due to physical restrictions.
Said restrictions may be brought on by a physical impairment or injury in any situation, including industrial settings
where the user has to utilise both hands for the operation. The mouse and gamepad are regarded as traditional input
devices in the current architecture; the former is frequently used with personal computers, while the latter is the primary
input device for console gaming. The project’s objective is to define a generalized architecture and solutions that enable
the efficient use of a range of alternative input devices in addition to the traditional input device. These suggested
remedies and ideas are analysed using both qualitative (e.g., MoS) and quantitative (duration, success rate, accuracy)
metrics in a comparison study on a set of trials that comprise object clicking, selection, and follow. The project’s
purpose is to develop a generic architecture and solutions that enable a number of alternative input devices to be utilised
with the same efficiency as traditional input devices. In the context of a comparative research, these proposed solutions
and concepts are evaluated using both qualitative (e.g., MoS) and quantitative (time, success rate, accuracy) criteria. We
are examining alternate, AR-based input options for the aforementioned comparative study and methods to improve the
effectiveness of these solutions including AI support in circumstances when traditional input devices are not suitable.
Two AR-based input approaches have been considered. The first one is a face tracking solution leveraging a computer
webcam, detecting the user’s face and direction thereof and providing the underlying components with the relevant
input. The second one is a target tracking solution; said solution receives a target image or object position and direction
as inputs, and uses this data to control the output accordingly. The conducted comparative analysis demonstrates the
disparity between the traditional input devices and the recommended alternative options. Several AI-based strategies
have been developed to reduce these discrepancies. The first solution, depending on the movement direction supplied
by the input device, employs linear interpolation. It deviates the input movement in the direction of the specified target
location. The deviation considers the distance from the target location as well as the input movement vector in order to
give reliable help, while avoiding a forced experience for the user. This method only allows for one target location at a
time. The input movement vector is deviated by the gravity-map solution based on a list of several target coordinates
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according to the distance of the pointer from the targets. As the user approaches the objectives, the divergence gets
bigger. This method enables a dual area design, where certain portions of the application are not impacted by the AI aid,
providing a multi-target assistance system that outside of the target regions will not affect the user input. The third
option estimates the best movement vector using a machine learning model based on neural networks. The solution
shifts the user input in the direction of a target based on the past N locations of the cursor during a specified time period,
sampled at predetermined time intervals. A set-sized grid that shows the locations of prospective targets as additional
input for the model enables multi-target help.

4 Results

Initial tests were conducted to establish a baseline for the most effective and user-friendly solution, while gathering
comparative data on the performance of the various input devices and solutions. Applying comparison research, the
input techniques were analysed using both qualitative (such as MoS) and quantitative (duration, success rate, accuracy)
metrics on a series of trials involving object clicking, selection, and follow. Fig. 3 illustrates the evaluation application
from which the presented results stem.

Figure 3: Sample image of the evaluation application featuring a single static target (cyan)

4.1 Locate Mode

In this mode, a number of static targets are shown in a 3D setting. The participant’s objective is to position the crosshair,
which represents the screen’s center, above the target. Each job consists of a number of targets, each of which is a
separate subtask. The targets are organised in a sequential manner, with only one target being available at any given
moment. We can determine the average amount of time it takes a participant to get at the goal position by running the
experiment with various input methods and solutions. Every target has a predetermined window of availability beyond
which the target is deleted, and the assigned subtask is deemed to have failed.

Table 1: OVERALL OUTCOMES OF LOCATE MODE.
Head Image Mouse Controller

Success 92.5% 90.3% 98.3% 97.8%
Min. Screen Dist. 10px 14px 5px 8px
Max. Screen Dist. 1092px 954px 1089px 1009px
Avg. Screen Dist 252px 284px 300px 269px
Avg. Score. 1.84 s 2.04 s 0.89 s 1.34 s
Avg. Distance 30.97m* 30.04m* 30.94m* 30.89m*

*Scale of distance for test environment to real environment is 1 unit : 1 m

According to the preliminary data analysis, which excluded input augmentation, the traditional input devices marginally
outperformed the other methods in terms of success rate. If the subject was able to move the crosshair onto the target
item in this experiment, the subtask was successfully completed. Based on the successfully completed subtasks, the
traditional input methods are typically 30% to 45% faster than the other options. The mouse, the most popular input
method, performed best overall while the image tracking system fared the poorest. We also examined how these atypical
circumstances would affect the success rate when the target might appear outside of the camera’s field of vision in the
application. Only the mouse has an observable quantity of failed subtask targets close to the edge of the screen, and the
data does not clearly suggest these circumstances as the major contributors of the failed subtasks for the majority of
input solutions. This would suggest that the best control strategy should have only failed subtasks when the participant
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could not see the target item. Table I summarises the results obtained in tests conducted, while Fig. 5 and 6 illustrate
the success of tasks corresponding to targets Fig. 5 shows the correlation between target appearance on the screen and
task success, while Fig. 6 shows the correlation between target distance from the camera and task success.

Because the targets appear in a 3D world, the influence of the target’s distance from the camera and, in turn, the target’s
relative size, are thought to be decisive factors in terms of success rate. Based on the original data, neither the success
rate nor the time required to complete the supplied subtasks successfully showed any appreciable difference. Fig. 4
visualises the evaluation environment.

Figure 4: Sample image of the evaluation application featuring a single dynamic target (gray) moving between the two
path indicators (Follow Mode)

4.2 Select Mode

This mode includes a collection of static targets in a 3D environment, similarly to what the Locate Mode does. The
participant’s objective is to move the crosshair, which serves as the screen’s center, onto the target and maintain it
there continuously for a certain amount of time. Each job consists of a number of targets, each of which is a separate
subtask. The targets are organised in a sequential manner, with only one target being available at any given moment.
We may assess the accuracy of an input device by running the experiment with various input methods and solutions.
By accuracy, we mean the ability of the input method to stay inside a specific region of the screen. Every target has a
predetermined window of availability beyond which the target is deleted and the assigned subtask is deemed to have
failed. When a subtask is completed, the experiment calculates the extra time the crosshair spent on the target during
the subtasks that took longer than necessary to complete. Preliminary data collection demonstrates that the traditional
input devices greatly outperform the alternative alternatives in terms of success rate, ranging from 45% to 100%. On
average, other solutions might take up to 19 times longer on the target than the mouse, the input that performs the best.
This shows that the other solutions’ accuracy is noticeably less stable. Table II and Figs. 8 and 7 illustrate the results
obtained in this test.

Table 2: OVERALL OUTCOMES OF SELECT MODE

.

Head Image Mouse Controller
Success 65.4% 49.0% 100% 95.8%
Min. Screen Dist. 24px 18px 13px 31px
Max. Screen Dist. 951px 920px 977px 941px
Avg. Screen Dist 292px 298px 307px 351px
Avg. Score. 0.793 s 0.712 s 0.042 s 0.099 s
Avg. Distance 28.97m* 29.19m* 31.12m* 28.76m*

*Scale of distance for test environment to real environment is 1 unit : 1 m

The effect of the targets appearing outside of the participant’s field of view was taken into account as a determining
element of success, similar to the Select Mode. The success of the subtasks does not appear to be correlated with
how the target appears, according to the preliminary data. The participants could plainly see all of the objectives that
appeared in the unsuccessful subtasks.

The size of the object has a tangential, but not quite conclusive relationship to how distance affects it. In the instance of
the image-based input solution, there is a clear indication of where the object’s distance increased and the additional
time it took to complete the assignment, showing that the obviously smaller items are more challenging to choose
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appropriately. Despite the technological link between both solutions, this pattern was anticipated but not readily seen
on the head input solution.

4.3 Follow Mode

In the same way that the other modes do, the follow mode has a number of subtasks, but in this task, the target is a
dynamic object rather than a static one. Between a starting position and an ending point, the targets are moving steadily.
To regulate the experiment and determine the relationship between success and speed, we established a set of predefined
speeds. Move the crosshair, which represents the screen’s center, onto the target object with the intention of following
it along the route between the start and end marks. This assignment assesses the precision of the input solutions in a
dynamic target scenario, similarly to the Select Mode.

Table 3: OVERALL OUTCOMES OF FOLLOW MODE

.

Speed Label Head Image Mouse Controller

2m/s* Success 100.0% 100.0% 100.0% 100.0%
Score 26.9% 23.5% 73.7% 32.7%

5m/s* Success 80.7% 92.3% 98.3% 100.0%
Score 11.8% 13.3% 46.9% 18.8%

10m/s* Success 46.6% 53.8% 100.0% 97.6%
Score 4.9% 3.3% 21.9% 7.5%

Average Success 74.7% 82.9% 99.4% 99.1%
Score 16.8% 15.7% 48.1% 19.3%

*Scale of distance for test environment to real environment is 1 unit : 1 m

If the participant is able to move the crosshair onto the target item in Follow Mode, the subtask is judged successful.
The software calculates how long the crosshair is over the target item and uses that information to give a score that
represents how much of the total trip time has been spent on the object. There were several different speed categories
established for the original trial. All input alternatives were equally successful at lower speeds in terms of success,
however as speed increases, we observe a 20%–30% increase in success when utilising traditional input devices. The
discrepancy is more obvious when we consider the average score.

Although the controller has a better score, it only significantly exceeds the alternative input options by 15% to 25%,
but the mouse has a score that is x2 to x5 times that of the alternatives, making it the clear winner when working
with dynamic targets. The graphs and output data clearly show the relationship between the object’s speed, where the
"FlyTime" is larger, and the likelihood that the subtask would be successful based on the original data. Within the same
speed category, the variations in trip lengths and their relationship to screen time do not significantly alter the success
rate.

Similarly to the success rate, the score has a clear relationship with the speed category, as illustrated in the chart below.
It is abundantly evident that the speed of the dynamic object in the 3D environment is the primary determinant of the
rate of the following capabilities. Table III and Figs. 9 and 10 illustrate the results obtained throughout tests in Follow
mode.
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Figure 5: Target position on screen the mo-
ment of appearing; (green – successful sub-
task, red – failed subtask)

Figure 6: Distance of targets from the cam-
era in relation with the additional time it
takes to complete the subtask (green – suc-
cessful subtask, red – failed subtask)
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Figure 7: Distance of targets from the cam-
era in relation with the time it takes to com-
plete the subtask (green – successful sub-
task, red – failed subtask)

Figure 8: Target position on screen the mo-
ment of appearing; green successful sub-
task, red – failed subtask;
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Figure 9: Subtask success in relation with
the FlyTime and FlyDistance; green – suc-
cessful subtask, red – failed subtask

Figure 10: The follow percentage in rela-
tionship with the FlyTime; green – success-
ful subtask, red – failed subtask

5 CONCLUSIONS

Many Human-Computer Interaction interfaces for immersive environments have been utilised to enable AR technology,
allowing more natural and intuitive communication. Such systems are crucial for situations when maintenance workers
must use their hands to do chores while interacting with an augmented environment, as well as for elderly and
disabled users for whom traditional interfaces may be inaccessible owing to physical limitations. This paper presents a
generalised framework and architecture that enables the effective use of a range of non-biased interfaces for maintenance
applications or by individuals with special requirements. Applying comparative research, these suggested solutions
and concepts have been tested using both qualitative (such as MoS) and quantitative (such as time, success rate, and
accuracy) metrics on a set of tasks that include object clicking, selection, and follow.
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6 FUTURE WORKS

As the preliminary data has been collected and evaluated the research steps into the testing phase. This portion of
the research process involves the addition of AI assistance solutions to the testing application. The three methods, as
discussed : linear interpolation, gravity-map, and machine learning with neural networks. These methods are designed
to assist the user in controlling interfaces using AR technologies and minimize the discrepancy between the classical
input solutions and the alternative input methods.
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