

CURE Application Solution
Brochure
Deliverable D4.4

DATE
30 June 2022

ISSUE
1.0

GRANT AGREEMENT

no 870337

DISSEMINATION LEVEL

PU

PROJECT WEB-SITE

http://cure-copernicus.eu/

AUTHORS

Johannes Schmid (GeoVille)
Samuel Carraro (GeoVille)
Mario Dohr (GeoVille)

Ref. Ares(2022)4800008 - 30/06/2022

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 1 of 8

CONTENTS

1 Introduction ..2

1.1 Purpose of the document.. 2

2 Implementation of CURE Services ...2

2.1 Service-ready Applications .. 2

2.2 Application-Code.. 2

2.2.1 Container Virtualization .. 3

2.2.2 Version Control .. 4

3 Incorporation into GEMS ...5

3.1 VM setup .. 5

3.2 Application-Workflow .. 5

3.3 API Endpoint ... 6

4 Conclusion ...7

LIST OF FIGURES

Figure 2-1 Docker Process .. 4

Figure 3-1 Example DAG ... 6

LIST OF ACRONYMS

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CCSI Copernicus Core Service Interface
DAG Directed Acyclic Graph
GIS Geographic Information Systems
GEMS GeoVille MicroService
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
REST Representational State Transfer
REGEX REGular EXpression
SQL Structured Query Language
Stdout standard output
VM Virtual Machine
WP Work Package

file:///T:/administratives/2749_CURE/Deliverables/D4_CURE_System_Development/D4.4_Application%20Solution%20Brochure/D4.4_Application_Solution_Brochure_0.1.docx%23_Toc106628124
file:///T:/administratives/2749_CURE/Deliverables/D4_CURE_System_Development/D4.4_Application%20Solution%20Brochure/D4.4_Application_Solution_Brochure_0.1.docx%23_Toc106628125

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 2 of 8

1 INTRODUCTION

1.1 Purpose of the document
Deliverable 4.4 is an essential delivery of Task 4.4 Integration of Services in WP4 Cure System

Development.

CURE Application Solution Brochure serves as an introduction on how to implement a new

application into the CURE system. It consists of two main parts, the creation and the

incorporation of applications into the GeoVille MicroService (GEMS) architecture.

2 IMPLEMENTATION OF CURE SERVICES

2.1 Service-ready Applications
Before a new service can be implemented, it needs to fulfill several requirements. This includes

requirements on the code, its detailed documentation, version control and a container

virtualization.

2.2 Application-Code
Whether the application is written in Python, C++, Java, Julia or another language, the code

needs to be style conform. Most languages have their own style guide, such as PEP8 for Python.

Those guides ensure a nice looking and readable code structure.

Moreover, a lot of comments need to be inserted so that everyone else can easily understand

the application steps for further improvements or debugging. This also includes logs to stdout.

The more logs, the easier it is to find unexpected behavior of the code and monitor the current

processing status.

Besides code styling and logs, it is also important to include command line arguments. This

enables the user to execute the code while being able to easily change important variables

such as paths to input files, output directories or other configuration values. Predefined folder

and file structures might cause problems when combining the application code with other

components such as the input data download using the CCSI API.

Ideally, the code was developed test-driven. Hence, unit-tests guarantee the absence of errors

and verify that new features and changes do not lead to errors elsewhere.

Even if the code needs to be compiled before it can be run, binary data should not be delivered.

The compilation will be done by Docker (see Chapter “Container Virtualization”).

Now that the application is well structured, includes a sufficient number of logs and is tested,

it still needs to be documented outside of the code. Therefore, a README file by using

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 3 of 8

Markdown is recommended. First and foremost, this file needs to include the detailed

description of the service and the execution command with all its parameters. An example

command is also very helpful.

2.2.1 Container Virtualization

Only because the application code runs at the developer’s environment, it does not necessarily

run on any other machine. Since the code needs to run on a virtual machine that serves as an

Airflow Worker, the entire environment with all its modules and requirements needs to be

installed. To avoid this procedure and make the code system agnostic, a Docker container can

be built.

The first step is to create a Dockerfile. This requires special knowledge of the Docker syntax.

Although creating a working example might seem easy in the beginning, it is more demanding

to take care that the resulting Docker image is not too big. There are slim base images that can

be used as a foundation for the newly created Docker image.

The second step is building the Docker image using the Dockerfile. This can be done by using

the following command:

docker build -t <name_of_the_new_docker_image> .

Besides the Docker image name that needs to be provided with the flag “-t”, the location of

the Dockerfile is required. In case of the example, the Dockerfile lies at the present working

directory (.).

After the Docker image was successfully built, the execution of the code can be tested to

ensure that all requirements were considered and everything runs as expected. As soon as a

Docker image is used to execute code, a temporary Docker container gets created in which the

code actively runs.

In case no entry point was defined within the Dockerfile, the command to run a Docker image

as a Docker Container can look as follows.

docker run <name_of_the_new_docker_image> python3 main.py

In this example, a Python script called “main.py” gets executed by using the Docker image. As

soon as this command gets executed, the respective Docker container is created and runs the

code.

However, this command has many command line arguments such as adding volumes that

mount local directories into the container or the definition of environment variables. The

following example call shows how a local directory can be mirrored within the container by

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 4 of 8

using the “-v” flag. As a result, this mounted directory can be used as an input for the script

main.py.

Imagine a local directory (local_directory) that includes a GeoTiff called “input.tif”. If the

directory gets mounted into the container (container_directory), it can be used as input data

for the application inside the container.

docker run -v /local_directory:/ container_directory <name_of_the_new_docker_image>

python3 main.py -i /container_directory/input.tif

As a summary, the following figure shows the entire Docker process, from creating a Dockerfile

to a running Docker Container.

Both, the Dockerfile and the Docker image can be shared. While the Dockerfile can be simply

provided alongside the application code, the Docker image can be uploaded to a Docker

registry. The most common and free-to-use registry is the Dockerhub.

Finally, the README file mentioned in Chapter “Application-Code” should also include an

example docker run command in case there are special requirements of the code such as

environment variables.

2.2.2 Version Control

Primarily, a version control system manages code changes. This means that changes can be

monitored, revoked and tagged. Hence, the code can have several versions. The most famous

version control system is called “Git” which is used by several user-friendly web-based

providers such as GitHub, GitLab or Bitbucket.

The app developer can use a provider of his or her choice to create a repository and store the

application code and the Dockerfile inside.

Most providers also offer pipelines that enable the repository owner to execute commands

every time a new commit gets pushed.

Pipelines can include automatic docker builds and uploads to an online docker registry, the

execution of unit-tests or the analysis of the code quality to control new commits.

Figure 2-1 Docker Process

https://hub.docker.com/

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 5 of 8

Now that the code is well documented, tested, dockerized and finally stored and managed

within a Git repository, the link to the repository can be shared with the engineers who will

incorporate the service into the microservice architecture.

3 INCORPORATION INTO GEMS

The incorporation starts by ordering and setting up a virtual machine as an Airflow Worker

machine. Furthermore, a Directed Acyclic Graph (DAG) needs to be created for the Airflow

Scheduler, since the service does not only consist of the application code alone but also of the

input data download and the output data handling. Finally, an API endpoint needs to be created

to allow service orders by customers.

3.1 VM setup
In the beginning of the CURE project, it was decided that WEkEO is the DIAS platform that shall

be used for ordering virtual machines on which the applications will run. The machines should

be based on an actual Ubuntu distribution. The only software that needs to be installed is

Docker. As a result, the dockerized Airflow worker service can be run daemonized as a Docker

container. Moreover, Docker is required to build or pull the Docker Images of the CURE

applications. It is highly recommended that each service or application gets its own worker

machine.

3.2 Application-Workflow
Apache Airflow supports the creation of workflows. A workflow is formulated as a Directed

Acyclic Graph (DAG). Usually, a DAG is a collection of tasks and each DAG is represented by a

Python script.

In the following Figure, an example DAG of a CURE application is visually presented. Each

rectangle represents a task which can be either a Python function, a Bash command or a Docker

container.

In case an application is more complex and includes more than just the data download using

the CCSI API in the beginning and a product upload in the end, the application developers need

to provide a flowchart that visualizes the relationships between the different tasks.

Moreover, defining the correct CCSI requests needs a lot of collaboration between the CCSI

developer, the application developer and the software engineer who creates the DAG to

ensure that the correct data gets downloaded.

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 6 of 8

3.3 API Endpoint
In conclusion, the new service needs to get an API endpoint so that customers can request the

respective application at the CURE portal. As soon as a service request has been sent

successfully, the API triggers the Airflow DAG and the code runs asynchronously in the

background. Hence, the customer does not need to wait for an immediate response and get

notified as soon as the requested product is available. As part of the endpoint creation, a REGEX

check can be integrated to validate the request payload. This might require further information

from the application developers. To give an example, a user cannot request a date that lies in

the future.

Finished with the implementation of a new CURE service, the entire integration can be tested

before it deployed in production.

The main reason why these system components have been dockerized is to enable simple

reusability and scaling. When a system component needs to be migrated to another virtual

machine or when another Airflow worker needs to be deployed, the Docker image can be

reused instead of spending hours on installation and configuration. This can be done by either

pulling the Docker image from a private or public Docker registry or by building the Docker

image locally.

Another big advantage of Docker is the independence from system updates. While the upgrade

of a program or module by a system update could cause dependency problems if the system

component runs as a daemonized system service, the installation and execution within a

Docker container is not affected.

Figure 3-1 Example DAG

Copernicus for Urban Resilience in Europe

CURE Application Solution Brochure

Deliverable D4.4

 Page 7 of 8

4 CONCLUSION

This document serves as a guide how new services can be implemented into to CURE System.

It must be considered that, given the variety of Applications, and their possible special need

for input data, a close cooperation with the CCSI developers could be needed to guarantee a

bug free performance.

