

CURE System
Deliverable D4.3

DATE
30 June 2022

ISSUE
1.0

GRANT AGREEMENT

no 870337

DISSEMINATION LEVEL

PU

PROJECT WEB-SITE

http://cure-copernicus.eu/

AUTHORS

Johannes Schmid (GeoVille)
Samuel Carraro (GeoVille)
Mario Dohr (GeoVille)

Ref. Ares(2022)4797210 - 30/06/2022

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 1 of 17

CONTENTS

1 Introduction ..3

1.1 Purpose of the document.. 3

2 System Components ..4

2.1 API Gateway ... 4

2.2 Authentication and Authorization .. 5

2.3 Order Status Updates .. 5

2.4 Message Broker ... 6

2.4.1 Queueing System ... 7

2.4.2 Queue listener .. 7

2.5 Scheduler .. 7

2.5.1 DAG .. 7

2.5.2 Operator .. 8

2.5.3 Worker ... 8

2.5.4 Parallelism .. 8

2.5.5 Monitoring ... 8

2.6 Logging ... 8

2.7 Database ... 9

2.8 Container virtualization ... 10

2.9 Monitoring.. 11

3 Modules ... 12

3.1 Logging module .. 12

3.2 Database module ... 12

3.3 RabbitMQ module ... 12

3.4 Request validation module .. 12

4 Testing .. 14

4.1 Component Tests ... 14

4.2 Integration Tests .. 15

4.3 System Tests ... 16

5 Conclusion .. 16

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 2 of 17

Figure 2-1 General Workflow ... 4

Figure 2-2: Overview of order status updating workflow ... 6

Figure 2-3 Graph Example of DAG ... 8

Figure 2-4 Data Model .. 10

LIST OF ACRONYMS

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
DAG Directed Acyclic Graph
DIAS Data and Information Access Services
GIS Geographic Information Systems
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
OGC Open Geospatial Consortium
OS Operating System
REST Representational State Transfer
REGEX REGular EXpression
SQL Structured Query Language
UI User Interface
WP Work Package

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 3 of 17

1 INTRODUCTION

1.1 Purpose of the document
Deliverable 4.3 is an essential delivery of Task 4.4 Integration of Services in WP4 Cure System

Development.

CURE System will describe the implementation of architectural design as described in D4.2 in

detail based on the usage of DIAS as a Service. That comprises the set-up of all System

Components as well as the software design including the interaction between those

components.

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 4 of 17

2 SYSTEM COMPONENTS

The system is based on a distributed microservice architecture. Figure 2-1 General Workflow

shows the general workflow with the main system components (microservices) and how they

link together. Besides the description of the workflow on the right-hand side, the Figure also

displays the modules and software stack used by each component.

Figure 2-1 General Workflow

2.1 API Gateway

An API gateway sits between a client and a collection of backend services and serves as the

entry point to the microservice infrastructure. An API gateway accepts all application

programming interface (API) calls, aggregates the various services required to fulfil them, and

returns the appropriate result. The RESTful API provides all endpoints which are required to

interact with the system. The endpoints are divided into namespaces or sections to group

common operations (e.g.: geo-services, custom-relation-management services, etc.). The API

is documented with the help of the OpenAPI specification. The OpenAPI Specification (OAS)

defines a standard, language-agnostic interface to RESTful APIs which allows both humans and

computers to discover and understand the capabilities of the service without access to source

code, documentation, or through network traffic inspection. When properly defined, a

consumer can understand and interact with the remote service with a minimal amount of

implementation logic. An OpenAPI document that conforms to the OpenAPI Specification is

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 5 of 17

itself a JSON object, which may be represented either in JSON or YAML format. An OpenAPI

definition can then be used by documentation generation tools to display the API, code

generation tools to generate servers and clients in various programming languages, testing

tools, and many other use cases. Moreover, the UI generated by these tools supports a

straightforward workflow to run, debug and test all API endpoints. Please visit

https://services.geoville.com/cure/v1/ for more details.

2.2 Authentication and Authorization

User authentication, authorization and management are based on the OAuth2 framework. It

is used to exchange data between client and server through authorization. The OAuth 2.0

authorization framework enables a third-party application to obtain limited access to an HTTP

service, either on behalf of a resource owner by orchestrating an approval interaction between

the resource owner and the HTTP service, or by allowing the third-party application to obtain

access on its own behalf. The Authorization Server provides several endpoints for authorization,

issuing tokens, refreshing tokens and revoking tokens. When the resource owner

(user)authenticates, this server issues an access token to the client. The resource owner is the

user who is using a service. A resource owner can log in to a website with a username/email

and password, or by other methods. A client is an application making protected resource

requests on behalf of the resource owner and with its authorization. Any application that uses

OAuth 2.0 to access the CURE API must have authorization credentials that identify the

application to the OAuth 2.0 server. Therefore, the authorization server comes with a

PostgreSQL database for managing users, clients, access permissions and access tokens. The

API of the authorization server provides a set of endpoints which are required to perform

common authorization operations and flows. Amongst others, this includes for example:

 Creating OAuth clients

 User login

 Access token generation

 Token validation

 Scopes creation and management

Scopes define which services a user has access to.

2.3 Order Status Updates

The status of an asynchronous order changes in the course of processing it. Possible order

states can be the following:

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 6 of 17

 RECEIVED: the order has succeeded the validation and was accepted

 QUEUED: the order has been sent to the service queue

 RUNNING: the order started processing

 INVALID: there is no satellite data available for the requested date(s)

 SUCCESS: the order finished successfully

 FAILED: the order failed during processing

 ABORTED: the order was canceled manually by the user

The states are being updated by the API (RECEIVED, QUEUED and ABORTED) and by Airflow

(RUNNING, INVALID, FAILED, SUCCESS). The overall workflow is illustraded in Figure 2-2.

Figure 2-2: Overview of order status updating workflow

Updating a status is done by the API gateway, which offers respective routes for Airflow to

access. For specific status updates such as “SUCCESS”, “INVALID” and “FAILED” an e-mail

notification is sent to the user, if the optional notification parameter in the service ordering

payload is set to “true”. By default no email is sent.

2.4 Message Broker

As already mentioned, the system infrastructure is based on a microservice architecture. The

communication between these microservices is implemented by a message broker.

Specifically, the system uses the open-source message broker RabbitMQ together with a

Python module that listens to the queues and triggers the respective services in the

scheduler.

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 7 of 17

2.4.1 Queueing System

RabbitMQ is an open-source message broker that implements the Advanced Message

Queuing Protocol (AMQP). Basically, the message broker software has two functions, to

“publish” and to “receive” messages. By using the Python module pika, an AMQP connection

to RabbitMQ can be created to send requests to and receive requests from the server. To

ensure that the messages are secure - as they might include sensitive information -

Cryptography is used to encrypt the messages.

The main advantages of using RabbitMQ are the high scalability, the ability to run on most

operating systems and cloud environments and the regular updates from a large developer

community.

2.4.2 Queue listener

Service and System logs that were published to a RabbitMQ queue need to be received and

written to the respective logging database table. This is done by a system service. Both

functions, listening to the queue and storing the logs inside a database happen on different

threads.

For efficient usage of RabbitMQ’s functionalities from within our system, we created a

Python module that simplifies accessing queues from our code. Details about the module can

be found in section 3.3.

Besides the usage of RabbitMQ for handling logs, a separate full installation of RabbitMQ gets

used by Apache Airflow to schedule the different services.

2.5 Scheduler

The scheduling system is one of the most important components of the system

infrastructure. It allows the creation, execution and monitoring of multiple parallel workflows

and tasks. The scheduler is based on the Apache Airflow workflow management platform.

Airflow is an open-source platform based on Python that is designed under the principle of

“configuration as code”.

The following sub-sections address some of the most important Apache Airflow components.

2.5.1 DAG

Apache Airflow supports the creation of workflows. A workflow is formulated as a Directed

Acyclic Graph (DAG). Usually, such a DAG is a collection of tasks, and each DAG is represented

by a Python script.

In Figure 2-3 Graph Example of DAG an example DAG is visually presented. Each rectangle

represents a task which can be either a Python function, a Bash command or a Docker

container.

https://pika.readthedocs.io/en/stable/
https://cryptography.io/en/latest/fernet/
https://docs.python.org/3/library/threading.html

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 8 of 17

Figure 2-3 Graph Example of DAG

2.5.2 Operator

A DAG consists of several tasks which are also called operators. Airflow supports various

types of operators. Common operators which are used in the current installation are listed

below:

 Python Operator: Executes Python callable and commands.

 Bash operator: Executes commands in a Bash shell.

 Docker operator: Executes a command inside a docker container.

2.5.3 Worker

One advantage of Apache Airflow is the support of distributed system architectures. The

system includes several so-called workers, which run on systems known as worker nodes.

Jobs can be assigned by the main Airflow application to worker instances by using message

protocols. Put simply, each production step can run on a separate virtual machine and is

managed by the airflow scheduler machine.

2.5.4 Parallelism

Apache Airflow provides powerful tools and configuration options to run workflows (DAGs)

and even single tasks (operators) in parallel. This helps to manage huge workloads.

2.5.5 Monitoring

Airflow provides a powerful monitoring tool which helps to monitor, start, delete and debug

operators and DAGs.

2.6 Logging

The logging functionality of the system aims to provide a simple, yet flexible way to log

events in a central database from each system component. It is based on:

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 9 of 17

1. a mechanism that receives logging messages and sends them into a queue

2. a service that consumes the log messages and stores them.

The receiving mechanism offers two options to be used for logging:

 A Python module which provides a command for logging. For details see section 3.1.

 A REST endpoint which allows logging via HTTP request, which provides a lot of

flexibility because any client capable of sending HTTP requests can use it.

Generally, both logging mechanisms send messages into a queue.

The consumption mechanism is a standalone program (GeoVille_MS_Logging_Saver) which

reads the log messages in batches from the queue and persists the logs in a relational

database.

In order to support traceability and debugging, the logging module provides different log-

levels:

 INFO: Confirmation that things are working as expected.

 WARNING: Indicates that something unexpected happened, but the software is still

working as expected

 ERROR: Indicates a serious problem. The software has not been able to perform some

function.

2.7 Database

Any modern backend solution needs a storage system to store data whilst processing

particular tasks. As spatial information will be processed in the project, the tool chosen was a

PostgreSQL database server with its extension PostGIS for spatial operations. PostgreSQL is a

powerful, Open-Source object-relational database system with over 30 years of active

development. PostgreSQL supports both SQL (relational) and JSON (non-relational) querying.

PostgreSQL is a highly stable database and used as a primary database for many web

applications as well as mobile and analytics applications. PostGIS is a spatial database

extender for PostgreSQL object-relational database. It adds support for geographic objects

allowing location queries to be run in SQL and provides geospatial databases for geographic

information systems (GIS). PostGIS follows the Simple Features for SQL specification from the

Open Geospatial Consortium (OGC). A relational database model is required to persist the

processed information in a structured manner. The Figure 2-4 Data Model below shows the

data model used by the CURE API.

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 10 of 17

Figure 2-4 Data Model

2.8 Container virtualization

For OS-level virtualization the system uses Docker. As already mentioned, Apache Airflow

provides an operator for efficiently running Docker containers. However, not just the single

service tasks have been dockerized, but also the Airflow installation and configuration of each

worker node.

Besides the Airflow components, the API gateway, the authentication and authorization as

well as the central PostgreSQL database have also been dockerized.

The main reason why these system components have been dockerized is to enable simple

reusability and scaling. When a system component needs to be migrated to another virtual

machine or when another Airflow worker needs to be deployed, the Docker image can be

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 11 of 17

reused instead of spending hours on installation and configuration. This can be done by

either pulling the Docker image from a private or public Docker registry or by building the

Docker image locally.

Another big advantage of Docker is the independence from system updates. While the

upgrade of a program or module by a system update could cause dependency problems if

the system component runs as a daemonized system service, the installation and execution

within a Docker container is not affected.

2.9 Monitoring

The monitoring system consists of three parts. Prometheus is a monitoring solution for

storing time series data like system metrics. Grafana allows for the visualisation of the data

stored in Prometheus. The Prometheus Alert manager is the third part of the monitoring

system. It handles any alerts sent by the Prometheus server.

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 12 of 17

3 MODULES

3.1 Logging module
The logging module is a Python module which simplifies logging from within Python code. It

takes the log messages, including the log level, and sends them to the logging queue

(RabbitMQ). This module helps to simplify the code, as it does not require communication

with the logging API via HTTP. To send messages to the queue, the RabbitMQ module

described in section 3.3 is used.

3.2 Database module
This module abstracts a PostgreSQL database connector and provides several functions to

read from and write into tables. The provided methods are:

 read one row from a query

 read all rows from a query

 read many (a specific number of) rows from a query

 execute commands such as insert, update, create, drop, delete, etc.

3.3 RabbitMQ module
This Python module provides the basic implementation to retrieve messages from and

publish messages to RabbitMQ queues. It consists of the classes BaseReceiver and Publisher.

The Publisher makes it very simple to send a message to a queue, as can be identified by its

name. A message can be everything from a string to a number to a more complex object like

a dictionary. The BaseReceiver on the other hand can listen to a queue and retrieve messages

whenever there are some in the queue.

3.4 Request validation module
Before a service request can be queued and sent to the scheduler, it must be validated. If the

validation fails, an error is instantly returned to the user. Hence, the user will know right away

that invalid input parameters were provided or that parameters are missing. If no validation

was done, the system would attempt to process the service request normally and it could

take minutes or even hours before the code realizes that the input was incorrect.

The validation consists of several parts such as checking whether the user or a processing

unit exists. If dates are included, they get checked to ensure that they lie within an

acceptable range (from the satellite start until the current date) and that the end date is later

than the start date. Beside those basic content checks, a REGEX check is also performed.

REGEX stands for REGular EXpression and can be described as a search pattern. This pattern

can be used by a search algorithm to search a text for numbers, letters or specific characters.

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 13 of 17

It was developed in theoretical computer science as well as formal language theory and is

often used for input validation.

By executing the following command from the request validation module, a request payload

can be validated:

check_message({"servicename": "test_service", "unit": "123",

"begin": "2019-06-30", "end": "2019-12-31"})

In this example, a request with four payload parameters (servicename, unit, begin and end)

gets checked. The result is a boolean that states whether the request is valid (True) or invalid

(False).

For example, the payload parameter “begin” should include a date. However, it has to be in

the specific format “Year-Month-Day" (e.g. 2019-06-30). The REGEX for this would be

([12]\d{3}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01]))

If the user does not provide the parameter “begin” or if the user provides an incorrectly

formatted date such as “30.06.2019”, the validation fails and the request will not be

processed. The user will receive an appropriate explanation as to why the request has failed,

either because the parameter was missing or because it has the wrong format.

Note that this module expects that the service and its REGEX check rules are inserted in the

"message_checker" table of the "postgres" database.

After extracting the list of parameters and regular expressions for the requested service from

the database by using the module described in chapter 4.2, the parameters of the request

and the database extraction will be compared. If a required parameter is missing, an error

will be returned. In case of a success, the parameter values (e.g. the date of the parameter

“begin”) will be validated using the regular expression. This part of the code mainly uses the

Python module re1.

1 https://docs.python.org/3/library/re.html

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 14 of 17

4 TESTING

Since the processing of CURE is needed to be on demand, integration tests are run before every

new change or update to the process chain. This ensures that the processing of CURE delivers

correct results after every update. Furthermore, to ensure that the system is completely up

and running system tests and its component tests are performed every time the system is

updated. To ensure it is running smoothly while processing the system is monitored and in case

of an unexpected event the IT-Team of GeoVille is alerted by the monitoring system.

4.1 Component Tests

The 4 main Component of the processing system are the API, and three components in Airflow

(Scheduler, Webserver and Worker). Each one of them needs to be tested separately, before

a full system test can be performed.

Test case IDs Test 1

Purpose Test if API is up and running

Test items API

Startup
condition

Before System tests

Expected result API is up and running and can retrieve user inputs

Test case IDs Test 2

Purpose Test if Airflow Scheduler schedules jobs

Test items Airflow scheduler

Startup condition Before System tests

Expected result Airflow Scheduler schedules jobs and orchestrates them to the workers

Test case IDs Test 3

Purpose Test if Airflow Webserver schedules jobs

Test items Airflow Webserver

Startup condition Before System tests

Expected result Airflow Webserver shows all DAGs and its states and executions

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 15 of 17

Test case IDs Test 4

Purpose Test if Airflow Worker receives Jobs and executes them

Test items Airflow Worker

Startup condition Before System tests

Expected result Airflow Worker successfully executed Job and reports back the result to the
Airflow Scheduler

4.2 Integration Tests

After every update to the items in or the process chain of a CURE App itself in Airflow an

integration test is performed to ensure the functionality. A given set of parameters of a test

scenario is used as input. After the execution of the process chain the expected output is

compared to the output generated by the process chain. If no errors or differences in the

outputs are detected the integration test was successful.

Test Cases

Test case IDs Test 1

Purpose Test of the route of CURE app

Test items Route of CURE app in API

Startup
condition

After new Integration or Update

Expected result Execution of route triggers DAG

Test case IDs Test 2

Purpose Test the Process chain of CURE app in Airflow

Test items DAG execution in Airflow

Startup
condition

After new Integration or Update

Expected result Execution of DAG producing a valid result

Copernicus for Urban Resilience in Europe

CURE System

Deliverable D4.3

 Page 16 of 17

4.3 System Tests
Since the system can be split into two parts API and Airflow. The API handles the request of the

user and triggers the process chain with the given parameters in Airflow. Airflow schedules and

orchestrates the tasks in the process chain. After a successful Execution the State is expected

to be “SUCCESS” and the result should be a link to a S3 bucket to download the result.

Test case IDs Test 1

Purpose Test of the System to run CURE applications

Test items API, Airflow

Startup
condition

After update of System

Requirements API up and running, Airflow Scheduler, Webserver and Worker up and running,
Postgresql and RabbitMQ up and running

Scenario steps Action Expected Output Comments

1 Correct input Trigger Dag in Airflow and
return RUN_ID. In Airflow
DAG gets executed and
updated the state of the

given RUN_ID after
successful execution.

2 Wrong input Return correct error
message to user

5 CONCLUSION

This document presents the current version of the CURE System, its components and

functionalities. With this system a stable execution of the in WP3 developed apps can be

executed in a cloud environment and, together with the in Task 4.5 developed CURE web-

portal, it is possible to demonstrate the capacity and potential of these applications.

